Earth and Planetary Science

The Department of Earth and Planetary Sciences offers a PhD degree in Earth and Planetary Science. The central objective of the graduate program is to encourage creative thinking and develop the capacity for independent and original research. A strong undergraduate background in the physical sciences is especially helpful, and a significant number of our graduate students have their training in physics, chemistry, mathematics, engineering, or astronomy. Graduate students are formally accepted into the Earth and Planetary Science program, and they normally work directly toward a PhD.

The department offers a one-year MA program; however, admission to the program is available only to graduates of our bachelor's degree program in Earth and Planetary Science. We do not accept applications to the MA program from other majors or universities.

Admission to the University
Minimum Requirements for Admission
The following minimum requirements apply to all graduate programs and will be verified by the Graduate Division:

1. A bachelor's degree or recognized equivalent from an accredited institution;
2. A grade point average of B or better (3.0);
3. If the applicant has completed a basic degree from a country or political entity (e.g., Quebec) where English is not the official language, adequate proficiency in English to do graduate work, as evidenced by a TOEFL score of at least 90 on the iBT test, 570 on the paper-and-pencil test, or an IELTS Band score of at least 7 on a 9-point scale (note that individual programs may set higher levels for any of these); and
4. Sufficient undergraduate training to do graduate work in the given field.

Applicants Who Already Hold a Graduate Degree
The Graduate Council views academic degrees not as vocational training certificates, but as evidence of broad training in research methods, independent study, and articulation of learning. Therefore, applicants who already have academic graduate degrees should be able to pursue new subject matter at an advanced level without the need to enroll in a related or similar graduate program.

Programs may consider students for an additional academic master's or professional master's degree only if the additional degree is in a distinctly different field.

Applicants admitted to a doctoral program that requires a master's degree to be earned at Berkeley as a prerequisite (even though the applicant already has a master's degree from another institution in the same or a closely allied field of study) will be permitted to undertake the second master's degree, despite the overlap in field.

The Graduate Division will admit students for a second doctoral degree only if they meet the following guidelines:

1. Applicants with doctoral degrees may be admitted for an additional doctoral degree only if that degree program is in a general area of knowledge distinctly different from the field in which they earned their original degree. For example, a physics PhD could be admitted to a doctoral degree program in music or history; however, a student with a doctoral degree in mathematics would not be permitted to add a PhD in statistics.

2. Applicants who hold the PhD degree may be admitted to a professional doctorate or professional master’s degree program if there is no duplication of training involved.

Applicants may apply only to one single degree program or one concurrent degree program per admission cycle.

Required Documents for Applications
1. Transcripts: Applicants may upload unofficial transcripts with your application for the departmental initial review. Unofficial transcripts must contain specific information including the name of the applicant, name of the school, all courses, grades, units, & degree conferral (if applicable).

2. Letters of recommendation: Applicants may request online letters of recommendation through the online application system. Hard copies of recommendation letters must be sent directly to the program, by the recommender, not the Graduate Admissions.

3. Evidence of English language proficiency: All applicants who have completed a basic degree from a country or political entity in which the official language is not English are required to submit official evidence of English language proficiency. This applies to institutions from Bangladesh, Burma, Nepal, India, Pakistan, Latin America, the Middle East, the People's Republic of China, Taiwan, Japan, Korea, Southeast Asia, most European countries, and Quebec (Canada). However, applicants who, at the time of application, have already completed at least one year of full-time academic course work with grades of B or better at a US university may submit an official transcript from the US university to fulfill this requirement. The following courses will not fulfill this requirement:
 • courses in English as a Second Language,
 • courses conducted in a language other than English,
 • courses that will be completed after the application is submitted, and
 • courses of a non-academic nature.

Applicants who have previously applied to Berkeley must also submit new test scores that meet the current minimum requirement from one of the standardized tests. Official TOEFL score reports must be sent directly from Educational Test Services (ETS). The institution code for Berkeley is 4833 for Graduate Organizations. Official IELTS score reports must be sent electronically from the testing center to University of California, Berkeley, Graduate Division, Sproul Hall, Rm 318 MC 5900, Berkeley, CA 94720. TOEFL and IELTS score reports are only valid for two years prior to beginning the graduate program at UC Berkeley. Note: score reports can not expire before the month of June.

Where to Apply
Visit the Berkeley Graduate Division application page (http://grad.berkeley.edu/admissions/apply/).

Candidates for the PhD degree must pass the oral qualifying examination by the end of the second year and complete a thesis to the satisfaction of the appointed thesis committee. Students must have two research
propositions to present at the qualifying examination, each developed under the supervision of a different professor on substantially different topics. There are no required courses for the PhD program.

The master of arts degree requires 24 semester units of upper division and graduate courses with at least 12 units of graduate coursework, followed by a comprehensive oral examination.

Research units can count toward the 24 total, but not toward the 12 grad level. 200-level seminars can only be counted toward the total 24 credits if they require active student participation in a focused topic area (e.g. pass/fail seminars in which students passively listen do not qualify).

Specifically:

- EPS 255 (Department Seminar), EPS 260 (intro to faculty research for 1st-year PhD students), EPS 254 (BSL seminar), EPS 298 (BASC seminar), EPS 290 research group meetings, and similar seminars cannot be used to satisfy MA requirements.

- EPS 256 (Earthquake of the Week) can be used if taken for a letter grade.

- EPS 290 courses can be used only if they have a focus and title that distinguishes them from research group meetings. E.g. in Fall 2020 Bruce Buffett taught “Computational Methods in GFD” as EPS 290, and William Boos taught “Global Circulation of Planetary Atmospheres” as EPS 290; both could be used toward the grad-level MA credits.

- EPS 280 (research with a faculty advisor) can be used for up to 6 units total, but may not be counted toward the 12 grad-level credits required for the MA (they can count toward the 24 unit total).

Your faculty advisor and the graduate student services advisor will need to approve your courses for the MA.

The MA program is open only to students who have completed their undergraduate degree in our department.

Curriculum

<table>
<thead>
<tr>
<th>Electives, as per specialized study list</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 units must be graduate courses</td>
<td></td>
</tr>
<tr>
<td>12 additional units may be graduate or upper division courses</td>
<td></td>
</tr>
<tr>
<td>EPS 200 Problems in Hydrogeology</td>
<td>4</td>
</tr>
<tr>
<td>EPS 204 Elastic Wave Propagation</td>
<td>3</td>
</tr>
<tr>
<td>EPS 203 Introduction to Aquatic and Marine Geochemistry</td>
<td>4</td>
</tr>
<tr>
<td>EPS 207 Laboratory in Observational Seismology</td>
<td>3</td>
</tr>
<tr>
<td>EPS 209 Matlab Applications in Earth Science</td>
<td>2</td>
</tr>
<tr>
<td>EPS 210 Exploration, Ore Petrology, and Geochemistry</td>
<td>4</td>
</tr>
<tr>
<td>EPS 212 Advanced Stratigraphy and Tectonics</td>
<td>3</td>
</tr>
<tr>
<td>EPS 214 Igneous Petrology</td>
<td>4</td>
</tr>
<tr>
<td>EPS 216 Active Tectonics</td>
<td>3</td>
</tr>
<tr>
<td>EPS 217 Fluvial Geomorphology</td>
<td>4</td>
</tr>
<tr>
<td>EPS 220 Advanced Concepts in Mineral Physics</td>
<td>3</td>
</tr>
<tr>
<td>EPS 224 Isotopic Geochemistry</td>
<td>4</td>
</tr>
<tr>
<td>EPS 225 Topics in High-Pressure Research</td>
<td>2</td>
</tr>
<tr>
<td>EPS 229 Introduction to Climate Modeling</td>
<td>3</td>
</tr>
<tr>
<td>EPS 230 Radiation and Its Interactions with Climate</td>
<td>3</td>
</tr>
<tr>
<td>EPS 236 Geological Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>EPS C241 Stable Isotope Ecology</td>
<td>5</td>
</tr>
<tr>
<td>EPS C242 Glaciology</td>
<td>4</td>
</tr>
<tr>
<td>EPS C249 Solar System Astrophysics</td>
<td>3</td>
</tr>
<tr>
<td>EPS 250 Advanced Topics in Earth and Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>EPS 251 Carbon Cycle Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>EPS 254 Advanced Topics in Seismology and Geophysics</td>
<td>1</td>
</tr>
<tr>
<td>EPS 255 Advanced Topics in Earth and Planetary Science</td>
<td>1</td>
</tr>
<tr>
<td>EPS 256 Earthquake of the Week</td>
<td>2</td>
</tr>
<tr>
<td>EPS 260 Research in Earth Science</td>
<td>2</td>
</tr>
<tr>
<td>EPS 271 Field Geology and Digital Mapping</td>
<td>4</td>
</tr>
<tr>
<td>EPS C276 Seismic Hazard Analysis and Design Ground Motions</td>
<td>3</td>
</tr>
<tr>
<td>EPS 280 Research</td>
<td>1-12</td>
</tr>
<tr>
<td>EPS 290 Seminar</td>
<td>1-6</td>
</tr>
<tr>
<td>EPS C292 Planetary Science Seminar</td>
<td>1</td>
</tr>
<tr>
<td>EPS C295Z Energy Solutions: Carbon Capture and Sequestration</td>
<td>3</td>
</tr>
<tr>
<td>EPS 298 Directed Group Study for Graduates</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Earth and Planetary Science

Expand all course descriptions [+]_COLLAPSE all course descriptions [-]

EPS 200 Problems in Hydrogeology 4 Units

Terms offered: Spring 2022, Spring 2021, Fall 2019

Current problems in fluid flow, heat flow, and solute transport in the earth. Pressure- and thermal-driven flow, instability, convection, interaction between fluid flow and chemical reactions. Pore pressure; faulting and earthquakes; diagenesis; hydrocarbon migration and trapping; flow-associated mineralization; contaminant problems.

Problems in Hydrogeology: Read More [+]

Rules & Requirements

Prerequisites: Physics 7A-7B, Chemistry 1A-1B, Math 53 and 54; open to senior undergraduates with appropriate prerequisites

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geophysics C200 and Geology C200

Problems in Hydrogeology: Read Less [-]
EPS 203 Introduction to Aquatic and Marine Geochemistry 4 Units
Terms offered: Spring 2022, Spring 2021, Spring 2019
Introduction to marine geochemistry: the global water cycle; processes
governing the distribution of chemical species within the hydrosphere;
ocean circulation; chemical mass balances, fluxes, and reactions in the
marine environment from global to submicron scales; carbon system
equilibrium chemistry and biogeochemistry of fresh and salt water;
applications of natural and anthropogenic stable and radioactive tracers;
internal ocean processes.
Introduction to Aquatic and Marine Geochemistry: Read More [+]

Rules & Requirements
Prerequisites: Chemistry 1A, Mathematics 1A, or 16A. C82
recommended

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Earth and Planetary Science/Graduate
Grading: Letter grade.
Instructor: Bishop

Introduction to Aquatic and Marine Geochemistry: Read Less [-]

EPS 204 Elastic Wave Propagation 3 Units
Terms offered: Fall 2012, Fall 2007, Fall 2004
Wave propagation in elastic solids; effects of anelasticity and anisotropy;
representation theorems; reflection and refraction; propagation in layered
media; finite-difference and finite-element methods.
Elastic Wave Propagation: Read More [+]

Rules & Requirements
Prerequisites: 104 or equivalent; 121; Physics 105

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Earth and Planetary Science/Graduate
Grading: Letter grade.
Formerly known as: Geophysics 204
Elastic Wave Propagation: Read Less [-]

EPS 207 Laboratory in Observational Seismology 3 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020
Group problem solving of current seismological topics. Analysis,
inversion, and numerical modeling of seismic waveform data to
investigate questions regarding the physics of the earthquake source
and seismic wave propagation. Application of current developments and
techniques in seismological research.
Laboratory in Observational Seismology: Read More [+]

Rules & Requirements
Prerequisites: 121 or 130 or 204 or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Earth and Planetary Science/Graduate
Grading: Letter grade.
Formerly known as: Geophysics 207
Laboratory in Observational Seismology: Read Less [-]

EPS 209 Matlab Applications in Earth Science 2 Units
Terms offered: Spring 2011, Fall 2002
Introduction to Matlab programming with toolboxes. Applications come
from Earth sciences and related fields including biology. Topics range
from image processing, riverbed characterization, landslide risk analysis,
signal processing, geospatial and seismic data analysis, and machine
learning to parallel computation. Designed for beginning graduate
students.
Matlab Applications in Earth Science: Read More [+]

Rules & Requirements
Prerequisites: Some programming experience in any language

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 1 hour of laboratory
per week

Additional Details
Subject/Course Level: Earth and Planetary Science/Graduate
Grading: Letter grade.
Matlab Applications in Earth Science: Read Less [-]
EPS 210 Exploration, Ore Petrology, and Geochemistry 4 Units

Terms offered: Fall 2012, Fall 2011, Spring 2010

Exploration, Ore Petrology, and Geochemistry: Read More [+]

Rules & Requirements

Prerequisites: 101 or 271; 100A-100B; 118 recommended

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: Brimhall

Formerly known as: Geology 205

Exploration, Ore Petrology, and Geochemistry: Read Less [-]

EPS 212 Advanced Stratigraphy and Tectonics 3 Units

Terms offered: Spring 2011, Spring 2009, Spring 2008
Evolution of the earth in response to internal, surficial and extraterrestrial processes.

Advanced Stratigraphy and Tectonics: Read More [+]

Rules & Requirements

Prerequisites: Consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of seminar per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: Brimhall

Formerly known as: Geology 212

Advanced Stratigraphy and Tectonics: Read Less [-]

EPS 214 Igneous Petrology 4 Units

Terms offered: Spring 2020, Spring 2017, Spring 2014
The composition, generation, and cooling of magmas to form igneous rocks. The physical and thermodynamic properties of silicate liquids.

Igneous Petrology: Read More [+]

Rules & Requirements

Prerequisites: Consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 4 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: Brimhall

Formerly known as: Geology 214

Igneous Petrology: Read Less [-]

EPS 216 Active Tectonics 3 Units

Terms offered: Fall 2021, Fall 2018, Fall 2017
This course is a graduate course designed to introduce students in the earth sciences to the geology of earthquakes, including tectonic geomorphology, paleoseismology and the analysis and interpretation of geodetic measurements of active deformation. While the focus will be primarily on seismically active faults, we will also discuss deformation associated with landslides, regional isostatic rebound, and volcanoes, as well as measurements of global plate motions. We will address methods and applications in paleoseismology, tectonic geomorphology, and geodesy. The course will address measurement techniques (e.g., GPS, leveling, etc.), data analysis and inversion, and subsequent modeling and interpretation of the data. The integration of geodetic measurements with geologic and seismologic data allows an improved understanding of active processes.

Active Tectonics: Read More [+]

Rules & Requirements

Prerequisites: 116 or equivalent, Physics 7A or equivalent, or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: Brimhall

Formerly known as: Geology 207

Active Tectonics: Read Less [-]
EPS 217 Fluvial Geomorphology 4 Units
Terms offered: Spring 2020, Spring 2019, Spring 2018
Application of fluid mechanics to sediment transport and development of river morphology. Form and process in river meanders, the pool-riffle sequence, aggradation, grade, and baselevel.
Fluvial Geomorphology: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week
Additional Details
Subject/Course Level: Earth and Planetary Science/Graduate
Grading: Letter grade.
Formerly known as: Geology 217
Fluvial Geomorphology: Read Less [-]

EPS 220 Advanced Concepts in Mineral Physics 3 Units
Terms offered: Fall 2022, Fall 2021, Spring 2020
A combined seminar and lecture course covering advanced topics related to mineral physics. The interface between geophysics with the other physical sciences is emphasized. Topics vary each semester.
Advanced Concepts in Mineral Physics: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Earth and Planetary Science/Graduate
Grading: Letter grade.
Formerly known as: Geophysics 220
Advanced Concepts in Mineral Physics: Read Less [-]

EPS 224 Isotopic Geochemistry 4 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019
An overview of the use of natural isotopic variations to study earth, planetary, and environmental problems. Topics include geochronology, cosmogenic isotope studies of surficial processes, radiocarbon and the carbon cycle, water isotopes in the water cycle, and radiogenic and stable isotope studies of planetary evolution, mantle dynamics, volcanoes, groundwater, and geothermal systems. The course begins with a short introduction to nuclear processes and includes simple mathematical models used in isotope geochemistry.
Isotopic Geochemistry: Read More [+]
Rules & Requirements
Prerequisites: Chemistry 1A-1B, Mathematics 1A-1B
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Earth and Planetary Science/Graduate
Grading: Letter grade.
Instructor: David Shuster
Isotopic Geochemistry: Read Less [-]

EPS 225 Topics in High-Pressure Research 2 Units
Terms offered: Spring 2022, Fall 2021, Fall 2020
Analysis of current developments and techniques in experimental and theoretical high-pressure research, with applications in the physical sciences. Topics vary each semester.
Topics in High-Pressure Research: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week
Additional Details
Subject/Course Level: Earth and Planetary Science/Graduate
Grading: Letter grade.
Formerly known as: Geophysics 225
Topics in High-Pressure Research: Read Less [-]
EPS 229 Introduction to Climate Modeling 3 Units
Terms offered: Fall 2022, Spring 2021, Spring 2018
This course emphasizes the fundamentals of the climate system via
a hierarchy of climate models. Topics will include energy balance,
numerical techniques, climate observations, atmospheric and oceanic
circulation and heat transports, and parameterizations of eddy processes.
The model hierarchy will also explore nonlinear and stochastic processes,
and biogeochemistry. Students will build computational models to
investigate climate feedbacks, climate sensitivity, and response times.
Introduction to Climate Modeling: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit with instructor consent.

EPS 230 Radiation and Its Interactions with Climate 3 Units
Terms offered: Fall 2021, Fall 2019, Fall 2017
Introduction to role of radiative processes in structure and evolution of
the climate system. Electromagnetism; solar and terrestrial radiation;
interactions of radiation with Earth's atmosphere, ocean, and land
surface; greenhouse and runaway greenhouse effects; radiative balance
of the climate system; energy-balance climate models; effects of clouds
and aerosols; interactions of radiation with atmospheric and oceanic
dynamics; radiative processes and paleoclimate; radiative processes and
anthropogenic global warming.
Radiation and Its Interactions with Climate: Read More [+]
Rules & Requirements
Prerequisites: Physics 105, 110A, 110B

EPS 236 Geological Fluid Mechanics 4 Units
Terms offered: Fall 2022, Fall 2021, Fall 2019
An advanced course in the application of fluid mechanics in the earth
sciences, with emphasis on the design and scaling of laboratory and
numerical models. Principals of inviscid and viscous fluid flow; dynamic
similarity; boundary layers; convection; instabilities; gravity currents;
mixing and chaos; porous flow. Applications to mantle convection,
magma dynamics, atmosphere and ocean dynamics, sediment/debris
flows, and hydrogeology. Topics may vary from year to year.
Geological Fluid Mechanics: Read More [+]
Rules & Requirements
Prerequisites: Continuum/fluid mechanics at the level of 108 or consent
of instructor

EPS C241 Stable Isotope Ecology 5 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020, Spring 2019,
Spring 2016
Course focuses on principles and applications of stable isotope chemistry
as applied to the broad science of ecology. Lecture topics include
principles of isotope behavior and chemistry, and isotope measurements
in the context of terrestrial, aquatic, and marine ecological processes and
problems. Students participate in a set of laboratory exercises involving
preparation of samples of choice for isotopic analyses, the use of the
mass spectrometer and optical analysis systems, and the anlaysis of
data.
Stable Isotope Ecology: Read More [+]
Rules & Requirements
Prerequisites: Graduate standing

EPS C230 Radiation and Its Interactions with Climate: Read Less [-]

EPS 229 Introduction to Climate Modeling: Read Less [-]

EPS C241 Stable Isotope Ecology: Read Less [-]
EPS C242 Glaciology 4 Units
Terms offered: Spring 2021, Spring 2020, Spring 2018, Spring 2017
A review of the mechanics of glacial systems, including formation of ice masses, glacial flow mechanisms, subglacial hydrology, temperature and heat transport, global flow, and response of ice sheets and glaciers. We will use this knowledge to examine glaciers as geomorphologic agents and as participants in climate change.
Glaciology: Read More [+]

Rules & Requirements

Prerequisites: Graduate standing or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: Cuffey

Formerly known as: 241

Also listed as: GEOG C241

Glaciology: Read Less [-]

EPS C249 Solar System Astrophysics 3 Units
Terms offered: Fall 2019, Fall 2018, Fall 2017
The physical foundations of planetary sciences. Topics include planetary interiors and surfaces, planetary atmospheres and magnetospheres, and smaller bodies in our solar system. The physical processes at work are developed in some detail, and an evolutionary picture for our solar system, and each class of objects, is developed. Some discussion of other (potential) planetary systems is also included.
Solar System Astrophysics: Read More [+]

Rules & Requirements

Prerequisites: 149, 169, C160A or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructors: Chiang, de Pater

Also listed as: ASTRON C249

Solar System Astrophysics: Read Less [-]

EPS 250 Advanced Topics in Earth and Environmental Sciences 3 Units
Terms offered: Fall 2016, Fall 2014, Fall 2013
Review of recent literature and discussion of ongoing research at the interface between earth science and environmental science.
Advanced Topics in Earth and Environmental Sciences: Read More [+]

Rules & Requirements

Prerequisites: Consent of instructor

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of seminar per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geology 250

Advanced Topics in Earth and Environmental Sciences: Read Less [-]

EPS 251 Carbon Cycle Dynamics 3 Units
Terms offered: Fall 2021, Spring 2019, Spring 2016
In this course, we will focus on the (unsolved) puzzle of the contemporary carbon cycle. Why is the concentration of atmospheric CO₂ changing at the rate observed? What are the terrestrial and oceanic processes that add and remove carbon from the atmosphere? What are the processes responsible for long-term storage of carbon on land and in the sea? Emphasis will be placed on the observations and modeling needed to evaluate hypotheses about carbon sources and sinks. Past records will be examined for clues about sensitivity of carbon processes to climate variations.
Carbon Cycle Dynamics: Read More [+]

Rules & Requirements

Hours & Format

Fall and/or spring: 15 weeks - 6 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geology 219

Carbon Cycle Dynamics: Read Less [-]
EPS 254 Advanced Topics in Seismology and Geophysics 1 Unit
Terms offered: Fall 2022, Spring 2022, Fall 2021
Lectures on various topics representing current advances in seismology and geophysics, including local crustal and earthquake studies, regional tectonics, structure of the earth's mantle, and core and global dynamics. Advanced Topics in Seismology and Geophysics: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week
Additional Details
Subject/Course Level: Earth and Planetary Science/Graduate
Grading: Letter grade.
Formerly known as: Geophysics 250
Advanced Topics in Seismology and Geophysics: Read Less [-]

EPS 255 Advanced Topics in Earth and Planetary Science 1 Unit
Terms offered: Fall 2022, Spring 2022, Fall 2021
Lectures on various topics representing current advances in all aspects of earth and planetary science. Advanced Topics in Earth and Planetary Science: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1.5 hours of colloquium per week
Additional Details
Subject/Course Level: Earth and Planetary Science/Graduate
Grading: Letter grade.
Formerly known as: Geophysics 250
Advanced Topics in Earth and Planetary Science: Read Less [-]

EPS 256 Earthquake of the Week 2 Units
Terms offered: Fall 2022, Spring 2022, Fall 2021
Each week, the seismicity of the previous week, in California and worldwide, is reviewed. Tectonics of the region as well as source parameters and waveforms of interest are discussed and placed in the context of ongoing research in seismology. Earthquake of the Week: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of discussion per week
Additional Details
Subject/Course Level: Earth and Planetary Science/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Formerly known as: Geophysics 255
Earthquake of the Week: Read Less [-]

EPS 260 Research in Earth Science 2 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020
Weekly presentations to introduce new graduate students and senior undergraduates to current research conducted in the Department of Earth and Planetary Science. Research in Earth Science: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week
Additional Details
Subject/Course Level: Earth and Planetary Science/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Formerly known as: Geology 260
Research in Earth Science: Read Less [-]
EPS 271 Field Geology and Digital Mapping 4 Units
Terms offered: Fall 2022, Fall 2021, Spring 2020
Geological mapping, field observation, and problem solving in the Berkeley hills and environs leading to original interpretation of geological processes and history from stratigraphic, structural, and lithological investigations. Integration of the Berkeley hills geology into the tectonic and paleo-climatic record of the Coast Ranges and California as a whole through systematic field mapping in key localities and reading of original literature. Training in digital field mapping, use of digital base maps, and use of global positioning systems.

Field Geology and Digital Mapping: Read More [+]

Rules & Requirements

Prerequisites: 50 or equivalent introductory course for majors

Credit Restrictions: Students will receive no credit for 271 after taking 101.

Hours & Format

Fall and/or spring: 15 weeks - 7 hours of fieldwork and 2 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: Brimhall

Field Geology and Digital Mapping: Read Less [-]

EPS C276 Seismic Hazard Analysis and Design Ground Motions 3 Units
Terms offered: Spring 2021, Spring 2019, Spring 2018
Deterministic and probabilistic approaches for seismic hazard analysis. Separation of uncertainty into aleatory variability and epistemic uncertainty. Discussion of seismic source and ground motion characterization and hazard computation. Development of time histories for dynamic analyses of structures and seismic risk computation, including selection of ground motion parameters for estimating structural response, development of fragility curves, and methods for risk calculations.

Seismic Hazard Analysis and Design Ground Motions: Read More [+]

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: Abrahamson

Also listed as: CIV ENG C276

Seismic Hazard Analysis and Design Ground Motions: Read Less [-]

EPS 280 Research 1 - 12 Units
Terms offered: Fall 2022, Spring 2022, Fall 2021
Individual conferences to be arranged. Provides supervision in the preparation of an original research paper or dissertation.

Research: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-12 hours of independent study per week

Summer:
6 weeks - 3-30 hours of independent study per week
8 weeks - 2-23 hours of independent study per week
10 weeks - 2-18 hours of independent study per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: Brimhall

EPS 280 Research 1 - 12 Units: Read Less [-]

EPS 290 Seminar 1 - 6 Units
Terms offered: Fall 2022, Spring 2022, Fall 2021
Topics will be announced each semester.

Seminar: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 2-6 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geology 290

EPS 290 Seminar 1 - 6 Units: Read Less [-]
EPS C292 Planetary Science Seminar 1 Unit
Terms offered: Fall 2022, Spring 2022, Fall 2021, Fall 2020
The departments of Astronomy and Earth and Planetary Science offer a joint research seminar in advanced topics in planetary science, featuring speakers drawn from graduate students, postdoctoral researchers, faculty, and visiting scholars. Topics will span planetary interiors; surface morphology; atmospheres; dynamics; planet formation; and astrobiology. Speakers will vary from semester to semester. Meetings will be held once a week for 1 hour each, and the schedule of speakers will be determined on the first day of class. To pass the class, participants will be required to give a 30-minute presentation, either on their own research or on recent results from the literature.

Planetary Science Seminar: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-1 hours of seminar per week

Additional Details
Subject/Course Level: Earth and Planetary Science/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Also listed as: ASTRON C292

Planetary Science Seminar: Read Less [-]

EPS C295Z Energy Solutions: Carbon Capture and Sequestration 3 Units
After a brief overview of the chemistry of carbon dioxide in the land, ocean, and atmosphere, the course will survey the capture and sequestration of CO2 from anthropogenic sources. Emphasis will be placed on the integration of materials synthesis and unit operation design, including the chemistry and engineering aspects of sequestration. The course primarily addresses scientific and engineering challenges and aims to engage students in state-of-the-art research in global energy challenges.

Energy Solutions: Carbon Capture and Sequestration: Read More [+]

Rules & Requirements
Prerequisites: Chemistry 4B or 1B, Mathematics 1B, and Physics 7B, or equivalents

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Earth and Planetary Science/Graduate
Grading: Letter grade.
Instructors: Bourg, DePaolo, Long, Reimer, Smit
Also listed as: CHEM C236/CHM ENG C295Z

Energy Solutions: Carbon Capture and Sequestration: Read Less [-]

EPS 298 Directed Group Study for Graduates 1 - 9 Units
Terms offered: Fall 2022, Spring 2022, Fall 2021
Directed Group Study for Graduates: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week

Additional Details
Subject/Course Level: Earth and Planetary Science/Graduate
Grading: The grading option will be decided by the instructor when the class is offered.
Formerly known as: Geology 298

Directed Group Study for Graduates: Read Less [-]

EPS C301 Communicating Ocean Science 4 Units
For graduate students interested in improving their ability to communicate their scientific knowledge by teaching ocean science in elementary schools or science centers/aquariums. The course will combine instruction in inquiry-based teaching methods and learning pedagogy with six weeks of supervised teaching experience in a local school classroom or the Lawrence Hall of Science with a partner. Thus, students will practice communicating scientific knowledge and receive mentoring on how to improve their presentations.

Communicating Ocean Science: Read More [+]

Rules & Requirements
Prerequisites: One course in introductory biology, geology, chemistry, physics, or marine science required and interest in ocean science,junior, senior, or graduate standing; consent of instructor required for sophomores

Hours & Format
Fall and/or spring: 15 weeks - 2.5 hours of lecture, 1 hour of discussion, and 2 hours of fieldwork per week

Additional Details
Subject/Course Level: Earth and Planetary Science/Professional course for teachers or prospective teachers
Grading: Letter grade.
Instructor: Ingram
Also listed as: GEOG C301/INTEGBI C215

Communicating Ocean Science: Read Less [-]
EPS 375 Professional Preparation: Supervised Teaching of Geology and Geophysics 1 - 6 Units
Terms offered: Fall 2021, Fall 2020, Fall 2019
Discussion, curriculum, class observation, and practice teaching in geology, geophysics, and earth science.
Professional Preparation: Supervised Teaching of Geology and Geophysics: Read More [+]
Rules & Requirements
Prerequisites: Graduate standing and appointment as graduate student instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of discussion per week
Additional Details
Subject/Course Level: Earth and Planetary Science/Professional course for teachers or prospective teachers
Grading: Offered for satisfactory/unsatisfactory grade only.
Formerly known as: Earth and Planetary Science 300
Professional Preparation: Supervised Teaching of Geology and Geophysics: Read Less [-]