Engineering (ENGIN)

Courses

Expand all course descriptions [+]Collapse all course descriptions [-]

ENGIN 1 Engineering Your Life: Skills for Leadership, Discovery and Service 1 Unit

Terms offered: Spring 2021, Spring 2020

This course provides the framework for engineering an empowered life through leadership, discovery and service. The class focuses on development of self, emotional intelligence, strategic thinking, problem solving, teamwork, diversity, and service learning. Skills include developing of self-awareness; understanding our unique strengths; debunking the imposter syndrome; creating plans of action and setting goals; giving and receiving assessments; interpreting body language; managing time and life-balance; and creating mission statements. Teamwork skills include methods for inspiring others; variations in leadership styles and team dynamics; rhythm of action for projects and teams; difficult conversations and conflict resolution; mechanisms.

Objectives & Outcomes

Course Objectives: This course offers the requisite framework for engineering an empowered life. The course provides students with requisite skills for authentic leadership, self-discovery and societal service. These attributes are in alignment with the mission of the College of Engineering and the Berkeley campus.

Student Learning Outcomes: Students will learn how to assess personal strengths, implement plans of action and develop mission statements. Students will learn how to optimize their knowledge with assessment of learning styles along with key communication tools necessary for conflict resolution and inspiration of others (teamwork). Through a series of active exercises and self-reflection activities the students will learn requisite skills for self-discovery and the creation of a personal leadership plan.

Rules & Requirements

Prerequisites: Designed for engineering freshmen, the class is open to all students in the College of Engineering or by permission of instructor

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of lecture per week

ENGIN 7 Introduction to Computer Programming for Scientists and Engineers 4 Units

Terms offered: Spring 2021, Fall 2020, Summer 2020 10 Week Session

Elements of procedural and object-oriented programming. Induction, iteration, and recursion. Real functions and floating-point computations for engineering analysis. Introduction to data structures. Representative examples are drawn from mathematics, science, and engineering. The course uses the MATLAB programming language. Sponsoring departments: Civil and Environmental Engineering and Mechanical Engineering.

Rules & Requirements

Prerequisites: MATH 1B (may be taken concurrently)

Credit Restrictions: Students will receive no credit for Engineering 7 after completing Engineering W7. A deficient grade in Engineering W7 may be repeated by taking Engineering 7.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture, 1 hour of discussion, and 4 hours of laboratory per week

Summer: 10 weeks - 3 hours of lecture, 1.5 hours of discussion, and 6 hours of laboratory per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: 77

Introduction to Computer Programming for Scientists and Engineers: Read Less [-]
ENGIN W7 Introduction to Computer Programming for Scientists and Engineers 4 Units

Terms offered: Summer 2021 10 Week Session, Summer 2016 10 Week Session, Summer 2015 10 Week Session

Elements of procedural and object-oriented programming. Induction, iteration, and recursion. Real functions and floating-point computations for engineering analysis. Introduction to data structures. Representative examples are drawn from mathematics, science, and engineering. The course uses the MATLAB programming language.

Introduction to Computer Programming for Scientists and Engineers: Read More [+]

Rules & Requirements

Prerequisites: MATH 1B (may be taken concurrently)

Credit Restrictions: Students will receive no credit for Engineering W7 after completing Engineering 7 or 77. A deficient grade in Engineering 7 or 77 may be removed by taking Engineering W7.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of web-based lecture, 4 hours of laboratory, and 1 hour of web-based discussion per week

Summer: 10 weeks - 6 hours of web-based lecture, 0 hours of laboratory, and 7.5 hours of web-based discussion per week

Online: This is an online course.

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Papadopoulos

Introduction to Computer Programming for Scientists and Engineers: Read Less [-]

ENGIN 11 A Hands-on Introduction to Radiation Detection: Getting to know our Radioactive World 3 Units

Terms offered: Fall 2020, Fall 2019, Spring 2007

Introduction to basic concepts in radiation detection and radioactivity, electrical circuits, and data analytics. Lectures provide the theoretical foundation of the work being performed in the accompanying laboratory. The course will contain three sections: introduction to how radiation interacts with matter and radiation detection technologies; development of the tools (mathematical and computational) needed for analyzing various types of radiation and environmental data; and building of a basic radiation sensor system.

A Hands-on Introduction to Radiation Detection: Getting to know our Radioactive World: Read More [+]

Objectives & Outcomes

Course Objectives: The course is suitable for Nuclear Engineering students, other Engineering majors, and any students interested in gaining a general understanding of radiation detection. The focus of this course will be on the application of the nuclear science, radiation detection, and data analysis concepts covered to the building of a multi-sensor radiation detection system, following a template for the required data acquisition software and circuit integration. Fieldwork related to a chosen research topic will be carried out in small groups, with group oral presentations and final reports. Students will be introduced to research opportunities on campus and at nearby lab facilities through tours of lab spaces throughout the department and field trips to LBNL and LLNL.

Students will be introduced to core concepts in nuclear science, statistical analysis, and computation, while being given practical experience applying those concepts to radiation detection and data analysis. The objective of this course is to provide Freshman and Sophomore students with an introduction to the fundamentals of nuclear radiation and radiation detection through a hands-on approach.

Student Learning Outcomes: Be able to outline and carry out a research project, prepare written and oral presentations of that work, and demonstrate how the sensors they built work.

By the end of this course, students should be able to:

- Identify types of radioactivity, radiation detection methods and sources of environmental radiation,
- Create simple circuit designs making use of standard circuitry components, demonstrate basic soldering skills, and demonstrate a familiarity with printed circuit board design tools,
- Make use of software tools including the Python programming language, version control with git, and shell environments,
- Perform statistical analysis of large data sets and quantify statistical and systematic uncertainties in experimental data,

Rules & Requirements

Credit Restrictions: Students will receive no credit for ENGIN 11 after completing ENGIN 11. A deficient grade in ENGIN 11 may be removed by taking ENGIN 11.

Hours & Format

Fall and/or spring: 15 weeks - 1.5 hours of lecture and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.
ENGIN 24 Freshman Seminar 1 Unit
Terms offered: Spring 2012, Fall 2011, Fall 2008
The Berkeley Seminar Program is designed to provide students with
the opportunity to explore an intellectual topic with a faculty member
in a small seminar setting. Berkeley Seminars are offered in all college
departments, and topics vary from department to department and
semester to semester.

Freshman Seminar: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: The grading option will be decided by the
instructor when the class is offered. Final exam required.

Freshman Seminar: Read Less [-]

ENGIN 25 Visualization for Design 2 Units
Terms offered: Fall 2020, Spring 2020, Fall 2019
Development of 3-dimensional visualization skills for engineering
design. Sketching as a tool for design communication. Presentation
of 3-dimensional geometry with 2-dimensional engineering drawings.
This course will introduce the use of 2-dimensional CAD on computer
workstations as a major graphical analysis and design tool. A group
design project is required. Teamwork and effective communication are
emphasized.

Visualization for Design: Read More [+]

Objectives & Outcomes

Course Objectives: Improve 3-dimensional visualization skills; enable
a student to create and understand engineering drawings; introduce
2-dimensional computer-aided geometry modeling as a visualization,
design, and analysis tool; enhance critical thinking and design skills;
emphasize communication skills, both written and oral; develop teamwork
skills; offer experience in hands-on engineering projects; develop early
abilities in identifying, formulating, and solving engineering problems;
introduce students to the societal context of engineering practice.

Student Learning Outcomes: Upon completion of the course, students
shall be able to communicate 3-dimensional geometry effectively using
sketches; operate 2-dimensional CAD software with a high degree of skill
and confidence; understand and create engineering drawings; visualize
3-dimensional geometry from a series of 2-dimensional drawings.

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of lecture and 2 hours of
laboratory per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Lieu, McMains

Visualization for Design: Read Less [-]
ENGIN 26 Three-Dimensional Modeling for Design 2 Units
Terms offered: Spring 2021, Fall 2020, Spring 2020
Three-dimensional modeling for engineering design. This course will emphasize the use of CAD on computer workstations as a major graphical analysis and design tool. Students develop design skills, and practice applying these skills. A group design project is required. Hands-on creativity, teamwork, and effective communication are emphasized.

Objectives & Outcomes
Course Objectives: Introduce computer-based solid, parametric, and assembly modeling as a tool for engineering design; enhance critical thinking and design skills; emphasize communication skills, both written and oral; develop teamwork skills; offer experience in hands-on, creative engineering projects; reinforce the societal context of engineering practice; develop early abilities in identifying, formulating, and solving engineering problems.

Student Learning Outcomes: Upon completion of the course, students shall be able to operate 3-dimensional solid modeling software tools with a high degree of skill and confidence; specify dimensions for parts and assemblies such that they can be fabricated, and fit such that they function with the desired result; produce rapid-prototype models of parts and assemblies to demonstrate their desired functionality; understand the design of systems, components, and processes to meet desired needs within realistic constraints.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 2 hours of laboratory per week

Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Lieu, McMains, Youssefi

Three-Dimensional Modeling for Design: Read Less [-]

ENGIN 27 Introduction to Manufacturing and Tolerancing 2 Units
Terms offered: Summer 2021 10 Week Session, Fall 2020, Summer 2020 10 Week Session
Geometric dimensioning and tolerancing (GD&T), tolerance analysis for fabrication, fundamentals of manufacturing processes (metal cutting, welding, joining, casting, molding, and layered manufacturing).

Objectives & Outcomes
Course Objectives: Enable a student to create and understand tolerances in engineering drawings; enhance critical thinking and design skills; emphasize communication skills, both written and oral; offer hands-on experience in manufacturing; develop abilities in identifying, formulating, and solving engineering problems; introduce students to the context of engineering practice.

Student Learning Outcomes: Upon completion of the course, students shall be able to fabricate basic parts in the machine shop; understand and communicate tolerance requirements in engineering drawings using industry standard GD&T; use metrology tools to evaluate if physical parts are within specified tolerances; demonstrate familiarity with manufacturing processes; and design parts that can be fabricated realistically and economically using these processes.

Rules & Requirements
Prerequisites: ENGIN 25 (may be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 2 hours of laboratory per week
Summer: 10 weeks - 1.5 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: McMains, Lieu, Taylor

Introduction to Manufacturing and Tolerancing: Read Less [-]
ENGIN 29 Manufacturing and Design Communication 4 Units
Terms offered: Spring 2021
An introduction to manufacturing process technologies and the ways in which dimensional requirements for manufactured objects are precisely communicated, especially through graphical means. Fundamentals of cutting, casting, molding, additive manufacturing, and joining processes are introduced. Geometric dimensioning and tolerancing (GD&T), tolerance analysis for fabrication, concepts of process variability, and metrology techniques are introduced and practiced. 3-D visualization skills for engineering design are developed via sketching and presentation of 3-D geometries with 2-D engineering drawings. Computer-aided design software is used. Teamwork and effective communication are emphasized through lab activities and a design project.

Manufacturing and Design Communication: Read More [+]

Objectives & Outcomes

Course Objectives: Develop early abilities in identifying, formulating, and solving engineering problems. Emphasize communication skills, both written and oral; develop teamwork skills. Enable a student to create and understand tolerances in engineering drawings. Enhance critical thinking and design skills. Improve 3-dimensional visualization skills; enable a student to create and understand engineering drawings. Introduce 2-dimensional computer-aided geometry modeling as a visualization, design, and analysis tool. Introduce students to the societal context of engineering practice. Offer an experience in hands-on engineering projects.

Student Learning Outcomes: A knowledge of contemporary issues. A recognition of the need for, and an ability to engage in life-long learning. An ability to apply knowledge of mathematics, science, and engineering. An ability to communicate effectively. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. An ability to design and conduct experiments, as well as to analyze and interpret data. An ability to identify, formulate, and solve engineering problems. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. An understanding of professional and ethical responsibility.

Rules & Requirements

Prerequisites: ENGIN 26 or equivalent experience in three-dimensional solid modeling (e.g. Solidworks, Fusion 360) is recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

ENGIN 39B Freshman/Sophomore Seminar 1.5 - 4 Units
Terms offered: Spring 2010, Spring 2009, Spring 2008
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

Freshman/Sophomore Seminar: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1.5-4 hours of seminar per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

Freshman/Sophomore Seminar: Read Less [-]

ENGIN 39E Freshman/Sophomore Seminar 1.5 - 4 Units
Terms offered: Spring 2010, Spring 2009, Spring 2008
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

Freshman/Sophomore Seminar: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1.5-4 hours of seminar per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

Freshman/Sophomore Seminar: Read Less [-]
ENGIN 39F Freshman/Sophomore Seminar
1.5 - 4 Units
Terms offered: Fall 2010
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

ENGIN 40 Engineering Thermodynamics 4
Units
Terms offered: Fall 2020, Fall 2019, Fall 2018
Fundamental laws of thermodynamics for simple substances: application to flow processes and to nonreacting mixtures; statistical thermodynamics of ideal gases and crystalline solids; chemical and materials thermodynamics; multiphase and multicomponent equilibria in reacting systems; electrochemistry. Sponsoring Departments: Materials Science and Engineering and Nuclear Engineering.

ENGIN 47 Supplementary Work in Lower Division Engineering 1 - 3 Units
Terms offered: Fall 2016, Fall 2012, Spring 2012
May be taken only with permission of the Dean of the College of Engineering. Students with partial credit in a lower division engineering course may complete the work under this heading.

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1.5-4 hours of seminar per week
Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

ENGIN 40 Engineering Thermodynamics: Read Less [-]

ENGIN 47 Supplementary Work in Lower Division Engineering: Read More [+]

Rules & Requirements
Prerequisites: PHYSICS 7B and MATH 54. CHEM 1B recommended
Credit Restrictions: Students will receive no credit for Engineering 40 after taking Engineering 115, Chemical Engineering 141 or Mechanical Engineering 40.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Bolind, Persson

Supplementary Work in Lower Division Engineering: Read Less [-]
ENGIN 78 Statistics and Data Science for Engineers 4 Units
Terms offered: Fall 2020
This course introduces engineering students to elements of statistics and probability, followed by a module-based introduction to select computational techniques from data science and stochastic optimization. Each module is based on a contemporary engineering problem of broad interest. The computational techniques presented in the course are drawn from Bayesian optimization, supervised learning, neural networks, classification, and Kalman filtering.

Objectives & Outcomes

Course Objectives: Enhance the students' computational skills in tackling engineering problems whose complexity may necessitate data-driven solutions. Familiarize students with practical concepts of quantitative statistics and probability. Introduce students to select state-of-the-art algorithms from data science and stochastic optimization in the context of engineering problems.

Student Learning Outcomes: A knowledge of contemporary issues. An ability to apply knowledge of mathematics, science, and engineering. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. An ability to design and conduct experiments, as well as to analyze and interpret data. An ability to identify, formulate, and solve engineering problems. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

Rules & Requirements

Prerequisites: ENGIN 7, MATH 1A, MATH 1B, and MATH 53; and MATH 54 (may be taken concurrently)

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Papadopoulos

ENGIN 92 Perspectives in Engineering 1 Unit
Terms offered: Fall 2020, Fall 2019, Fall 2018
This series of lectures provides students, especially undeclared Engineering students, with information on the various engineering disciplines to guide them toward choice of major. Lecturers describe research activities, how they made their own career choices, and indicate future opportunities. Recommended for all Engineering Science students and required for Engineering undeclared students.

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Perspectives in Engineering: Read Less [-]

ENGIN 93 Energy Engineering Seminar 1 Unit
Terms offered: Fall 2020, Fall 2019, Fall 2018
Weekly seminar with different speakers on energy-related topics. The goal is to expose students to a broad range of energy issues.

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of seminar per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Instructor: Zohdi

Energy Engineering Seminar: Read Less [-]
ENGIN 98 Directed Group Studies for Lower Division Undergraduates 1 - 4 Units
Terms offered: Spring 2021, Fall 2020, Spring 2020
Seminars for group study of selected topics, which will vary from year to year. Intended for students in the lower division.
Directed Group Studies for Lower Division Undergraduates: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Summer:
- 6 weeks - 2.5-10 hours of directed group study per week
- 8 weeks - 1.5-7.5 hours of directed group study per week
- 10 weeks - 1.5-6 hours of directed group study per week
Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Studies for Lower Division Undergraduates: Read Less [-]

ENGIN 117 Methods of Engineering Analysis
3 Units
Terms offered: Fall 2019, Fall 2017, Fall 2015
Methods of theoretical engineering analysis; techniques for analyzing partial differential equations and the use of special functions related to engineering systems. Sponsoring Department: Mechanical Engineering.
Methods of Engineering Analysis: Read More [+]
Rules & Requirements
Prerequisites: MATH 53 and MATH 54
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Methods of Engineering Analysis: Read Less [-]

ENGIN 120 Principles of Engineering Economics
3 Units
Terms offered: Spring 2021, Fall 2020, Spring 2020
Principles of Engineering Economics: Read More [+]
Rules & Requirements
Prerequisites: Completion of 60 units of an approved engineering curriculum
Credit Restrictions: Students will receive no credit for Engineering 120 after taking Industrial Engineering 120.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week
Summer:
- 8 weeks - 4 hours of lecture and 2 hours of discussion per week
Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Adler
Principles of Engineering Economics: Read Less [-]

ENGIN 125 Ethics, Engineering, and Society
3 Units
Terms offered: Spring 2021, Spring 2020, Spring 2014
How should engineers analyze and resolve the ethical issues inherent in engineering? This seminar-style course provides an introduction to how theories, concepts, and methods from the humanities and social science can be applied to ethical problems in engineering. Assignments incorporate group and independent research designed to provide students an opportunity to contribute novel findings to the emerging field of engineering ethics while building their analytical and communication skills. This course cannot be used to fulfill any engineering technical requirements (units or courses).
Ethics, Engineering, and Society: Read More [+]
Rules & Requirements
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week
Summer:
- 6 weeks - 5 hours of lecture and 3 hours of discussion per week
- 8 weeks - 4 hours of lecture and 2 hours of discussion per week
Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Ethics, Engineering, and Society: Read Less [-]
ENGIN 128 Advanced Engineering Design Graphics 3 Units
Terms offered: Fall 2020, Fall 2019, Fall 2018
Prerequisites: ENGIN 26
Rules & Requirements

ENGIN 147 Supplementary Work in Upper Division Engineering 1 - 3 Units
Terms offered: Fall 2016, Fall 2015, Spring 2015
May be taken only with permission of the Dean of the College of Engineering. Students with partial credit in an upper division engineering course may complete the work under this heading.
Prerequisites: Limited to students who must make up a fraction of a required upper division course
Repeat rules: Course may be repeated for credit without restriction.
Rules & Requirements

ENGIN 150 Basic Modeling and Simulation Tools for Industrial Research Applications 3 Units
Terms offered: Fall 2019, Fall 1997, Fall 1996
The course emphasizes elementary modeling, numerical methods & their implementation on physical problems motivated by phenomena that students are likely to encounter in their careers, involving biomechanics, heat-transfer, structural analysis, control theory, fluid-flow, electrical conduction, diffusion, etc. This will help students develop intuition about the strengths and weaknesses of a variety of modeling & numerical methods, as well as develop intuition about modeling physical systems & strengths and weaknesses of a variety of numerical methods, including: Discretization of differential equations, Methods for solving nonlinear systems, Gradient-based methods and machine learning algorithms for optimization, stats & quantification
Basic Modeling and Simulation Tools for Industrial Research Applications: Read More [+]
ENGIN 151 Modeling and Simulation of Infectious Diseases 3 Units

Terms offered: Not yet offered

The course emphasizes elementary modeling, numerical methods and their implementation on physical problems motivated by real-world phenomena involving various aspects of infection diseases. This course is broken into five parts: part 1-modeling and simulation of the infection zone from respiratory emission, part 2-rapid simulation of viral decontamination efficacy with uv irradiation, part 3-an agent-based computational framework for simulation of global pandemic and social response, part 4-machine learning and parameter identification, part 5-deep dive into advanced models: continuum mechanics, solid-fluid interaction and electromagnetism.

Objectives & Outcomes

- Course Objectives: Comprised of an introduction to essential mathematical modeling and simulation tools needed for various aspects of the modeling and simulation of infectious diseases. Six capstone projects, drawn from Parts 1-5 are assigned, applying the modeling and simulation tools.

Rules & Requirements

- Prerequisites: ENGIN 7, COMPSCI 61A, or DATA C8 + COMPSCI 88; and PHYSICS 7A; and MATH 53 AND MATH 54

Hours & Format

- Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Tarek Zohdi

Modeling and Simulation of Infectious Diseases: Read More [+]

ENGIN 157AC Engineering, The Environment, and Society 4 Units

Terms offered: Spring 2021, Spring 2020, Spring 2019

This course engages students at the intersection of environmental justice, social justice, and engineering to explore how problems that are commonly defined in technical terms are at their roots deeply socially embedded. Through partnerships with community-based organizations, students are trained to recognize the socio-political nature of technical problems so that they may approach solutions in ways that prioritize social justice. Topics covered include environmental engineering as it relates to air, water, and soil contamination; race, class, and privilege; expertise; ethics; and engaged citizenship. This course cannot be used to complete any engineering technical unit requirements.

Objectives & Outcomes

- Course Objectives: Comprised of an introduction to essential mathematical modeling and simulation tools needed for various aspects of the modeling and simulation of infectious diseases. Six capstone projects, drawn from Parts 1-5 are assigned, applying the modeling and simulation tools.

Rules & Requirements

- Prerequisites: ENGIN 7, COMPSCI 61A, or DATA C8 + COMPSCI 88; and PHYSICS 7A; and MATH 53 AND MATH 54

Hours & Format

- Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Also listed as: IAS 157AC

Engineering, The Environment, and Society: Read Less [-]

ENGIN 177 Advanced Programming with MATLAB 3 Units

Terms offered: Spring 2017, Spring 2015, Spring 2014

The course builds an understanding, demonstrates engineering uses, and provides hand-on experience for object-oriented programming as well as exposes a practical knowledge of advanced features available in MATLAB. The course will begin with a brief review of basic MATLAB features and quickly move to class organization and functionality. The introduced concepts are reinforced by examining the advanced graphical features of MATLAB. The material will also include the effective use of programs written in C and FORTRAN, and will cover SIMULINK, a MATLAB toolbox providing for an effective ways of model simulations. Throughout the course, the emphasis will be placed on examples and homework assignments from engineering disciplines.

Objectives & Outcomes

- Course Objectives: Comprised of an introduction to essential mathematical modeling and simulation tools needed for various aspects of the modeling and simulation of infectious diseases. Six capstone projects, drawn from Parts 1-5 are assigned, applying the modeling and simulation tools.

Rules & Requirements

- Prerequisites: ENGIN 7, MATH 53 and MATH 54 (one of these math courses may be taken concurrently)

Hours & Format

- Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Frenklach, Packard

Advanced Programming with MATLAB: Read Less [-]
ENGIN 180 Preparing for the Fields and Jobs of the Future 3 Units
Terms offered: Spring 2018
The course is concerned with giving students the tools to prepare for the fields and jobs of the future. Across all university departments and majors, the numbers of students who do not work in the fields in which they've received their degrees is not only significant, but growing. For example, anywhere from 20-40% of STEM graduates do not work in the fields in which they received their degrees. This does not mean that students shouldn’t major in STEM, but that one of the primary purposes of higher education is learning how to learn. Accordingly, this course presents a number of frameworks that are critical for thinking about that which has not yet been invented.
Preparing for the Fields and Jobs of the Future: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternate method of final assessment during regularly scheduled final exam group (e.g., presentation, final project, etc.).
Instructor: Ian I. Mitroff
Preparing for the Fields and Jobs of the Future: Read Less [-]

ENGIN 185 The Art of STEM Communication 3 Units
Terms offered: Spring 2021, Spring 2020, Fall 2019
This course provides engineering majors with the fundamental skills for effective technical communication. During the course of the semester, students will develop communications for public dissemination, covering a project or initiative within UC Berkeley’s College of Engineering. This work will call on students to: (a) cultivate interest in a broad range of topics related to Engineering; (b) become an engaged and critical reader of academic and general-interest science publications; (c) learn how to assess, plan for, and respond to a variety of communicative situations; (d) produce focused, and at the same time, narratively-rich, accounts of Engineering research.
The Art of STEM Communication: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternate method of final assessment during regularly scheduled final exam group (e.g., presentation, final project, etc.).
The Art of STEM Communication: Read Less [-]

ENGIN 187 Global Engineering: The Challenges of Globalization and Disruptive Innovation 1 or 2 Units
Terms offered: Fall 2019
The course examines the challenges of innovation beyond new technology development: from the challenges of global expansion, to the issues of unintended consequences of technology and the ability of technology to support or hinder social justice. The course will provide examples in a variety of global locations (e.g., Latin America, Southeast Asia, Africa, China, and India), utilizing case examples (written and presented by speakers) that illustrate the challenges faced in a range of fields of engineering and technology, from water and transportation to information and communications technology, and from start-ups to major corporations, government entities, and policy makers.
Global Engineering: The Challenges of Globalization and Disruptive Innovation: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 8 weeks - 2-4 hours of lecture per week
Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
The Art of STEM Communication: Read Less [-]

ENGIN 194 Undergraduate Research 3 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019
Students who have completed a satisfactory number of advanced courses may pursue original research under the direction of one of the members of the staff. Final report and presentation required.
Undergraduate Research: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor and adviser, junior or senior standing
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Undergraduate Research: Read Less [-]
EnGIN 198 Directed Group Studies for Advanced Undergraduates 1 - 4 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019
Group study of selected topics.
Directed Group Studies for Advanced Undergraduates: Read More [+]

Rules & Requirements
Prerequisites: Upper division standing, plus particular courses to be specified by instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Summer: 8 weeks - 1.5-7.5 hours of directed group study per week

Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

EnGIN 201 Graduate Ocean Engineering Seminar 2 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019
Lectures on new developments in ocean, offshore, and arctic engineering.
Graduate Ocean Engineering Seminar: Read More [+]

Objectives & Outcomes
Course Objectives: To provide exposure of the field of ocean engineering, arctic engineering and related subject areas to students at graduate level with intention to show the broad and interdisciplinary nature of this field, particularly recent or new developments.
Student Learning Outcomes: Students will learn of new developments in ocean, offshore, and arctic engineering, connecting much of what is learned in other courses to practical applications and active research topics.

Rules & Requirements
Repeat rules: Course may be repeated for credit with instructor consent.

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Summer: 8 weeks - 1.5-7.5 hours of directed group study per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Instructors: Makiharju, Alam
Graduate Ocean Engineering Seminar: Read Less [-]

EnGIN 202B Designing for the Human Body 1 Unit
Terms offered: Not yet offered
Students will learn how the body transfers loads during daily activities and how external or internal device design can have a long-term impact on body bio-mechanical function. Some examples include the impact of phone use and forward flexion of the neck and asymmetrical spinal loading due to shoulder bags (e.g., impact on factory workers or military personnel). The role of human-centered design on internal and external devices will be presented through case studies. Lastly, the impact of data from novel portable measurement tools that can be incorporated into wearable devices will be discussed, with a specific focus on disease monitoring, prevention, and early detection.
Designing for the Human Body: Read More [+]

Objectives & Outcomes
Course Objectives: The main goal of this course is to present how external or internal device design can have a long-term impact on body biomechanical function and the role of human-centered design on internal and external devices.
Student Learning Outcomes: Students will learn how the body transfers loads during daily activities and how external or internal device design can have a long-term impact on body bio-mechanical function.

Rules & Requirements
Prerequisites: *Undergraduate degree in a STEM field. Prerequisites (optional): hands-on skills (e.g., making 3D models), physics, engineering materials course, engineering design

Hours & Format
Fall and/or spring: 5 weeks - 2.6 hours of web-based lecture and 1 hour of web-based discussion per week
Summer: 5 weeks - 2.6 hours of web-based lecture and 1 hour of web-based discussion per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: O'Connell
Designing for the Human Body: Read Less [-]

Graduate Ocean Engineering Seminar: Read Less [-]
ENGIN 204A Digital Transformation and Industry 4.0 1 Unit
Terms offered: Not yet offered
The purpose of this course is to make the student fluent with the context, concepts and key content of the technologies that are driving what is collectively known as “Digital Transformation” (DT), and more specifically, focus on the industrial impact of DT, as captured under the term “Industry 4.0” (I4.0). This topic is quite important: for millennia we have improved our circumstances by managing our material surroundings: tools, shelter, supplies, land. Access to information is meant to enhance our efficiency in doing so, and dwindling resources, impeding climate change, and geopolitical strife are now stressing our planet. This will be an engineering course taught in the context of sociology, economics and geopolitics.

Digital Transformation and Industry 4.0: Read More [+]

Objectives & Outcomes

Course Objectives: The objective is to provide an in-depth introduction to the major Information technology advances and tools that are impacting industry.

Student Learning Outcomes: The purpose of this course is to make the student fluent with the context, concepts and key content of the technologies that are driving what is collectively known as “Digital Transformation” (DT), and more specifically, focus on the industrial impact of DT, as captured under the term “Industry 4.0” (I4.0).

Rules & Requirements

Prerequisites: Undergraduate degree in a STEM field

Hours & Format

Fall and/or spring: 5 weeks - 1 hour of web-based discussion and 2.6 hours of web-based lecture per week
Summer: 5 weeks - 1 hour of web-based discussion and 2.6 hours of web-based lecture per week

Additional Details

Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Spanos

Digital Transformation and Industry 4.0: Read Less [-]

ENGIN 204B The Flow of Power, Information and Money in Tomorrow's Smart Grid 1 Unit
Terms offered: Not yet offered
We begin by surveying the electricity grid landscape: smart metering, renewables, flexible loads, electric vehicles, storage, and innovative tariffs.. We introduce energy economics with a focus on electricity markets, consumer and producer behavior. We then analyze the problems that deep renewable integration poses for grid operations and reliability. We explore demand response from distributed resources to enable cost-effective renewable integration. Tomorrow's grid will have an intelligent periphery. We will explore the architectural and algorithmic components for managing this intelligent periphery for flexible load management. "We then describe a vision for Grid2050 where electricity delivery evolves into interconnected micro-grids."

The Flow of Power, Information and Money in Tomorrow's Smart Grid: Read More [+]

Objectives & Outcomes

Course Objectives: The course will survey the changing landscape of electricity grids, from the basics of electrical grids, the integration of renewable sources through the use of demand response from distributed sources, and to the elements of tomorrow's smart grids using interconnected micro-grids.

Student Learning Outcomes: A comprehensive understanding of (a) central ideas in electricity grids including power flow, state estimation, sensing and actuation in smart grids, (b) electricity markets, locational prices, demand response, models for storage and renewables, (c) policy choices for energy efficiency, pricing of distributed energy resources, and novel market instruments to manage risk and variability.

Rules & Requirements

Prerequisites: 1. Basic complex arithmetic: rectangular and polar coordinates, magnitude, phase, products, ratios. Drawn from any high-school course on complex arithmetic. 2. Basic linear algebra: matrices, vectors, linear equations, inverses, determinants. For example: EECS16A or Math 54. 3. Basic electric circuits: voltage, current, Kirchoff's current and voltage laws, solving resistive circuits, power, inductors and capacitors. For example: EECS16A or ME 100

Hours & Format

Fall and/or spring: 5 weeks - 2.6 hours of web-based lecture and 1 hour of web-based discussion per week
Summer: 5 weeks - 2.6 hours of web-based lecture and 1 hour of web-based discussion per week

Additional Details

Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Poolla

The Flow of Power, Information and Money in Tomorrow's Smart Grid: Read Less [-]
ENGIN 215A Nuclear Energy and the Environment 1 Unit
Terms offered: Not yet offered
Electricity production from nuclear energy is highly concentrated and free of green-house gasses. The pressure to decarbonize electricity generation is leading many to think of nuclear as a near term solution. Nevertheless, public opinion remains in general skeptical of nuclear.
This course aims to familiarize students with nuclear energy, the way it is produced, and its overall environmental impact. The course will cover fundamental characteristics of nuclear energy, will provide students with a practical understanding of nuclear reactors, and will review the benefits and the challenges that nuclear energy can provide.

Objectives & Outcomes
Course Objectives: This course aims to familiarize students with nuclear energy, the way it is produced, and its overall environmental impact.
Student Learning Outcomes:
- Students will learn to evaluate the multiple ways different sources of energy impact the environment
- Students will understand the main features of nuclear energy, its benefits and its challenges
- Students will be able to understand and explain the basic features of new nuclear technologies

Rules & Requirements
Prerequisites: STEM undergraduate degree. Also, students should have a basic understanding of the atomic structure and basic knowledge of heat transfer mechanisms

Hours & Format
Fall and/or spring: 5 weeks - 1 hour of web-based discussion and 2.6 hours of web-based lecture per week
Summer: 5 weeks - 1 hour of web-based discussion and 2.6 hours of web-based lecture per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Fratoni

Nuclear Energy and the Environment: Read More [+]

ENGIN 217B Ocean Engineering, A Crash Course 1 Unit
Terms offered: Not yet offered
Ocean Engineering is gaining a renewed flood of attention as energy companies (oil, mining, renewables) eagerly look for extra resources in the oceans, entailing concerns about the environment and the planet. This course intends to introduce the basics of engineering principles for working in the area of ocean engineering. Specifically, topics of wave dynamics, wave, wind and current loads on ocean structures, and cables and mooring are covered. Each lecture is accompanied with examples from real-life problems, and for each subject a review of state of the art applications is provided through videos and presentations.

Objectives & Outcomes
Course Objectives: To develop a fundamental understanding of how ocean objects (ships and offshore structures) work as they interact with the ocean environment, and to be able to make engineering design and estimations of forces and loads.
Student Learning Outcomes: By the end of this course, students should be able to identify and explain different forcing factors for vehicles, structures and objects in the ocean, and to be able to estimate the forces and moments on those items.

Rules & Requirements
Prerequisites: Undergrad. degree in STEM field. Basic knowledge of undergraduate-level math (particularly differential equations) necessary. We derive all equations from basic principles and therefore students should be able to follow. Following subjects are highly recommended as prerequisites for this course: Undergrad. level Mathematics (include Differential Equations, e.g. Math 54 or equivalent) Undergrad. Fluid Mechanics (ME106 or equivalent) Undergrad. Solid Mechanics (ME C85, CE C30 or equivalent)

Hours & Format
Fall and/or spring: 5 weeks - 2.6 hours of web-based lecture and 1 hour of web-based discussion per week
Summer: 5 weeks - 2.6 hours of web-based lecture and 1 hour of web-based discussion per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Alam

Ocean Engineering, A Crash Course: Read Less [-]
ENGIN 230 Methods of Applied Mathematics
3 Units
Terms offered: Fall 2015, Fall 2014, Fall 2013
Topics include complex variable methods, contour integration, solution of Laplace's equation via analytic function theory; asymptotic methods for evaluating integrals and solving differential equations; introduction to calculus of variations with applications; introductory integral equations. The course is intended to expose students in engineering and physical sciences to a range of methods for solving equations associated with mathematical models of physical processes.

Rules & Requirements
Prerequisites: MATH 54 or equivalent. ENGIN 117 or equivalent is desirable but not mandatory

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Steigmann

ENGIN 231 Mathematical Methods in Engineering
3 Units
Terms offered: Fall 2019, Fall 2018, Fall 2017
This course offers an integrated treatment of three topics essential to modern engineering: linear algebra, random processes, and optimization. These topics will be covered more rapidly than in separate undergraduate courses covering the same material, and will draw on engineering examples for motivation. The stress will be on proofs and computational aspects will also be highlighted. It is intended for engineering students whose research focus has a significant mathematical component, but who have not previously had a thorough exposure to these topics.

Rules & Requirements
Prerequisites: MATH 1A, MATH 1B, MATH 53 and MATH 54 (or equivalent coursework)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructors: Packard, Poolla

ENGIN C233 Applications of Parallel Computers
3 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of laboratory per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructors: Demmel, Yelick
Also listed as: COMPSCI C267
ENGIN 252 Legged Robots: How to Make Robots Walk and Run 1 Unit

Terms offered: Not yet offered
Bipedal robot locomotion is a challenging problem. This course will introduce students to the math behind bipedal legged robots. We will cover modeling and dynamics of legged robots, trajectory planning for designing walking and running gaits, and common control strategies to achieve the planned motions. The course also includes applied techniques of programming up a simulator with a dynamical model of a bipedal robot as well as a controller that stabilizes a walking gait. This course will take students through every step of the process, including: Mathematical modeling of walking gaits in planar robots. Analysis of periodic orbits representing walking gaits. Algorithms for synthesizing feedback controllers for walking. Algorithms for op

Objectives & Outcomes

Course Objectives: The goal of this course is to introduce students to the math behind bipedal legged robots. We will cover modeling and dynamics of legged robots, trajectory planning for designing walking and running gaits, and common control strategies to achieve the planned motions.

Student Learning Outcomes: Students in this course will learn applied techniques of programming up a simulator with a dynamical model of a bipedal robot as well as a controller that stabilizes a walking gait.

Rules & Requirements

Prerequisites: Undergraduate degree in STEM field. Background in dynamics (ME 104 or equivalent), background in linear differential equations and feedback control (ME 132 or equivalent) will be required. Additionally, some knowledge of state-space models and linear algebra will also be helpful.

Hours & Format

Fall and/or spring: 5 weeks - 2.6 hours of web-based lecture and 1 hour of web-based discussion per week

Summer: 5 weeks - 2.6 hours of web-based lecture and 1 hour of web-based discussion per week

Additional Details

Subject/Course Level: Engineering/Graduate

Grading: Letter grade.

Instructor: Sreenath

ENGIN 264A Modeling and Analyzing the Dynamics of Location and Gripping Soft Robots 1 Unit

Terms offered: Not yet offered
Motivated by applications to health care, the field of soft robotics has witnessed explosive growth in the past decade. Most research has focused on prototype design and development while engineering analyses and material science research have slowly lagged. This course has been constructed to introduce nonlinear models and analyses of soft robotic devices whose primary purpose is either to locomote or grip. During the course, students will be exposed to the rapidly developing field of soft robotics and learn some of the technical challenges in this field. Students will learn about the wide range of nonlinear modeling strategies that can be used to develop mathematical models for the dynamics of a soft robot.

Objectives & Outcomes

Course Objectives: The course objectives include surveying the rapidly developing field of soft robotics. Through case studies and a capstone project, students will develop skills in and an appreciation for the wide range of possible modeling techniques and analyses available with which to explore the dynamics of soft robotic devices.

Rules & Requirements

Prerequisites: Undergraduate degree in a STEM field

Hours & Format

Fall and/or spring: 5 weeks - 1 hour of web-based discussion and 2.6 hours of web-based lecture per week

Summer: 5 weeks - 1 hour of web-based discussion and 2.6 hours of web-based lecture per week

Additional Details

Subject/Course Level: Engineering/Graduate

Grading: Letter grade.

Instructor: O’Reilly

Modeling and Analyzing the Dynamics of Location and Gripping Soft Robots: Read Less [-]
ENGIN 266A Finite Difference Methods for Fluid Dynamics 4 Units
Terms offered: Fall 2012, Fall 2010, Spring 2007
Application of finite difference methods to current problems of fluid dynamics, including compressible and incompressible flow. Sponsoring department: Mechanical Engineering.
Finite Difference Methods for Fluid Dynamics: Read More [+]
Rules & Requirements
Prerequisites: A graduate-level course in fluid dynamics or numerical methods for differential equations, or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Marcus
Formerly known as: 266
Finite Difference Methods for Fluid Dynamics: Read Less [-]

ENGIN 266B Spectral Methods for Fluid Dynamics 4 Units
Terms offered: Spring 2020, Spring 2018, Fall 2015
Application of spectral methods to current problems of fluid dynamics, including compressible and incompressible flow. Sponsoring department: Mechanical Engineering.
Spectral Methods for Fluid Dynamics: Read More [+]
Rules & Requirements
Prerequisites: A graduate-level course in fluid dynamics or numerical methods for differential equations, or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Marcus
Formerly known as: 266
Spectral Methods for Fluid Dynamics: Read Less [-]

ENGIN 270A Organizational Behavior for Engineers 1 Unit
Terms offered: Fall 2020, Fall 2019, Fall 2018
Designed for professionally-oriented engineering graduate students, this course explores key topics in organizational behavior, including negotiations, power and conflict.
Organizational Behavior for Engineers: Read More [+]
Rules & Requirements
Prerequisites: Admission to MEng or MTM program
Hours & Format
Fall and/or spring:
2 weeks - 6-8 hours of lecture per week
8 weeks - 1.5 hours of lecture per week
Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Organizational Behavior for Engineers: Read Less [-]

ENGIN 270B R&D Technology Management & Ethics 1 Unit
Terms offered: Fall 2020, Fall 2019, Fall 2018
Designed for professionally-oriented engineering graduate students, this course explores key topics in R&D technology management and ethics through faculty-led case analysis and discussion.
R&D Technology Management & Ethics: Read More [+]
Rules & Requirements
Prerequisites: Admission to MEng or MTM program
Hours & Format
Fall and/or spring:
2 weeks - 6-8 hours of lecture per week
8 weeks - 1.5 hours of lecture per week
Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
R&D Technology Management & Ethics: Read Less [-]
ENGIN 270C Teaming & Project Management 1 Unit
Terms offered: Spring 2021, Fall 2020, Fall 2019
Designed for professionally-oriented engineering graduate students, this course applies key topics in project management and team dynamics to students concurrent capstone projects.
Teaming & Project Management: Read More [+]
Rules & Requirements
Prerequisites: Admission to MEng or MTM program
Repeat rules: Course may be repeated for credit up to a total of 1 time.
Hours & Format
Fall and/or spring:
8 weeks - 1.5 hours of lecture per week
12 weeks - 1 hour of lecture per week
Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Teaming & Project Management: Read Less [-]

ENGIN 270E Technology Strategy & Industry Analysis 1 Unit
Terms offered: Spring 2017
Designed for professionally-oriented engineering graduate students, this course explores key topics in technology strategy and industry analysis.
Technology Strategy & Industry Analysis: Read More [+]
Rules & Requirements
Prerequisites: Admission to MEng or MTM program
Hours & Format
Fall and/or spring: 2 weeks - 6-8 hours of lecture per week
Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Technology Strategy & Industry Analysis: Read Less [-]

ENGIN 270D Entrepreneurship for Engineers 1 Unit
Terms offered: Spring 2021, Spring 2020, Spring 2019
Designed for professionally-oriented engineering graduate students, this course explores key topics in entrepreneurship and entrepreneurial finance.
Entrepreneurship for Engineers: Read More [+]
Rules & Requirements
Prerequisites: Admission to MEng or MTM program
Hours & Format
Fall and/or spring: 2 weeks - 6-8 hours of lecture per week
Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Entrepreneurship for Engineers: Read Less [-]

ENGIN 270F Data Analytics 1 Unit
Terms offered: Spring 2017
Designed for professionally-oriented engineering graduate students, this course explores key topics in data analytics.
Data Analytics: Read More [+]
Rules & Requirements
Prerequisites: Admission to MEng or MTM program
Hours & Format
Fall and/or spring: 2 weeks - 6-8 hours of lecture per week
Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Data Analytics: Read Less [-]

ENGIN 270G Marketing & Product Management 1 Unit
Terms offered: Spring 2021, Spring 2020, Spring 2019
Designed for professionally-oriented engineering graduate students, this course explores key topics in marketing and product management.
Marketing & Product Management: Read More [+]
Rules & Requirements
Prerequisites: Admission to MEng or MTM program
Hours & Format
Fall and/or spring: 2 weeks - 6-8 hours of lecture per week
Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Marketing & Product Management: Read Less [-]
ENGIN 270H Accounting & Finance for Engineers 1 Unit
Terms offered: Spring 2021, Spring 2020, Spring 2019
Designed for professionally-oriented engineering graduate students, this course explores key topics in accounting and finance.

Rules & Requirements

Prerequisites: Enrollment in MEng or MTM programs

Hours & Format

Fall and/or spring:
2 weeks - 7.5 hours of lecture per week
7 weeks - 2 hours of lecture per week
10 weeks - 1.5 hours of lecture per week

Additional Details

Subject/Course Level: Engineering/Graduate

Grading: Letter grade.

ENGIN 270I Digital Platform Strategy for Engineering Leaders 1 Unit
Terms offered: Spring 2021, Spring 2020, Spring 2019
Designed for MEng and MTM students, this course explores key topics using the case discussion method. We will discuss technology strategy with the following meta themes; we will open with a case that applies traditional strategy analysis, contrast the traditional framework with new conceptions of platforms and competition. We'll come to understand traditional economies of scale and barriers to entry and contrast those with network dynamics, winner take all markets, and platform strategy. Finally, we will critique platform competition and debate how platforms and their competitive dynamics will change business and society.

Rules & Requirements

Prerequisites: Enrollment in the MEng or MTM programs

Hours & Format

Fall and/or spring: 2 weeks - 7 hours of lecture per week

Additional Details

Subject/Course Level: Engineering/Graduate

Grading: Letter grade.

ENGIN 270J Industry Analysis for Engineering Leaders 1 Unit
Terms offered: Spring 2021, Spring 2020, Spring 2019
Designed for professionally-oriented engineering graduate students, this course explores key topics in industry analysis.

Rules & Requirements

Prerequisites: Enrollment in the MEng or MTM programs

Hours & Format

Fall and/or spring: 2 weeks - 7 hours of lecture per week

Additional Details

Subject/Course Level: Engineering/Graduate

Grading: Letter grade.

ENGIN 270L Global Leadership Expertise 1 Unit
Terms offered: Spring 2021, Spring 2020
The objective of this course is to provide Master of Engineering and Master of Translational Medicine students with insights into the type of leadership skills required to be a successful cross-cultural leader in today's increasingly complex global marketplace.

Objectives & Outcomes

Course Objectives: Over the course of this intensive boot camp, students will be required to employ technical abilities and multidisciplinary analysis while examining and engaging in case studies, simulations, and in-class exercises in order to achieve some key course goals:
• Develop a global mindset
• Become more interculturally competent
• Learn to lead people from different cultures
• Understand the implications of global leadership

Student Learning Outcomes: The goal is for each student to develop a personalized global leadership "toolkit" that they will be able utilize as their professional careers unfold. There will be a specific focus on how to deploy that "toolkit" to assist with business decision making in the fiduciary context.

Rules & Requirements

Prerequisites: Enrollment in the MEng or MTM programs

Hours & Format

Fall and/or spring: 2 weeks - 7.5 hours of lecture per week

Additional Details

Subject/Course Level: Engineering/Graduate

Grading: Letter grade.

Instructor: Himelstein

Global Leadership Expertise: Read Less [-]
ENGIN 270M Professional Ethics in Technology, Law and Business 1 Unit
Terms offered: Spring 2021, Spring 2020
Designed for MEng and MTM students. Over the course of the boot camp, students will gain proficiency in verbal leadership, through discussions of technology, legal and business case studies. Topics will include technology management, governance, privacy and disclosure, codes of conduct, whistleblowing, internal investigations, ethical and effective business practices in foreign countries, and ethical and effective leadership.

Professional Ethics in Technology, Law and Business: Read More [+]

Objectives & Outcomes

Course Objectives: Students will be required to employ technical and qualitative analysis while digesting and dissecting case studies, in-class projects, and guest speaker presentations. Class discussions will focus on issues raised in case studies, including analysis, brainstorming, diagnosis, and recommendations.

Student Learning Outcomes: Students will gain exposure to a wide variety of leadership approaches, technologies, personalities, and business models.

Rules & Requirements

Prerequisites: Enrollment in the MEng or MTM programs

Hours & Format

Fall and/or spring: 2 weeks - 7.5 hours of lecture per week

Additional Details

Subject/Course Level: Engineering/Graduate

Grading: Letter grade.

ENGIN W270K Coaching for High Performance Teams 1 Unit
Terms offered: Spring 2021, Spring 2020, Spring 2019
Designed for professionally-oriented engineering graduate students, this course applies key topics in project management and team dynamics to students concurrent capstone projects.

Coaching for High Performance Teams: Read More [+]

Rules & Requirements

Prerequisites: Open to MEng or MTM students only

Hours & Format

Fall and/or spring: 8 weeks - 0.5 hours of workshop and 0.5 hours of web-based lecture per week

Online: This is an online course.

Additional Details

Subject/Course Level: Engineering/Graduate

Grading: Letter grade.

Instructor: Beliaev

Coaching for High Performance Teams: Read Less [-]

ENGIN 271 Engineering Leadership I 3 Units
Terms offered: Fall 2015, Fall 2014, Fall 2013
Designed for professionally-oriented engineering graduate students, this course explores key management and leadership concepts relevant to technology-dependent enterprises. Topics include opportunity recognition, strategies for effective R and D, marketing innovation, disruption, cognitive inertia, product management, market selection, standards wars, two-sided markets, attracting stakeholders, business models, pricing strategies.

Engineering Leadership I: Read More [+]

Rules & Requirements

Prerequisites: Admission to the MEng Program

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Engineering/Graduate

Grading: Letter grade.

Instructors: Flemming, Lee

Engineering Leadership I: Read Less [-]
ENGIN 272 Engineering Leadership II 3 Units
Terms offered: Spring 2016, Spring 2015, Spring 2014
Designed for professionally-oriented engineering graduate level students, this course explores key operational, leadership, and financial concepts relevant to technology-dependent enterprises. Topics include methods to go to market, direct and indirect sales, logistics, talent management, managing creativity, project management, leadership styles, CFO-style interpretation of financial statements, funding sources, budgeting, and valuation methods.
Rules & Requirements
Prerequisites: Admission to MEng Program and ENGIN 271
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.

ENGIN 273 Intellectual Property and Innovation: Analysis, Strategy, and Management 3 Units
Terms offered: Fall 2020
This course will explore technology-based innovation from an interdisciplinary approach that integrates technology, business, and law. An intellectual property approach will be applied to emphasize the relationship among technology, market, and control positions required to analyze and develop intellectual property based business models. The course will contain a significant collaborative project that will require application of course concepts, through development and recommendation of a commercialization strategy for various external collaborators.
Objectives & Outcomes
Course Objectives: Fifth, a core set of models for the strategic management of intellectual property for both small and large firms will be delivered through exercises on real commercial scenarios, finishing with the identification and calculation of the value of technology/IP that is required for effective decision making in complex settings. First, the course will start with a discussion of the fundamentals of IP and innovation, in particular, the transformation from an industrial to a knowledge-based economy with new resources and business models. Fourth, tools to identify and develop potential value propositions and business models will be presented and applied to the previous analysis on the competitive position, in particular, models for technology licensing will be explored. Second, a framework will be presented and applied for identifying and analyzing the key technology and IP assets that make up the foundational building blocks of an innovation. Third, techniques for mapping and analyzing competitive technology positions, market positions, and patent-based control positions will be presented and applied.
Student Learning Outcomes: Students will understand the theory of intellectual property, control, and business strategy. They will have practiced with a toolset that assesses a firm’s intellectual property and its strategic position.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
ENGIN 274 Commercializing Science and Technology Breakthroughs 3 Units
Terms offered: Spring 2021
This course will explore the path from creative breakthroughs in science and technology through their (typically and unfortunately rare) successful impact on society. We will first explore models of creativity in science and engineering, managing the technical professional, and the differences between academic and industrial research. We will then discuss the pitfalls of technology push and academic research transfer, review the basics of Intellectual Property strategy, compare licensing vs. entrepreneurship strategies, discuss incubators and how investors think about entrepreneurial opportunities, and explore a range of possible business models.

Objectives & Outcomes
Course Objectives: The course will contain a significant hands-on and collaborative project that will require application of course concepts, through development and recommendation of a commercialization strategy for a UC Berkeley, Berkeley National Labs, or Xerox PARC breakthrough. Students can also supply or identify a science or technology breakthrough for their project (subject to instructor approval). We will discuss entrepreneurship in the modern platform economy, in particular, how to bypass incumbent barriers to entry, overturn winner-take-all markets, and compete with technological breakthroughs. We will close with consideration of entrepreneurial ethics and how to work with institutional and regulatory stakeholders.

Student Learning Outcomes: Students will understand the theory of how scientific and technological breakthroughs occur and how those breakthroughs are developed and impact society and the economy. They will have analyzed a real breakthrough and provided recommendations on how it can best be commercialized.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.

ENGIN 280A Electronic Properties of Materials 1 Unit
Terms offered: Not yet offered
Introduction to the physical principles underlying the electronic properties of solids from macroscopic to nano dimensions. General solid state physics will be taught in the context of technological applications, including the structure of solids, behavior of electrons and atomic vibration in periodic lattice, and interaction of light with solids. Emphasis will be on semiconductors and the materials physics of electronic and optoelectronic devices.

Objectives & Outcomes
Course Objectives: Students will gain a fundamental understanding of the following topics: i) electrical conduction (transport) in solids based on quantum mechanics and modern band theory, ii) lattice vibration and thermal conduction (transport) in solids, iii) major properties of bulk and nanostructured semiconductors, iv) effects of dopant impurities and defects in semiconductors, and v) the principles of light-solid interactions.

Rules & Requirements
Prerequisites: Undergraduate degree in a STEM field

Hours & Format
Fall and/or spring: 5 weeks - 2.6 hours of web-based lecture and 1 hour of web-based discussion per week
Summer: 5 weeks - 2.6 hours of web-based lecture and 1 hour of web-based discussion per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Wu
ENGIN C282 Charged Particle Sources and Beam Technology 3 Units
Terms offered: Spring 2020, Spring 2018, Fall 2015, Fall 2013, Fall 2011
Topics in this course will include the latest technology of various types of ion and electron sources, extraction and formation of charge particle beams, computer simulation of beam propagation, diagnostics of ion sources and beams, and the applications of beams in fusion, synchrotron light source, neutron generation, microelectronics, lithography, and medical therapy. This is a general accelerator technology and engineering course that will be of interest to graduate students in physics, electrical engineering, and nuclear engineering.
Charged Particle Sources and Beam Technology: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructors: Leung, Steier
Also listed as: NUC ENG C282

Charged Particle Sources and Beam Technology: Read Less [-]

ENGIN 290 Special Topics in Management of Technology 2 or 3 Units
Terms offered: Spring 2012, Fall 2011, Spring 2011
Specific topics, hours and units of credit will vary from section to section, year to year. Courses are related classes in the Management of Technology certificate program.
Special Topics in Management of Technology: Read More [+]

Rules & Requirements
Prerequisites: Graduate standing
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 2-3 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Proctor

Special Topics in Management of Technology: Read Less [-]
ENGIN 290B Biotechnology: Industry Perspectives and Business Development 2 Units
Terms offered: Fall 2011, Fall 2010, Fall 2009
This course is designed to examine the strategic issues that confront the management of the development stage biotech company, i.e., after its start-up via an initial capital infusion, but before it might be deemed successful (e.g., by virtue of a product launch), or otherwise has achieved "first-tier" status. Thus, the intention is to study the biotech organization during the process of it growth and maturation from an early stage existence through "adolescence" into an "adult" company. The focus of the class will be on business development, i.e., the deal making that must occur to accomplish the corporate objectives of bringing in new technologies and getting the initial products to market. We will explore the critical deal issues from both the perspective of the development stage company and the viewpoint of the larger, more mature biotech or big pharma company with which it seeks to partner.

Rules & Requirements
Credit Restrictions: Students will receive no credit for 290E after taking Master of Business Administration 290B or Evening Weekend Master of Business Administration 290B.

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructors: Hoover, Sanders

Marketing Emerging Technologies: Read Less [-]

ENGIN 290E Marketing Emerging Technologies 3 Units
Terms offered: Fall 2011, Fall 2010
The primary goal of this course is to develop in the student the marketing skills needed to compete aggressively as an entrepreneur in technology fields. Upon completion of the course, the student should have developed the following skills: the ability to assess and predict customer needs in markets that may not yet exist; the ability to create and execute marketing plans that necessarily integrate sophisticated technological development with rapidly evolving customer requirements; the ability to create and grow a focused marketing organization rapidly and efficiently; and the ability to create and use marketing communications to reach prospects, customers, OEMs, and sales channels efficiently and inexpensively.

Rules & Requirements
Credit Restrictions: Students will receive no credit for 290E after taking Master of Business Administration 290E.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Isaacs

Marketing Emerging Technologies: Read Less [-]
ENGIN 290G International Trade and Competition in High Technology 3 Units
Terms offered: Prior to 2007
This course seeks to make sense of, inter alia, the decline and prospective recovery of U.S. high-technology industries, the evolution of innovation and technology strategies and policies in Western Europe and Asia, the historic and current roles of governments in shaping markets for high-technology goods, and the impact on business strategies of recent developments in early-stage capital markets. Our general approach views technological innovation and competition as dynamic processes that reflect previous choices made by firms and governments. Modern technologies develop in markets that are international scope, often imperfectly competitive, and subject to influence by a variety of economic and political stakeholders. We will use an eclectic mix of theoretical, historical, and practical perspectives throughout the course in examining these issues, although no special familiarity with any of these is assumed. From time to time, we will be joined by venture capitalists, corporate executives, and technologists engaged in global high-technology markets for discussion of these issues.

International Trade and Competition in High Technology: Read More [+]

Rules & Requirements
Credit Restrictions: Students will receive no credit for 290G after taking Master of Business Administration 290G.

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Wu

International Trade and Competition in High Technology: Read Less [-]

ENGIN 290H Management of Technology - Doing Business in China 2 Units
Terms offered: Fall 2009
This course prepares students to found a startup business in China or to work with an MNC in China, develops their critical analysis and strategic decision tools and skills needed to compete in the world's most dynamic emerging market, and provides access and useful introductions/Guanxi to aid future business development in China.

Management of Technology - Doing Business in China: Read More [+]

Rules & Requirements
Credit Restrictions: Students will receive no credit for 290H after taking Master of Business Administration 290H.

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Sanderson

Management of Technology - Doing Business in China: Read Less [-]

ENGIN 290J Entrepreneurship in Biotechnology 2 Units
Terms offered: Spring 2012, Spring 2011, Spring 2010
This course will provide students an introduction to the complexities and unique problems of starting a life sciences company. It is designed for both entrepreneurs and students who may someday work in a biotechnology or medical device startup. Students will be exposed to the topics most critical for successfully founding, financing, and operating a life science company, and will be expected to perform many of the same tasks that founders would normally undertake. Discussions with life-science entrepreneurs, case studies of recent companies, and hands-on work developing entrepreneurial endeavors will all be utilized.

Entrepreneurship in Biotechnology: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Lasky

Entrepreneurship in Biotechnology: Read Less [-]
ENGIN 290O Opportunity Recognition: Technology and Entrepreneurship in Silicon Valley 3 Units
Terms offered: Spring 2012, Fall 2011, Spring 2011
This course is intended to provide the core skills needed for the identification of opportunities that can lead to successful, entrepreneurial high technology ventures, regardless of the individual’s “home” skill set, whether technical or managerial. We examine in depth the approaches most likely to succeed for entrepreneurial companies as a function of markets and technologies. Emphasis is placed on the special requirements for creating and executing strategy in a setting of rapid technological change and limited resources. This course is open to both MBA and Engineering students (who enroll through the College of Engineering), and is particularly suited for those who anticipate founding or operating technology companies.
Opportunity Recognition: Technology and Entrepreneurship in Silicon Valley: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Opportunity Recognition: Technology and Entrepreneurship in Silicon Valley: Read Less [-]

ENGIN 290P Project Management 2 Units
Terms offered: Spring 2012, Spring 2011, Spring 2010
This course will provide you with a comprehensive view of the elements of modern project management, guidelines for success, and related tools. In organizations today, successful operations keep the organization alive and successful projects move it towards strategic objectives. A project is a one-time or infrequently occurring operation with a unique goal, limited lifespan, and limited resources. The fundamental concepts come from the field of operations management, but projects present special types of operations because of their intended focus, limited lives, constraints, and uncertainties. In organizations today, projects are many, diverse, and frequently overlapping.
Project Management: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Project Management: Read Less [-]

ENGIN 290S Supply Chain Management 3 Units
Terms offered: Fall 2011, Fall 2010, Fall 2009
This course involves the flows of materials and information among all of the firms that contribute value to a product, from the source of raw materials to end customers. Elements of supply chain management have been studied and practiced for some time in marketing, logistics, and operations management. We will attempt to integrate these different perspectives to develop a broad understanding of how to manage a supply change. This course will focus on effective supply chain strategies for companies that operate globally with emphasis on how to plan and integrate supply chain components into a coordinated system. You will be exposed to concepts and models important in supply chain planning with emphasis on key trade offs and phenomena. The course will introduce and utilize key tactics such as risk pooling and inventory placement, integrated planning and collaboration, and information sharing. Lectures, Internet simulations, computer exercises, and case discussions introduce various models and methods for supply chain analysis and optimization.
Supply Chain Management: Read More [+]

Rules & Requirements
Credit Restrictions: Students will receive no credit for 290S after taking Master of Business Administration 248A or Evening Weekend Master of Business Administration 248A.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Angelus
Supply Chain Management: Read Less [-]
ENGIN 295 Communications for Engineering Leaders 1 Unit
Terms offered: Spring 2021, Fall 2020, Spring 2020
Engineering leadership principles integrated with concurrent technical capstone projects for Master of Engineering students. Students enroll in this supplementary course while they are enrolled in Engineering 296M, Capstone project, with their technical department capstone advisor. This project-based course will apply communication skills to the capstone project with a focus on presentations and writing in a professional context.

Communications for Engineering Leaders: Read More [+]

Rules & Requirements
Prerequisites: Admission to MEng program or College of Engineering PhD program

Repeat rules: Course may be repeated for credit up to a total of 2 times.

Hours & Format
Fall and/or spring:
2 weeks - 8 hours of lecture per week
7 weeks - 2 hours of lecture per week
8 weeks - 2 hours of lecture per week
10 weeks - 1.5 hours of lecture per week
15 weeks - 1 hour of lecture per week

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructors: Bauer, Fitzpatrick, Halpern, Houlihan

Communications for Engineering Leaders: Read Less [-]

ENGIN W295A Communications for Engineering Leaders 1 Unit
Terms offered: Prior to 2007
Professional communications for Master of Engineering students. The course has two objectives: to develop and/or hone your individual communication skills, as you generate content supporting your career development [fall] and to further your individual and team-based communication skills, as your team generates content for your capstone reporting deliverables [spring].

Communications for Engineering Leaders: Read More [+]

Rules & Requirements
Prerequisites: Restricted to Master of Engineering degree students

Hours & Format
Fall and/or spring: 10 weeks - 0.5 hours of web-based lecture and 0.5 hours of tutorial per week

Online: This is an online course.

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Beliaev

Communications for Engineering Leaders: Read Less [-]

ENGIN W295B Communications for Engineering Leaders 1 Unit
Terms offered: Prior to 2007
Professional communications for Master of Engineering students. The course has two objectives: to develop and/or hone your individual communication skills, as you generate content supporting your career development [fall] and to further your individual and team-based communication skills, as your team generates content for your capstone reporting deliverables [spring].

Communications for Engineering Leaders: Read More [+]

Rules & Requirements
Prerequisites: Restricted to Master of Engineering degree students

Hours & Format
Fall and/or spring: 10 weeks - 0.4 hours of web-based lecture and 0.7 hours of workshop per week

Online: This is an online course.

Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Instructor: Beliaev

Communications for Engineering Leaders: Read Less [-]
ENGIN 296MA Master of Engineering Capstone Project 1 - 12 Units
Terms offered: Fall 2019, Fall 2018, Fall 2017
This course is the first of a sequence of two capstone project courses for candidates of the Masters of Engineering degree. Students engage in professionally oriented independent or group research or study under the supervision of a research advisor. The research and study synthesizes the technical, environmental, economic, and social issues involved in the design and operation of complex engineering devices, systems, and organization.
Master of Engineering Capstone Project: Read More [+]
Rules & Requirements
Prerequisites: Acceptance into the Master of Engineering program
Repeat rules: Course may be repeated for credit without restriction. Students may enroll in multiple sections of this course within the same semester.

Hours & Format
Fall and/or spring: 15 weeks - 1-12 hours of seminar per week

Subject/Course Level: Engineering/Graduate
Grading: The grading option will be decided by the instructor when the class is offered.

Master of Engineering Capstone Project: Read Less [-]

ENGIN 296MB Master of Engineering Capstone Project 1 - 5 Units
Terms offered: Spring 2019, Spring 2018, Spring 2017
This course is the second of a sequence of two capstone project courses for candidates of the Masters of Engineering degree. Students engage in professionally oriented independent or group research or study under the supervision of a research advisor. The research and study synthesizes the technical, environmental, economic, and social issues involved in the design and operation of complex engineering devices, systems, and organizations.
Master of Engineering Capstone Project: Read More [+]
Rules & Requirements
Prerequisites: ENGIN 296MA

Hours & Format
Fall and/or spring: 15 weeks - 1-5 hours of seminar per week

Subject/Course Level: Engineering/Graduate
Grading: The grading option will be decided by the instructor when the class is offered.

Master of Engineering Capstone Project: Read Less [-]

ENGIN 297 Introspective Leadership 2 Units
Terms offered: Spring 2021
This course provides the framework for leadership development. The course focuses on development of self and emotional intelligence; identification of core values, creation of purpose statements; growth mindset; ethical decision-making; inspiration of others, conflict resolution, goal setting and teamwork; global and cultural awareness; and development of plans of action. Weekly introspective reflections are required. The class comprises three parts: (I) Exploration of your leadership journey; (II) Discovery of your Personal Leadership Style; and (III) Development of a Personal Leadership Plan.
Introspective Leadership: Read More [+]
Objectives & Outcomes
Course Objectives: This course offers the requisite framework for personal leadership development. The course provides students with requisite skills for authentic leadership, self-discovery, team work, global awareness, ethical decision-making, service to society and creation of personal leadership plans.

Student Learning Outcomes: Students will learn how to assess personal strengths, identify core values requisite for ethical decision-making, ascertain skills to inspire others and navigate difficult conversations, enhance cultural awareness, implement plans of action and develop purpose statements.

Rules & Requirements
Credit Restrictions: Students will receive no credit for ENGIN 297 after completing ENGIN 297. A deficient grade in ENGIN 297 may be removed by taking ENGIN 297.

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

Subject/Course Level: Engineering/Graduate
Grading: Letter grade.

Instructor: Pruitt
Introspective Leadership: Read Less [-]
ENGIN 298 Fung Institute Engineering Leadership Speaker Series 1 Unit
Terms offered: Spring 2021, Fall 2019
This lecture series serves as an inspirational supplement to Master of Engineering graduate curriculum in leadership and innovation. The course features insightful conversations with high-level industry speakers who share their experience with engineering leadership and innovation. Speakers draw from Silicon Valley leadership, Fung Institute capstone project partners and advisory board, MEng Alumni featured in Forbes 30 under 30 and Inc's Top 50 Young Entrepreneur's to watch.
Fung Institute Engineering Leadership Speaker Series: Read More [+]
Rules & Requirements
Prerequisites: Enrollment in the Master of Engineering program
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1.5 hours of colloquium per week
Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Fung Institute Engineering Leadership Speaker Series: Read Less [-]

ENGIN 298A Group Studies or Seminars 1 - 6 Units
Terms offered: Fall 2015, Fall 2014, Fall 2013
Advanced group studies or seminars in subjects which are interdisciplinary in the various fields of engineering or other sciences associated with engineering problems. Topics which form the basis of seminars will be announced at the beginning of each semester.
Group Studies or Seminars: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-6 hours of seminar per week
Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Letter grade.
Group Studies or Seminars: Read Less [-]

ENGIN 298B Group Studies or Seminars 1 - 6 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
Advanced group studies or seminars in subjects which are interdisciplinary in the various fields or engineering or other sciences associated with engineering problems. Topics which form the basis of seminars will be announced at the beginning of each semester.
Group Studies or Seminars: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of seminar per week
Additional Details
Subject/Course Level: Engineering/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Group Studies or Seminars: Read Less [-]