Astrophysics

The Department of Astronomy offers a graduate program aimed at the PhD degree in astrophysics. Entering students need not have majored in astronomy, although some background in astronomy is desirable. A strong background in physics, however, is essential.

Research is a major part of the PhD program, and the department offers opportunities in a wide variety of fields, including theoretical and observational astrophysics; infrared, optical, and radio astronomy; galactic structure and dynamics of stellar systems; high-energy astrophysics and cosmology; and star and planet formation.

The department has established six years as the normative time to degree. Normative time is the elapsed calendar time in years that under normal circumstances will be needed to complete all requirements for the PhD, assuming a student who enters without deficiencies, who is engaged in full-time uninterrupted study, and who is making desirable progress toward the degree.

Admission to the University

Minimum Requirements for Admission

The following minimum requirements apply to all graduate programs and will be verified by the Graduate Division:

1. A bachelor’s degree or recognized equivalent from an accredited institution;
2. A grade point average of B or better (3.0);
3. If the applicant comes from a country or political entity (e.g., Quebec) where English is not the official language, adequate proficiency in English is required; evidence of English language proficiency may be submitted in the form of English as a Foreign Language (TOEFL) test scores. For Berkeley, a minimum of 90 on the iBT test, 570 on the paper-and-pencil test, or an IELTS Band score of at least 7 on a 9-point scale (note that individual programs may set higher levels for any of these); and
4. Sufficient undergraduate training to do graduate work in the given field.

Applicants Who Already Hold a Graduate Degree

The Graduate Council views academic degrees not as vocational training certificates, but as evidence of broad training in research methods, independent study, and articulation of learning. Therefore, applicants who already have academic graduate degrees should be able to pursue new subject matter at an advanced level without need to enroll in a related or similar graduate program.

Programs may consider students for an additional academic master’s or professional master’s degree only if the additional degree is in a distinctly different field.

Applicants admitted to a doctoral program that requires a master’s degree to be earned at Berkeley as a prerequisite (even though the applicant already has a master’s degree from another institution in the same or a closely allied field of study) will be permitted to undertake the second master’s degree, despite the overlap in field.

The Graduate Division will admit students for a second doctoral degree only if they meet the following guidelines:

1. Applicants with doctoral degrees may be admitted for an additional doctoral degree only if that degree program is in a general area of knowledge distinctly different from the field in which they earned their original degree. For example, a physics PhD could be admitted to a doctoral degree program in music or history; however, a student with a doctoral degree in mathematics would not be permitted to add a PhD in statistics.
2. Applicants who hold the PhD degree may be admitted to a professional doctorate or professional master’s degree program if there is no duplication of training involved.

Applicants may apply only to one single degree program or one concurrent degree program per admission cycle.

Required Documents for Applications

1. Transcripts: Applicants may upload unofficial transcripts with your application for the departmental initial review. If the applicant is admitted, then official transcripts of all college-level work will be required. Official transcripts must be in sealed envelopes as issued by the school(s) attended. If you have attended Berkeley, upload your unofficial transcript with your application for the departmental initial review. If you are admitted, an official transcript with evidence of degree conferral will not be required.
2. Letters of recommendation: Applicants may request online letters of recommendation through the online application system. Hard copies of recommendation letters must be sent directly to the program, not the Graduate Division.
3. Evidence of English language proficiency: All applicants from countries or political entities in which the official language is not English are required to submit official evidence of English language proficiency. This applies to applicants from Bangladesh, Burma, Nepal, India, Pakistan, Latin America, the Middle East, the People’s Republic of China, Taiwan, Japan, Korea, Southeast Asia, most European countries, and Quebec (Canada). However, applicants who, at the time of application, have already completed at least one year of full-time academic course work with grades of B or better at a US university may submit an official transcript from the US university to fulfill this requirement. The following courses will not fulfill this requirement:
 • courses in English as a Second Language,
 • courses conducted in a language other than English,
 • courses that will be completed after the application is submitted, and
 • courses of a non-academic nature.

If applicants have previously been denied admission to Berkeley on the basis of their English language proficiency, they must submit new test scores that meet the current minimum from one of the standardized tests. Official TOEFL score reports must be sent directly from Educational Test Services (ETS). The institution code for Berkeley is 4833. Official IELTS score reports must be mailed directly to our office from British Council. TOEFL and IELTS score reports are only valid for two years.

Where to Apply

Visit the Berkeley Graduate Division application page (http://grad.berkeley.edu/admissions/apply).

Admission to the Program

In addition to the application, transcripts of undergraduate work, and letters of recommendation, applicants must submit scores of the General and Physics Graduate Record Examinations (GRE), and, if applicable, the Test of English as a Foreign Language (TOEFL).
Detailed information concerning admission, financial aid, and degree requirements may be found on the department's website. (http://astro.berkeley.edu/academics/graduate)

The requirements for the Astrophysics Ph.D degree as follows:

1. Required Courses
 a. Astronomy 290AB (a seminar)
 b. A total of 6 graduate (or equivalent) courses, 3 of which are from the Astronomy Department

2. Teaching

3. Examinations (Preliminary and Qualifying)

4. Thesis (signed by committee)

5. University Registration

Curriculum

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTRON 290A</td>
<td>Introduction to Current Research [1]</td>
<td></td>
</tr>
<tr>
<td>ASTRON 290B</td>
<td>Introduction to Current Research [1]</td>
<td></td>
</tr>
</tbody>
</table>

A total of six graduate or equivalent courses, three of which must be from the Astronomy Department. It is strongly recommended that these be drawn from the following basic courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTRON C207</td>
<td>Radiation Processes in Astronomy [4]</td>
<td></td>
</tr>
<tr>
<td>ASTRON 203</td>
<td>Astrophysical Techniques [3]</td>
<td></td>
</tr>
<tr>
<td>ASTRON C207</td>
<td>Radiation Processes in Astronomy [4]</td>
<td></td>
</tr>
<tr>
<td>ASTRON 216</td>
<td>Course Not Available [3]</td>
<td></td>
</tr>
<tr>
<td>ASTRON 217</td>
<td>Course Not Available</td>
<td></td>
</tr>
<tr>
<td>ASTRON 218</td>
<td>Stellar Dynamics and Galactic Structure [3]</td>
<td></td>
</tr>
<tr>
<td>ASTRON C228</td>
<td>Extragalactic Astronomy and Cosmology [3]</td>
<td></td>
</tr>
<tr>
<td>ASTRON C249</td>
<td>Solar System Astrophysics [3]</td>
<td></td>
</tr>
<tr>
<td>ASTRON 252</td>
<td>Stellar Structure and Evolution [3]</td>
<td></td>
</tr>
<tr>
<td>ASTRON C254</td>
<td>High Energy Astrophysics [3]</td>
<td></td>
</tr>
<tr>
<td>ASTRON 255</td>
<td>Computational Methods in Theoretical Astrophysics [3]</td>
<td></td>
</tr>
<tr>
<td>ASTRON 267</td>
<td>Course Not Available</td>
<td></td>
</tr>
</tbody>
</table>

Recommended Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTRON 298</td>
<td>Directed Group Study</td>
<td>1-4</td>
</tr>
<tr>
<td>ASTRON 375</td>
<td>Instruction Techniques in General Astronomy</td>
<td>2-6</td>
</tr>
</tbody>
</table>

The Introduction to Current Research seminar is required of all students in their first year. This consists of weekly lectures by different faculty members and research staff, and introduces the student to current research being carried out in the department and nearby labs. (This course is not a preliminary exam topic.)

These courses are offered based on interest.

Teaching

All candidates for the Ph.D. in Astrophysics must acquire two semesters of teaching experience during their graduate career, whether or not compensated.

It is desirable that this requirement be satisfied early in the graduate career, but it may be delayed for those international students who have not acquired adequate command of English, or other reasons, at the discretion of the Chairperson. The requirement may be waived for transfer students who have acquired similar teaching experience elsewhere.

Examinations

All candidates must pass two oral examinations administered by the faculty. The preliminary examination should be completed by the end of the second academic year of study and focuses on basic competency in three subfields selected by the student. The qualifying examination should be completed by the end of the fourth academic year of study and is composed of a review of a thesis topic and an examination of a student’s competency in his or her research subfield. Students entering with a Master’s Degree or its equivalent may have the preliminary examination requirement waived subject to the discretion of the Chair.

Thesis

The thesis is an original piece of research carried out by the candidate under the supervision of a thesis adviser and two other faculty members (one of whom must be from another discipline). The Graduate Division has published guidelines (http://www.grad.berkeley.edu/policies/forms.shtml) for dissertations and theses.

University Registration

Registration is required of all students making any use of University facilities, including access to faculty. A student is required to be registered, or pay the filing fee, whichever is applicable for the semester in which the degree is conferred. To be eligible for filing fee status the student must have been continuously registered since entering (allowing for one year of approved withdrawal), and registered in the term immediately preceding the one in which the Filing Fee is requested. You must register each semester before the end of the third week of classes.

Master’s Degree

Students are normally not admitted for the master’s degree only, but may find it worthwhile to add to their record en route to the PhD. Once these requirements have been fulfilled, the student should see the student affairs officer to obtain an Application for Candidacy for the master’s degree.

In order to earn the master’s, students are required to pass the preliminary exam and must complete 24 units of upper division and graduate courses, including 12 units of “non-research” (lecture) courses.

Astrophysics

Expand all course descriptions [+]+Collapse all course descriptions [-]
ASTRON 201 Radiation Processes in Astronomy 4 Units
Terms offered: Spring 2012, Fall 2011, Fall 2010
Radiation Processes in Astronomy: Read More [+]

Rules & Requirements
Prerequisites: Physics 105, 110A; 110B concurrently; open to advanced undergraduates with GPA of 3.70

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Letter grade.
Instructors: Chiang, Quataert

ASTRON C202 Astrophysical Fluid Dynamics 4 Units
Terms offered: Spring 2019, Spring 2018, Spring 2017
Principles of gas dynamics, self-gravitating fluids, magnetohydrodynamics and elementary kinetic theory. Aspects of convection, fluid oscillations, linear instabilities, spiral density waves, shock waves, turbulence, accretion disks, stellar winds, and jets.
Astrophysical Fluid Dynamics: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Letter grade.
Instructors: Chiang, Kasen, Ma, Quataert, White
Also listed as: PHYSICS C202

ASTRON 203 Astrophysical Techniques 3 Units
Terms offered: Spring 2019, Spring 2018, Spring 2017
Introduction to the flow of astronomical signals through telescope optics and into detectors; subsequent calibration, deconvolution of instrumental artifacts, and analysis. A broad wavelength approach is maintained with focus on shared fundamental concepts. Students "adopt a wavelength band" for assignments and presentations. Analysis and simulation of astronomical signals, noise, and errors.
Astrophysical Techniques: Read More [+]

Rules & Requirements
Prerequisites: 201 and 290A; 290B must be taken concurrently

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of laboratory per week

Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Letter grade.
Instructor: Graham

ASTRON 204 Numerical Techniques in Astronomy 3 Units
Terms offered: Fall 2011, Spring 2010, Spring 2008
Methods of data analysis, model fitting, and data display, all oriented towards the detailed analysis of astronomical observation data and/or numerical results from simulations. Specific topics include probability density functions, error propagation, maximum likelihood, least squares, data and function fitting, Fourier transforms, wavelets, principal components analysis, color images. The software language used is the Interactive Data Language (IDL).
Numerical Techniques in Astronomy: Read More [+]

Rules & Requirements
Prerequisites: Mathematics 54

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of seminar per week

Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Letter grade.
Instructor: Heiles

Numerical Techniques in Astronomy: Read Less [-]
ASTRON C207 Radiation Processes in Astronomy 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Radiation Processes in Astronomy: Read More [+]
Rules & Requirements
Prerequisites: Physics 105, 110A; 110B concurrently; open to advanced undergraduates with GPA of 3.70
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Letter grade.
Instructors: Chiang, Kasen, Quataert
Also listed as: PHYSICS C207
Radiation Processes in Astronomy: Read Less [-]

ASTRON C228 Extragalactic Astronomy and Cosmology 3 Units
Terms offered: Fall 2016, Fall 2015, Fall 2014
A survey of physical cosmology - the study of the origin, evolution, and fate of the universe. Topics include the Friedmann-Robertson-Walker model, thermal history and big bang nucleosynthesis, evidence and nature of dark matter and dark energy, the formation and growth of galaxies and large scale structure, the anisotropy of the cosmic microwave radiation, inflation in the early universe, tests of cosmological models, and current research areas. The course complements the material of Astronomy 218.
Extragalactic Astronomy and Cosmology: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Letter grade.
Instructors: Holzapfel, Lee, Ma, Seljak, White
Also listed as: PHYSICS C228
Extragalactic Astronomy and Cosmology: Read Less [-]

ASTRON 218 Stellar Dynamics and Galactic Structure 3 Units
Terms offered: Spring 2018, Spring 2016, Spring 2014
A basic course. Structure and kinematics of the galaxy; stellar population concepts; dynamics of stellar systems with and without encounters.
Stellar Dynamics and Galactic Structure: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Letter grade.
Instructors: Blitz, Davis, Graham
Stellar Dynamics and Galactic Structure: Read Less [-]

ASTRON C249 Solar System Astrophysics 3 Units
Terms offered: Fall 2018, Fall 2017, Spring 2011
The physical foundations of planetary sciences. Topics include planetary interiors and surfaces, planetary atmospheres and magnetospheres, and smaller bodies in our solar system. The physical processes at work are developed in some detail, and an evolutionary picture for our solar system, and each class of objects, is developed. Some discussion of other (potential) planetary systems is also included.
Solar System Astrophysics: Read More [+]
Rules & Requirements
Prerequisites: 149, 169, C160A or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Letter grade.
Instructors: Chiang, de Pater
Also listed as: EPS C249
Solar System Astrophysics: Read Less [-]
ASTRON 250 Special Topics in Astrophysics
3 Units
Terms offered: Spring 2018, Spring 2017, Fall 2016
Topics will vary from semester to semester. See department for announcements.
Special Topics in Astrophysics: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Letter grade.

Special Topics in Astrophysics: Read Less [-]

ASTRON 252 Stellar Structure and Evolution
3 Units
Terms offered: Fall 2017, Fall 2015, Spring 2013
Equations of stellar structure, radiative transfer and convection, thermonuclear reactions and stellar energy generations; stellar models, degenerate configurations, evolutionary sequences, supernovae, neutron stars, black holes, nucleosynthesis.
Stellar Structure and Evolution: Read More [+]

Rules & Requirements
Prerequisites: Physics 110A-110B, 112, 137A-137B

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Letter grade.
Instructor: Filippenko

Stellar Structure and Evolution: Read Less [-]

ASTRON C254 High Energy Astrophysics
3 Units
Terms offered: Fall 2018, Spring 2017, Spring 2014
Basic physics of high energy radiation processes in an astrophysics environment. Cosmic ray production and propagation. Applications selected from pulsars, x-ray sources, supernovae, interstellar medium, extragalactic radio sources, quasars, and big-bang cosmologies.
High Energy Astrophysics: Read More [+]

Rules & Requirements
Prerequisites: 201 or consent of instructor. 202 recommended

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Letter grade.
Instructors: Boggs, Quataert
Formerly known as: Physics C254, Astronomy C254
Also listed as: PHYSICS C254

High Energy Astrophysics: Read Less [-]

ASTRON 255 Computational Methods in Theoretical Astrophysics
3 Units
Terms offered: Spring 2018, Spring 2016, Spring 2012
A broad in-depth survey of state-of-the-art numerical approaches to astrophysical self-gravitational gas dynamics with application to large scale simulation of coupled non-linear astrophysical flows. Finite-difference approaches for Lagrangian and Eulerian astrophysical hydrodynamics and coupled radiation-hydrodynamics. N-body gravitation techniques including direct N-body, P-M, P3M, and hierarchical Tree. Particle gas dynamics methods such as smooth particle hydrodynamics (SPH), adaptive SPH and unification of SPH, and gravity tree hierarchies (TREE-SPH). Advanced techniques such as higher order Godunov finite difference methods with adaptive mesh refinement (AMR). Applications of these approaches in three broad areas: cosmology, high energy astrophysics, and star formation and the interstellar medium.
Computational Methods in Theoretical Astrophysics: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Letter grade.
Instructor: Klein

Computational Methods in Theoretical Astrophysics: Read Less [-]
ASTRON 256 Astronomy Data Science Laboratory 4 Units
Terms offered: Spring 2019
This course features 3 data-centric laboratory experiments that draw on a variety of tools used by professional astronomers. PhD students will learn to procure and clean data (drawn from a variety of world-class astronomical facilities), assess the fidelity/quality of data, build and apply models to describe data, learn statistical and computational techniques to analyze data (e.g., Bayesian inference, machine learning, parallel computing), and effectively communicate data and scientific results. There is a heavy emphasis on software development in the Python language, statistical techniques, and high-quality communication (e.g., written reports, oral presentations, and data visualization).

Rules & Requirements
Prerequisites: This class assumes that you have completed introductory astrophysical instruction (at the Astro 7A and 7B level) as well as knowledge of calculus (e.g. similar to Math 53) and linear algebra (e.g., similar to Math 54 or Physics 89). You should have proficiency or fluency in the Python programming language. This class heavily emphasizes software development, and is not the place to learn Python for the first time.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of laboratory per week

Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Letter grade.
Instructor: Bloom
Astronomy Data Science Laboratory: Read Less [-]

ASTRON C285 Theoretical Astrophysics Seminar 1 Unit
Terms offered: Spring 2019, Fall 2018, Spring 2018
The study of theoretical astrophysics.
Theoretical Astrophysics Seminar: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Instructor: de Pater

Also listed as: PHYSICS C285
Theoretical Astrophysics Seminar: Read Less [-]

ASTRON 290A Introduction to Current Research 2 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Professional Skills and Directed Reading (a.k.a. "how to be a professional astronomer")
Introduction to Current Research: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week

Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Instructor: Lu
Introduction to Current Research: Read Less [-]

ASTRON 290B Introduction to Current Research 1 Unit
Terms offered: Spring 2019, Spring 2018, Spring 2017
Continuation of 290A. Study of a research topic with an individual staff member.
Introduction to Current Research: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Instructor: de Pater
Introduction to Current Research: Read Less [-]
ASTRON C290C Cosmology 2 Units
Terms offered: Spring 2019, Fall 2018, Spring 2018

Cosmology: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week

Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Instructors: White, Cohn
Formerly known as: Physics C290C, Astronomy C290C
Also listed as: PHYSICS C290C

ASTRON 292 Planetary Science Seminar 1 Unit
Terms offered: Spring 2019, Fall 2018, Spring 2018, Fall 2017

The departments of Astronomy and Earth and Planetary Science offer a joint research seminar in advanced topics in planetary science, featuring speakers drawn from graduate students, postdoctoral researchers, faculty, and visiting scholars. Topics will span planetary interiors; surface morphology; atmospheres; dynamics; planet formation; and astrobiology. Speakers will vary from semester to semester. Meetings will be held once a week for 1 hour each, and the schedule of speakers will be determined on the first day of class. To pass the class, participants will be required to give a 30-minute presentation, either on their own research or on recent results from the literature.

Planetary Science Seminar: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-1 hours of seminar per week

Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Also listed as: EPS C292

ASTRON 298 Directed Group Study 1 - 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016

Tutorial for groups of two or three students.

Directed Group Study: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week

Additional Details
Subject/Course Level: Astronomy/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
ASTRON 299 Advanced Study and Research
2 - 12 Units
Terms offered: Spring 2019, Fall 2018, Spring 2018
Advanced Study and Research: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 2-12 hours of independent study per week

Additional Details

Subject/Course Level: Astronomy/Graduate

Grading: Letter grade.

Advanced Study and Research: Read Less [-]

ASTRON 301 Undergraduate Astronomy Instruction 1 - 2 Units
Terms offered: Fall 2004, Fall 2003, Fall 2002

Open to a limited number of highly qualified undergraduate students interested in astronomy teaching at the college level. Students will participate in a seminar on educational methods and engage in tutorial or laboratory teaching under supervision of a faculty member.

Undergraduate Astronomy Instruction: Read More [+]

Rules & Requirements

Prerequisites: An elementary astronomy course and consent of instructor

Repeat rules: Course may be repeated for credit up to a total of 4 units.

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of lecture and 3-6 hours of laboratory per week

Additional Details

Subject/Course Level: Astronomy/Professional course for teachers or prospective teachers

Grading: Offered for pass/not pass grade only.

Undergraduate Astronomy Instruction: Read Less [-]

ASTRON 375 Instruction Techniques in General Astronomy 2 - 6 Units
Terms offered: Fall 2018, Fall 2017, Fall 2014

Discussion and practice of teaching techniques as applied to astronomy. Open to graduate students who are presently teaching assistants or associates. Two units for course plus one section; three units for two discussion sections.

Instruction Techniques in General Astronomy: Read More [+]

Rules & Requirements

Prerequisites: Consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details

Subject/Course Level: Astronomy/Professional course for teachers or prospective teachers

Grading: Offered for satisfactory/unsatisfactory grade only.

Formerly known as: Astronomy 300

Instruction Techniques in General Astronomy: Read Less [-]

ASTRON 602 Individual Study for Doctoral Students 1 - 8 Units
Terms offered: Fall 2015, Fall 2014, Fall 2013

Individual study in consultation with the major field adviser, intended to provide an opportunity for qualified students to prepare themselves for the various examinations required of candidates for the Ph.D. (and other doctoral degrees). May not be used for unit or residence requirement for the doctoral degree.

Individual Study for Doctoral Students: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-8 hours of independent study per week

Additional Details

Subject/Course Level: Astronomy/Graduate examination preparation

Grading: Offered for satisfactory/unsatisfactory grade only.

Individual Study for Doctoral Students: Read Less [-]