Electrical Engineering and Computer Sciences

The Department of Electrical Engineering and Computer Sciences offers three graduate programs in Electrical Engineering: the Master of Engineering (MEng) in Electrical Engineering and Computer Sciences, the Master of Science (MS), and the Doctor of Philosophy (PhD).

Master of Engineering (MEng)
The Master of Engineering (MEng) in Electrical Engineering & Computer Sciences, first offered by the EECS Department in the 2011-2012 academic year, is a professional master’s with a larger tuition than our other programs and is for students who plan to join the engineering profession immediately following graduation. This accelerated program is designed to train professional engineering leaders who understand the technical, economic, and social issues around technology. The interdisciplinary experience spans one academic year and includes three major components: (1) an area of technical concentration, (2) courses in leadership skills, and (3) a rigorous capstone project experience.

Master of Science (MS)
The Master of Science (MS) emphasizes research preparation and experience and, for most students, provides an opportunity to lay the groundwork for pursuing a PhD.

Doctor of Philosophy (PhD)
The Berkeley PhD in EECS combines coursework and original research with some of the finest EECS faculty in the US, allowing students to prepare for careers in academia or industry. Our alumni (http://www.eecs.berkeley.edu/alumni/distinguished.shtml/) have gone on to hold amazing positions around the world.

Admission to the University
Minimum Requirements for Admission
The following minimum requirements apply to all graduate programs and will be verified by the Graduate Division:

1. A bachelor’s degree or recognized equivalent from an accredited institution;
2. A grade point average of B or better (3.0);
3. If the applicant has completed a basic degree from a country or political entity (e.g., Quebec) where English is not the official language, adequate proficiency in English to do graduate work, as evidenced by a TOEFL score of at least 90 on the iBT test, 570 on the paper-and-pencil test, or an IELTS Band score of at least 7 on a 9-point scale (note that individual programs may set higher levels for any of these); and
4. Sufficient undergraduate training to do graduate work in the given field.

Applicants Who Already Hold a Graduate Degree
The Graduate Council views academic degrees not as vocational training certificates, but as evidence of broad training in research methods, independent study, and articulation of learning. Therefore, applicants who already have academic graduate degrees should be able to pursue new subject matter at an advanced level without the need to enroll in a related or similar graduate program.

Programs may consider students for an additional academic master’s or professional master’s degree only if the additional degree is in a distinctly different field.

Applicants admitted to a doctoral program that requires a master’s degree to be earned at Berkeley as a prerequisite (even though the applicant already has a master’s degree from another institution in the same or a closely allied field of study) will be permitted to undertake the second master’s degree, despite the overlap in field.

The Graduate Division will admit students for a second doctoral degree only if they meet the following guidelines:

1. Applicants with doctoral degrees may be admitted for an additional doctoral degree only if that degree program is in a general area of knowledge distinctly different from the field in which they earned their original degree. For example, a physics PhD could be admitted to a doctoral degree program in music or history; however, a student with a doctoral degree in mathematics would not be permitted to add a PhD in statistics.
2. Applicants who hold the PhD degree may be admitted to a professional doctorate or professional master’s degree program if there is no duplication of training involved.

Applicants may apply only to one single degree program or one concurrent degree program per admission cycle.

Required Documents for Applications

1. Transcripts: Applicants may upload unofficial transcripts with your application for the departmental initial review. Unofficial transcripts must contain specific information including the name of the applicant, name of the school, all courses, grades, units, & degree conferral (if applicable).
2. Letters of recommendation: Applicants may request online letters of recommendation through the online application system. Hard copies of recommendation letters must be sent directly to the program, by the recommender, not the Graduate Admissions.
3. Evidence of English language proficiency: All applicants who have completed a basic degree from a country or political entity in which the official language is not English are required to submit official evidence of English language proficiency. This applies to institutions from Bangladesh, Burma, Nepal, India, Pakistan, Latin America, the Middle East, the People’s Republic of China, Taiwan, Japan, Korea, Southeast Asia, most European countries, and Quebec (Canada). However, applicants who, at the time of application, have already completed at least one year of full-time academic course work with grades of B or better at a US university may submit an official transcript from the US university to fulfill this requirement. The following courses will not fulfill this requirement:
 - courses in English as a Second Language,
 - courses conducted in a language other than English,
 - courses that will be completed after the application is submitted, and
 - courses of a non-academic nature.

Electrical Engineering and Computer Sciences
Applicants who have previously applied to Berkeley must also submit new test scores that meet the current minimum requirement from one of the standardized tests. Official TOEFL score reports must be sent directly from Educational Testing Services (ETS). The institution code for Berkeley is 4833 for Graduate Organizations. Official IELTS score reports must be sent electronically from the testing center to University of California, Berkeley, Graduate Division, Sproul Hall, Rm 318 MC 5900, Berkeley, CA 94720. TOEFL and IELTS score reports are only valid for two years prior to beginning the graduate program at UC Berkeley. Note: score reports can not expire before the month of June.

Where to Apply

Visit the Berkeley Graduate Division application page (http://grad.berkeley.edu/admissions/apply/).

Admission to the MS/PhD Program

The following items are required for admission to the Berkeley EECS MS/PhD program in addition to the University’s general graduate admission requirements:

1. **Statement of Purpose**: Why are you applying to this program? What do you hope to accomplish during this degree program? What do you want to do afterwards, and how will this degree help you to achieve your goals?

2. **Personal History Statement**: What past experiences made you decide to go into this field? How will your personal history help you succeed in this program and reach your future goals?

3. **GPA**: If you attended a university outside of the USA, please leave the GPA section blank.

4. **Resume**: Please also include a full resume/CV listing your experience and education.

Complete the online UC Berkeley graduate application:

1. Start your application through this link (http://www.grad.berkeley.edu/) and fill in each relevant page.

2. Upload the materials above, and send the recommender links several weeks prior to the application deadline to give your recommenders time to submit their letters.

Normative Time Requirements

Total Normative Time

Normative time in the EECS department is between 5.5-6 years for the doctoral program.

Time to Advancement

Curriculum

The faculty of the College of Engineering recommends a minimum number of courses taken while in graduate standing. The total minimum is 24 units of coursework, taken for a letter grade and not including courses numbered 297, 298, 299, 301, 375 and 602. Students who entered prior to Fall 2009 have the option of completing 32 units of coursework with a reduced teaching requirement.

Approved study list per student’s research interests to include:

- 12 200-level units in one major field within EECS, with a 3.5 GPA
- 6 100 or 200-level units in one minor field within EECS, with a 3.0 GPA and at least one 200-level course

Possible courses include:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL ENG 210</td>
<td>Applied Electromagnetic Theory</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 213A</td>
<td>Power Electronics</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 219A</td>
<td>Digital Communications</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 219B</td>
<td>Logic Synthesis</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 220A</td>
<td>Experiential Advanced Control Design I</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 220B</td>
<td>Experiential Advanced Control Design II</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 220C</td>
<td>Input/Output Methods for Compositional System Analysis</td>
<td>2</td>
</tr>
<tr>
<td>EL ENG 221A</td>
<td>Linear System Theory</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 222</td>
<td>Nonlinear Systems--Analysis, Stability and Control</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 222A</td>
<td>Nonlinear Systems</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 223</td>
<td>Stochastic Systems: Estimation and Control</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 224A</td>
<td>Digital Communications</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 224B</td>
<td>Fundamentals of Wireless Communication</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 225</td>
<td>Audio Signal Processing in Humans and Machines</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 225E</td>
<td>Principles of Magnetic Resonance Imaging</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 226A</td>
<td>Random Processes in Systems</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 226B</td>
<td>Applications of Stochastic Process Theory</td>
<td>2</td>
</tr>
<tr>
<td>EL ENG 227BT</td>
<td>Convex Optimization</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 227C</td>
<td>Convex Optimization and Approximation</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 227T</td>
<td>Introduction to Convex Optimization</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 228A</td>
<td>High Speed Communications Networks</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 229A</td>
<td>Information Theory and Coding</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 229B</td>
<td>Error Control Coding</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 230A</td>
<td>Integrated-Circuit Devices</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 230B</td>
<td>Solid State Devices</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 230C</td>
<td>Solid State Electronics</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 230A</td>
<td>Integrated-Circuit Devices</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 230B</td>
<td>Solid State Devices</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 232</td>
<td>Lightwave Devices</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 235</td>
<td>Nanoscale Fabrication</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 236A</td>
<td>Quantum and Optical Electronics</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 239</td>
<td>Partially Ionized Plasmas</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 240A</td>
<td>Analog Integrated Circuits</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 240B</td>
<td>Advanced Analog Integrated Circuits</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 240C</td>
<td>Analysis and Design of VLSI Analog-Digital Interface Integrated Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG W240A</td>
<td>Advanced Analog Integrated Circuits</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG W240B</td>
<td>Advanced Analog Integrated Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG W240C</td>
<td>Analysis and Design of VLSI Analog-Digital Interface Integrated Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 241A</td>
<td>Introduction to Digital Integrated Circuits</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 241B</td>
<td>Advanced Digital Integrated Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 242A</td>
<td>Integrated Circuits for Communications</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 242B</td>
<td>Advanced Integrated Circuits for Communications</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Units</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>EL ENG W242A</td>
<td>Integrated Circuits for Communications</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG W242B</td>
<td>Advanced Integrated Circuits for Communications</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 243</td>
<td>Advanced IC Processing and Layout</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 244</td>
<td>Fundamental Algorithms for Systems Modeling, Analysis, and Optimization</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG W244</td>
<td>Fundamental Algorithms for System Modeling, Analysis, and Optimization</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C246</td>
<td>Parametric and Optimal Design of MEMS</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 247A</td>
<td>Introduction to Microelectromechanical Systems (MEMS)</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C247B</td>
<td>Introduction to MEMS Design</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 248C</td>
<td>Numerical Modeling and Analysis: Nonlinear Systems and Noise</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C249A</td>
<td>Introduction to Embedded Systems</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C249B</td>
<td>Embedded System Design: Modeling, Analysis, and Synthesis</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C261</td>
<td>Medical Imaging Signals and Systems</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 290</td>
<td>Advanced Topics in Electrical Engineering</td>
<td>1-4</td>
</tr>
<tr>
<td>EL ENG 290A</td>
<td>Advanced Topics in Electrical Engineering: Advanced Topics in Computer-Aided Design</td>
<td>1-3</td>
</tr>
<tr>
<td>EL ENG 290B</td>
<td>Advanced Topics in Electrical Engineering: Advanced Topics in Solid State Devices</td>
<td>1-3</td>
</tr>
<tr>
<td>EL ENG 290C</td>
<td>Advanced Topics in Electrical Engineering: Advanced Topics in Circuit Design</td>
<td>1-3</td>
</tr>
<tr>
<td>EL ENG 290D</td>
<td>Advanced Topics in Electrical Engineering: Advanced Topics in Microelectronics</td>
<td>1-3</td>
</tr>
<tr>
<td>EL ENG 290F</td>
<td>Advanced Topics in Electrical Engineering: Advanced Topics in Photonics</td>
<td>1-3</td>
</tr>
<tr>
<td>EL ENG 290G</td>
<td>Advanced Topics in Electrical Engineering: Advanced Topics in MEMS, Microsensors, and Microactuators</td>
<td>1-3</td>
</tr>
<tr>
<td>EL ENG 290N</td>
<td>Advanced Topics in Electrical Engineering: Advanced Topics in System Theory</td>
<td>1-3</td>
</tr>
<tr>
<td>EL ENG 290O</td>
<td>Advanced Topics in Electrical Engineering: Advanced Topics in Control</td>
<td>1-3</td>
</tr>
<tr>
<td>EL ENG 290P</td>
<td>Advanced Topics in Electrical Engineering: Advanced Topics in Bioelectronics</td>
<td>1-3</td>
</tr>
<tr>
<td>EL ENG 290Q</td>
<td>Advanced Topics in Electrical Engineering: Advanced Topics in Communication Networks</td>
<td>1-3</td>
</tr>
<tr>
<td>EL ENG 290S</td>
<td>Advanced Topics in Electrical Engineering: Advanced Topics in Communications and Information Theory</td>
<td>1-3</td>
</tr>
<tr>
<td>EL ENG 290T</td>
<td>Advanced Topics in Electrical Engineering: Advanced Topics in Signal Processing</td>
<td>1-3</td>
</tr>
<tr>
<td>EL ENG 290Y</td>
<td>Advanced Topics in Electrical Engineering: Organic Materials in Electronics</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG W290C</td>
<td>Advanced Topics in Circuit Design</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C291</td>
<td>Control and Optimization of Distributed Parameters Systems</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C291E</td>
<td>Hybrid Systems and Intelligent Control</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 297</td>
<td>Field Studies in Electrical Engineering</td>
<td>12</td>
</tr>
<tr>
<td>EL ENG 298</td>
<td>Group Studies, Seminars, or Group Research</td>
<td>1-4</td>
</tr>
<tr>
<td>EL ENG 299</td>
<td>Individual Research</td>
<td>1-12</td>
</tr>
<tr>
<td>EL ENG 375</td>
<td>Teaching Techniques for Electrical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>EL ENG 602</td>
<td>Individual Study for Doctoral Students</td>
<td>1-8</td>
</tr>
<tr>
<td>COMPSCI C200A</td>
<td>Principles and Techniques of Data Science</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI C249A</td>
<td>Introduction to Embedded Systems</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 250</td>
<td>VLSI Systems Design</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 252A</td>
<td>Graduate Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 260A</td>
<td>User Interface Design and Development</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 260B</td>
<td>Human-Computer Interaction Research</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 261</td>
<td>Security in Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 261N</td>
<td>Internet and Network Security</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 262A</td>
<td>Advanced Topics in Computer Systems</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 262B</td>
<td>Advanced Topics in Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 263</td>
<td>Design of Programming Languages</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 264</td>
<td>Implementation of Programming Languages</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 265</td>
<td>Compiler Optimization and Code Generation</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI C267</td>
<td>Applications of Parallel Computers</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI W267</td>
<td>Applications of Parallel Computers</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 268</td>
<td>Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 270</td>
<td>Combinatorial Algorithms and Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 271</td>
<td>Randomness and Computation</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 273</td>
<td>Foundations of Parallel Computation</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 274</td>
<td>Computational Geometry</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 276</td>
<td>Cryptography</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI C280</td>
<td>Computer Vision</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI C281A</td>
<td>Statistical Learning Theory</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI C281B</td>
<td>Advanced Topics in Learning and Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 282A</td>
<td>Designing, Visualizing and Understanding Deep Neural Networks</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 284A</td>
<td>Foundations of Computer Graphics</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 284B</td>
<td>Advanced Computer Graphics Algorithms and Techniques</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 285</td>
<td>Deep Reinforcement Learning, Decision Making, and Control</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 286A</td>
<td>Introduction to Database Systems</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 286B</td>
<td>Implementation of Data Base Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 287</td>
<td>Advanced Robotics</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 287H</td>
<td>Algorithmic Human-Robot Interaction</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 288</td>
<td>Natural Language Processing</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 289A</td>
<td>Introduction to Machine Learning</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 294</td>
<td>Special Topics</td>
<td>1-4</td>
</tr>
<tr>
<td>Upper division EECS Courses (Can be used for Inside Minor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL ENG 105</td>
<td>Microelectronic Devices and Circuits</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C106A</td>
<td>Introduction to Robotics</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C106B</td>
<td>Robotic Manipulation and Interaction</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 113</td>
<td>Power Electronics</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 117</td>
<td>Electromagnetic Fields and Waves</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 118</td>
<td>Introduction to Optical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 120</td>
<td>Signals and Systems</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 121</td>
<td>Introduction to Digital Communication Systems</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 122</td>
<td>Introduction to Communication Networks</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 123</td>
<td>Digital Signal Processing</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 126</td>
<td>Probability and Random Processes</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C128</td>
<td>Feedback Control Systems</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 130</td>
<td>Integrated-Circuit Devices</td>
<td>4</td>
</tr>
</tbody>
</table>
EL ENG 134 Fundamentals of Photovoltaic Devices 4
EL ENG 137A Introduction to Electric Power Systems 4
EL ENG 137B Introduction to Electric Power Systems 4
EL ENG 140 Linear Integrated Circuits 4
EL ENG 142 Integrated Circuits for Communications 4
EL ENG 143 Microfabrication Technology 4
EL ENG 144 Fundamental Algorithms for Systems Modeling, Analysis, and Optimization 4
EL ENG C145B Medical Imaging Signals and Systems 4
EL ENG C145L Introductory Electronic Transducers Laboratory 3
EL ENG C145M Introductory Microcomputer Interfacing Laboratory 3
EL ENG C145O Laboratory in the Mechanics of Organisms 3
EL ENG 146L Application Specific Integrated Circuits Laboratory 2
EL ENG 147 Introduction to Microelectromechanical Systems (MEMS) 3
EL ENG 192 Mechatronic Design Laboratory 4
COMPSCI 146L Programmable Digital Systems Laboratory 2
COMPSCI 152 Computer Architecture and Engineering 4
COMPSCI 160 User Interface Design and Development 4
COMPSCI 161 Computer Security 4
COMPSCI 162 Operating Systems and System Programming 4
COMPSCI 164 Programming Languages and Compilers 4
COMPSCI 168 Introduction to the Internet: Architecture and Protocols 4
COMPSCI 169 Software Engineering 4
COMPSCI 169A Introduction to Software Engineering 4
COMPSCI 169L Software Engineering Team Project 2
COMPSCI W169A Software Engineering 3
COMPSCI 170 Efficient Algorithms and Intractable Problems 4
COMPSCI 171 Cryptography 4
COMPSCI 172 Computability and Complexity 4
COMPSCI 174 Combinatorics and Discrete Probability 4
COMPSCI 176 Algorithms for Computational Biology 4
COMPSCI 182 Designing, Visualizing and Understanding Deep Neural Networks 4
COMPSCI 184 Foundations of Computer Graphics 4
COMPSCI 186 Introduction to Database Systems 4
COMPSCI W186 Introduction to Database Systems 4
COMPSCI 188 Introduction to Artificial Intelligence 4
COMPSCI 189 Introduction to Machine Learning 4
COMPSCI C191 Quantum Information Science and Technology 3

Preliminary Exams
The EECS preliminary requirement consists of two components:

Oral Examination
The oral exam serves an advisory role in a student's graduate studies, providing official feedback from an exam committee of faculty members. Students must be able to demonstrate an integrated grasp of the exam area's body of knowledge in an unstructured framework. Students must pass the oral portion of the preliminary exam within their first two attempts. A third attempt is possible with a petition of support from the student's faculty adviser and final approval by the prelim committee chair. Failure to pass the oral portion of the preliminary exam will result in the student being ineligible to complete the PhD program. The examining committee awards a score in the range of 0-10. The minimum passing score is 6.0.

Breadth Courses
The prelim breadth courses ensure that students have exposure to areas outside their concentration.

EE students are expected to complete two courses of at least three units each in two areas of EECS outside their prelim oral exam area. These courses must be graduate or advanced undergraduate courses, and students must receive a grade of A- or better.

Qualifying Examination
The qualifying examination is an important checkpoint, meant to show that a student is on a promising research track toward the PhD. It is a University examination, administered by the Graduate Council, with the specific purpose of demonstrating that "the student is clearly an expert in those areas of the discipline that have been specified for the examination, and that he or she can, in all likelihood, design and produce an acceptable dissertation." Despite such rigid criteria, faculty examiners recognize that the level of expertise expected is that appropriate for a third year graduate student who may be only in the early stages of a research project.

The EECS department offers the qualifying exam in two formats, A or B. Students may choose the exam type of their choice after consultation with their advisor.

Format A
1. Students prepare a write-up and presentation, summarizing a specific research area, preferably the one in which they intend to do their dissertation work. Their summary surveys that area and describes open and interesting research problems.
2. They describe why they chose these problems and indicate what direction their research may take in the future.
3. They prepare to display expertise on both the topic presented and on any related material that the committee thinks is relevant.
4. The student should talk (at least briefly) about any research progress to date (e.g., MS project, PhD research, or class project). Some evidence of their ability to do research is expected.
5. The committee shall evaluate students on the basis of their comprehension of the fundamental facts and principles that apply within their research area and the student's ability to think incisively and critically about the theoretical and practical aspects of this field.
6. Students must demonstrate command of the content and the ability to design and produce an acceptable dissertation.

Format B
This option includes the presentation and defense of a thesis proposal in addition to the requirements of option A. It will include a summary of research to date and plans for future work (or at least the next stage thereof). The committee shall not only evaluate the student's thesis proposal and his/her progress to date, but shall also evaluate according to option A. As in option A, the student should prepare a single document and presentation, but in this case, additional emphasis must be placed on research completed to date and plans for the remainder of the dissertation research.

Thesis Proposal Defense
Students not presenting a satisfactory thesis proposal defense, either because they took option A for the QE, or because the material
presented in an option B exam was not deemed a satisfactory proposal defense (although it may have sufficed to pass the QE), must write up and present a thesis proposal, which should include a summary of the research to date and plans for the remainder of the dissertation research. They should be prepared to discuss background and related areas, but the focus of the proposal should be on the progress made so far, and detailed plans for completing the thesis. The standard for continuing with PhD research is that the proposal has sufficient merit to lead to a satisfactory dissertation. Another purpose of this presentation is for faculty to provide feedback on the quality of work to date. For this step, the committee should consist of at least three members from EECS familiar with the research area, preferably including those on the dissertation committee.

Normative Time in Candidacy

Advancement to Candidacy

Students must file the advancement form online through CalCentral no later than the end of the semester following the one in which the qualifying exam was passed. In approving this application, Graduate Division approves the dissertation committee and will send a certificate of candidacy.

Students in the EECS department are required to be advanced to candidacy at least two semesters before they are eligible to graduate. Once a student is advanced to candidacy, candidacy is valid for five years. For the first three years, non-resident tuition may be waived, if applicable.

Dissertation Talk

As part of the requirements for the doctoral degree, students must give a public talk on the research covered by their dissertation. The dissertation talk should be given a few months before the signing of the final submission of the dissertation. It must be given before the final submission of the dissertation. The talk should cover all the major components of the dissertation in a substantial manner; in particular, the dissertation talk should not omit topics that will appear in the dissertation but are incomplete at the time of the talk.

The dissertation talk is to be attended by the whole dissertation committee, or, if this is not possible, by at least a majority of the members. Attendance at this talk is part of the committee's responsibility. It is, however, the responsibility of the student to schedule a time for the talk that is convenient for members of the committee. The EECS Department requires that the talk be given during either the fall or spring semester.

Required Professional Development

Graduate Student Instructor Teaching Requirement

The department requires all PhD candidates to serve as graduate student instructors (GSIs) within the EECS department. The GSI teaching requirement not only helps to develop a student's communication skills, but it also makes a great contribution to the department's academic community. Students must fulfill this requirement by working as a GSI (excluding EL ENG 375, or COMPSCI 375) for a total of 30 hours minimum prior to graduation. At least 20 of those hours must be for an EE or CS undergraduate course.

Unit requirements

A minimum of 24 units is required.

Curriculum

All courses must be taken for a letter grade, except courses numbered 299, which are only offered for S/U credit.

Students must maintain a minimum cumulative GPA of 3.0. No credit will be given for courses in which the student earns a grade of D+ or below.

Transfer credit may be awarded for a maximum of 4 semester or 6 quarter units of graduate coursework from another institution.

Plan I

10 units of courses, selected from the 200-series (excluding 298 and 299) in EECS

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL ENG 299</td>
<td>Individual Research</td>
<td>4-10</td>
</tr>
<tr>
<td>COMPSCI 299</td>
<td>Individual Research</td>
<td></td>
</tr>
<tr>
<td>EL ENG 299</td>
<td>Individual Research</td>
<td>3-6</td>
</tr>
<tr>
<td>COMPSCI 299</td>
<td>Individual Research</td>
<td></td>
</tr>
</tbody>
</table>

Upper division or graduate courses to reach the minimum of 24 units

Plan II

10 units of courses, selected from the 200-series (excluding 298 and 299) in EECS

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL ENG 299</td>
<td>Individual Research</td>
<td>4-10</td>
</tr>
<tr>
<td>COMPSCI 299</td>
<td>Individual Research</td>
<td></td>
</tr>
<tr>
<td>EL ENG 299</td>
<td>Individual Research</td>
<td>3-6</td>
</tr>
<tr>
<td>COMPSCI 299</td>
<td>Individual Research</td>
<td></td>
</tr>
</tbody>
</table>

Upper division or graduate courses to reach the minimum of 24 units

Possible courses include:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL ENG 210</td>
<td>Applied Electromagnetic Theory</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 213A</td>
<td>Power Electronics</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C213</td>
<td>X-rays and Extreme Ultraviolet Radiation</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 218A</td>
<td>Introduction to Optical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 219A</td>
<td>Numerical Simulation and Modeling</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 219B</td>
<td>Logic Synthesis</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C220A</td>
<td>Advanced Control Systems I</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C220B</td>
<td>Experiential Advanced Control Design I</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C220C</td>
<td>Experiential Advanced Control Design II</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C220D</td>
<td>Input/Output Methods for Compositional System Analysis</td>
<td>2</td>
</tr>
<tr>
<td>EL ENG 211A</td>
<td>Linear System Theory</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 222</td>
<td>Nonlinear Systems–Analysis, Stability and Control</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C222</td>
<td>Nonlinear Systems</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 223</td>
<td>Stochastic Systems: Estimation and Control</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 224A</td>
<td>Digital Communications</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 224B</td>
<td>Fundamentals of Wireless Communication</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 225D</td>
<td>Audio Signal Processing in Humans and Machines</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C225E</td>
<td>Principles of Magnetic Resonance Imaging</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 226A</td>
<td>Random Processes in Systems</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 226B</td>
<td>Applications of Stochastic Process Theory</td>
<td>2</td>
</tr>
<tr>
<td>EL ENG 227BT</td>
<td>Convex Optimization</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C227C</td>
<td>Convex Optimization and Approximation</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C227T</td>
<td>Introduction to Convex Optimization</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 228A</td>
<td>High Speed Communications Networks</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 229A</td>
<td>Information Theory and Coding</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 229B</td>
<td>Error Control Coding</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Units</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>EL ENG 230A</td>
<td>Integrated-Circuit Devices</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 230B</td>
<td>Solid State Devices</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 230C</td>
<td>Solid State Electronics</td>
<td>3</td>
</tr>
<tr>
<td>EL WENG 230A</td>
<td>Integrated-Circuit Devices</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 230B</td>
<td>Solid State Devices</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 232</td>
<td>Lightwave Devices</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C235</td>
<td>Nanoscale Fabrication</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 236A</td>
<td>Quantum and Optical Electronics</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 239</td>
<td>Partially Ionized Plasmas</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 240A</td>
<td>Analog Integrated Circuits</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 240B</td>
<td>Advanced Analog Integrated Circuits</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 240C</td>
<td>Analysis and Design of VLSI Analog-Digital Interface Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG W240A</td>
<td>Analog Integrated Circuits</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG W240B</td>
<td>Advanced Analog Integrated Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG W240C</td>
<td>Analysis and Design of VLSI Analog-Digital Interface Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 241B</td>
<td>Advanced Digital Integrated Circuits</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG W241A</td>
<td>Introduction to Digital Integrated Circuits</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG W241B</td>
<td>Advanced Digital Integrated Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 242A</td>
<td>Advanced Circuits for Communications</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 242B</td>
<td>Advanced Integrated Circuits for Communications</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG W242A</td>
<td>Integrated Circuits for Communications</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG W242B</td>
<td>Advanced Integrated Circuits for Communications</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 243</td>
<td>Advanced IC Processing and Layout</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 244</td>
<td>Fundamental Algorithms for Systems Modeling, Analysis, and Optimization</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG W244</td>
<td>Fundamental Algorithms for System Modeling, Analysis, and Optimization</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C246</td>
<td>Parametric and Optimal Design of MEMS</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 247A</td>
<td>Introduction to Microelectromechanical Systems (MEMS)</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C247B</td>
<td>Introduction to MEMS Design</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG W247B</td>
<td>Introduction to MEMS Design</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 248C</td>
<td>Numerical Modeling and Analysis: Nonlinear Systems and Noise</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C249A</td>
<td>Introduction to Embedded Systems</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C249B</td>
<td>Embedded System Design: Modeling, Analysis, and Synthesis</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C261</td>
<td>Medical Imaging Signals and Systems</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 290</td>
<td>Advanced Topics in Electrical Engineering</td>
<td>1-4</td>
</tr>
<tr>
<td>EL ENG C291</td>
<td>Control and Optimization of Distributed Systems</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C291E</td>
<td>Hybrid Systems and Intelligent Control</td>
<td>3</td>
</tr>
<tr>
<td>EECS C206A</td>
<td>Introduction to Robotics</td>
<td>4</td>
</tr>
<tr>
<td>EECS C206B</td>
<td>Robotic Manipulation and Interaction</td>
<td>4</td>
</tr>
<tr>
<td>EECS 208</td>
<td>Computational Principles for High-dimensional Data Analysis</td>
<td>4</td>
</tr>
<tr>
<td>EECS 219C</td>
<td>Formal Methods: Specification, Verification, and Synthesis</td>
<td>3</td>
</tr>
<tr>
<td>EECS 225A</td>
<td>Statistical Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>EECS 225B</td>
<td>Digital Image Processing</td>
<td>3</td>
</tr>
<tr>
<td>EECS 227AT</td>
<td>Optimization Models in Engineering</td>
<td>4</td>
</tr>
<tr>
<td>EECS 251A</td>
<td>Introduction to Digital Design and Integrated Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EECS 251B</td>
<td>Advanced Digital Integrated Circuits and Systems</td>
<td>4</td>
</tr>
<tr>
<td>EECS 251LA</td>
<td>Introduction to Digital Design and Integrated Circuits Lab</td>
<td>2</td>
</tr>
<tr>
<td>EECS 251LB</td>
<td>Introduction to Digital Design and Integrated Circuits Lab</td>
<td>2</td>
</tr>
<tr>
<td>EECS 151LB</td>
<td>Field-Programmable Gate Array Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>COMPSCI C200A</td>
<td>Principles and Techniques of Data Science</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI C249A</td>
<td>Introduction to Embedded Systems</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 250</td>
<td>VLSI Systems Design</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 252A</td>
<td>Graduate Computer Architecture</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 260A</td>
<td>User Interface Design and Development</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 260B</td>
<td>Human-Computer Interaction Research</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 261</td>
<td>Security in Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 262A</td>
<td>Advanced Topics in Computer Systems</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 262B</td>
<td>Advanced Topics in Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 263</td>
<td>Design of Programming Languages</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 264</td>
<td>Implementation of Programming Languages</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 265</td>
<td>Compiler Optimization and Code Generation</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI C267</td>
<td>Applications of Parallel Computers</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 268</td>
<td>Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 270</td>
<td>Combinatorial Algorithms and Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 271</td>
<td>Randomness and Computation</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 273</td>
<td>Foundations of Parallel Computation</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 274</td>
<td>Computational Geometry</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 276</td>
<td>Cryptography</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI C280</td>
<td>Computer Vision</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI C281A</td>
<td>Statistical Learning Theory</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI C281B</td>
<td>Advanced Topics in Learning and Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 282A</td>
<td>Designing, Visualizing and Understanding Deep Neural Networks</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 284A</td>
<td>Foundations of Computer Graphics</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 284B</td>
<td>Advanced Computer Graphics Algorithms and Techniques</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 285</td>
<td>Deep Reinforcement Learning, Decision Making, and Control</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 286A</td>
<td>Introduction to Database Systems</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 286B</td>
<td>Implementation of Data Base Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 287</td>
<td>Advanced Robotics</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 287H</td>
<td>Algorithmic Human-Robot Interaction</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 288</td>
<td>Natural Language Processing</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 289A</td>
<td>Introduction to Machine Learning</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 294</td>
<td>Special Topics</td>
<td>1-4</td>
</tr>
<tr>
<td>EL ENG 105</td>
<td>Microelectronic Devices and Circuits</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C106A</td>
<td>Introduction to Robotics</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C106B</td>
<td>Robotic Manipulation and Interaction</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 113</td>
<td>Power Electronics</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 117</td>
<td>Electromagnetic Fields and Waves</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 118</td>
<td>Introduction to Optical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 120</td>
<td>Signals and Systems</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 121</td>
<td>Introduction to Digital Communication Systems</td>
<td>4</td>
</tr>
</tbody>
</table>
EL ENG 122 Introduction to Communication Networks 4
EL ENG 123 Digital Signal Processing 4
EL ENG 126 Probability and Random Processes 4
EL ENG C128 Feedback Control Systems 4
EL ENG 130 Integrated-Circuit Devices 4
EL ENG 134 Fundamentals of Photovoltaic Devices 4
EL ENG 137A Introduction to Electric Power Systems 4
EL ENG 137B Introduction to Electric Power Systems 4
EL ENG 140 Linear Integrated Circuits 4
EL ENG 142 Integrated Circuits for Communications 4
EL ENG 143 Microfabrication Technology 4
EL ENG 144 Fundamental Algorithms for Systems Modeling, Analysis, and Optimization
EL ENG C145B Medical Imaging Signals and Systems 4
EL ENG C145L Introductory Electronic Transducers Laboratory 3
EL ENG C145M Introductory Microcomputer Interfacing Laboratory 3
EL ENG 146L Application Specific Integrated Circuits Laboratory 2
EL ENG 147 Introduction to Microelectromechanical Systems (MEMS) 3
EL ENG 192 Mechatronic Design Laboratory 4
COMPSCI 146L Programmable Digital Systems Laboratory 2
COMPSCI 152 Computer Architecture and Engineering 4
COMPSCI 160 User Interface Design and Development 4
COMPSCI 161 Computer Security 4
COMPSCI 162 Operating Systems and System Programming 4
COMPSCI 164 Programming Languages and Compilers 4
COMPSCI 168 Introduction to the Internet: Architecture and Protocols 4
COMPSCI 169 Software Engineering 4
COMPSCI 169A Introduction to Software Engineering 4
COMPSCI 169L Software Engineering Team Project 2
COMPSCI W169# Software Engineering 3
COMPSCI 170 Efficient Algorithms and Intractable Problems 4
COMPSCI 171 Cryptography 4
COMPSCI 172 Computability and Complexity 4
COMPSCI 174 Combinatorics and Discrete Probability 4
COMPSCI 176 Algorithms for Computational Biology 4
COMPSCI 182 Designing, Visualizing and Understanding Deep Neural Networks 4
COMPSCI 184 Foundations of Computer Graphics 4
COMPSCI 186 Introduction to Database Systems 4
COMPSCI W186 Introduction to Database Systems 4
COMPSCI 188 Introduction to Artificial Intelligence 4
COMPSCI 189 Introduction to Machine Learning 4
COMPSCI C191 Quantum Information Science and Technology 3

Plus research units for EECS major
EL ENG 299 Individual Research [1-12]

Plus research units for CS major
COMPSCI 299 Individual Research [1-12]

Advancement to Candidacy

For both Plan I and Plan II, MS students need to complete the EECS Advance to Candidacy form, have their research advisor sign it, and submit the form to the department. Once a student is advanced to candidacy, candidacy is valid for 3 years.

Capstone/Thesis (Plan I)

Students planning to use Plan I for their MS degree will need to follow the Graduate Division’s “Thesis Filing Guidelines.” They will also need to complete the “Graduate Division Advance to Candidacy” form and submit this to the department by no later than the end of the second week of classes of their final semester.

Capstone/Master’s Project (Plan II)

Students planning to use Plan II for their MS Degree will need to produce an MS Plan II Title/Signature Page. A copy of the signature page and abstract should be submitted to the EECS Graduate Student Services staff. There is no special formatting required for the body of the Plan II MS report, as opposed to a Plan I MS thesis which must follow strict Graduate Division guidelines.

Unit Requirements

The minimum number of units to complete the degree is 25 semester units.

Curriculum

Four Graduate Level Classes (two in Fall and two in Spring)

from courses chosen by Master’s Vice Chair

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL ENG 206A</td>
<td>Introduction to Robotics</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 206B</td>
<td>Robotic Manipulation and Interaction</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 210</td>
<td>Applied Electromagnetic Theory</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 213A</td>
<td>Power Electronics</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C213</td>
<td>X-rays and Extreme Ultraviolet Radiation</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 218A</td>
<td>Introduction to Optical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 219A</td>
<td>Numerical Simulation and Modeling</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 219B</td>
<td>Logic Synthesis</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C220A</td>
<td>Advanced Control Systems I</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C220B</td>
<td>Experiential Advanced Control Design I</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C220C</td>
<td>Experiential Advanced Control Design II</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 221A</td>
<td>Linear System Theory</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 222</td>
<td>Nonlinear Systems—Analysis, Stability and Control</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C222</td>
<td>Nonlinear Systems</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 223</td>
<td>Stochastic Systems: Estimation and Control</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 224A</td>
<td>Digital Communications</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 224B</td>
<td>Fundamentals of Wireless Communication</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 225D</td>
<td>Audio Signal Processing in Humans and Machines</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C225E</td>
<td>Principles of Magnetic Resonance Imaging</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 226A</td>
<td>Random Processes in Systems</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 226B</td>
<td>Applications of Stochastic Process Theory</td>
<td>2</td>
</tr>
<tr>
<td>EL ENG 227BA</td>
<td>Convex Optimization</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG C227C</td>
<td>Convex Optimization and Approximation</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG C227T</td>
<td>Introduction to Convex Optimization</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 228A</td>
<td>High Speed Communications Networks</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 229A</td>
<td>Information Theory and Coding</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 229B</td>
<td>Error Control Coding</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 230A</td>
<td>Integrated-Circuit Devices</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 230B</td>
<td>Solid State Devices</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 230C</td>
<td>Solid State Electronics</td>
<td>3</td>
</tr>
</tbody>
</table>
EL ENG 232 Lightwave Devices 4
EL ENG C235 Nanoscale Fabrication 4
EL ENG 236A Quantum and Optical Electronics 3
EL ENG 239 Partially Ionized Plasmas 3
EL ENG 240A Analog Integrated Circuits 4
EL ENG 240B Advanced Analog Integrated Circuits 4
EL ENG 240C Analysis and Design of VLSI Analog-Digital Interface Integrated Circuits 3
EL ENG W241A Introduction to Digital Integrated Circuits 4
EL ENG 241B Advanced Digital Integrated Circuits 3
EL ENG W241B Advanced Digital Integrated Circuits 3
EL ENG 242A Integrated Circuits for Communications 4
EL ENG 242B Advanced Integrated Circuits for Communications 3
EL ENG W242A Integrated Circuits for Communications 4
EL ENG W242B Advanced Integrated Circuits for Communications 3
EL ENG 243 Advanced IC Processing and Layout 3
EL ENG 244 Fundamental Algorithms for Systems Modeling, Analysis, and Optimization 4
EL ENG W244 Fundamental Algorithms for System Modeling, Analysis, and Optimization 4
EL ENG 247A Introduction to Microelectromechanical Systems (MEMS) 3
EL ENG C247B Introduction to MEMS Design 4
EL ENG 248C Numerical Modeling and Analysis: Nonlinear Systems and Noise 4
EL ENG C249A Introduction to Embedded Systems 4
EL ENG C249B Embedded System Design: Modeling, Analysis, and Synthesis 4
EL ENG 261 Medical Imaging Signals and Systems 4
EL ENG 290 Advanced Topics in Electrical Engineering 1-4
EL ENG C291 Control and Optimization of Distributed Parameters Systems 3
EL ENG C291E Hybrid Systems and Intelligent Control 3
EECS C206A Introduction to Robotics 4
EECS C206B Robotic Manipulation and Interaction 4
EECS 208 Computational Principles for High-dimensional Data Analysis 4
EECS 219C Formal Methods: Specification, Verification, and Synthesis 3
EECS 225A Statistical Signal Processing 3
EECS 225B Digital Image Processing 3
EECS 227AT Optimization Models in Engineering 4
EECS 251A Introduction to Digital Design and Integrated Circuits 3
EECS 251B Advanced Digital Integrated Circuits and Systems 4
EECS 251LA Introduction to Digital Design and Integrated Circuits Lab 2
EECS 251LB Introduction to Digital Design and Integrated Circuits Lab 2
COMPSCI C200A Principles and Techniques of Data Science 4
COMPSCI C249A Introduction to Embedded Systems 4
COMPSCI 250 VLSI Systems Design 4
COMPSCI 252A Graduate Computer Architecture 4
COMPSCI 260A User Interface Design and Development 4
COMPSCI 260B Human-Computer Interaction Research 3
COMPSCI 261 Security in Computer Systems 3
COMPSCI 262A Advanced Topics in Computer Systems 4
COMPSCI 262B Advanced Topics in Computer Systems 3
COMPSCI 263 Design of Programming Languages 3
COMPSCI 264 Implementation of Programming Languages 4
COMPSCI 265 Compiler Optimization and Code Generation 3
COMPSCI C267 Applications of Parallel Computers 3
COMPSCI 268 Computer Networks 3
COMPSCI 270 Combinatorial Algorithms and Data Structures 3
COMPSCI 271 Randomness and Computation 3
COMPSCI 273 Foundations of Parallel Computation 3
COMPSCI 274 Computational Geometry 3
COMPSCI 276 Cryptography 3
COMPSCI C280 Computer Vision 3
COMPSCI C281A Statistical Learning Theory 3
COMPSCI C281B Advanced Topics in Learning and Decision Making 3
COMPSCI 282A Designing, Visualizing and Understanding Deep Neural Networks 4
COMPSCI 284A Foundations of Computer Graphics 4
COMPSCI 284B Advanced Computer Graphics Algorithms and Techniques 4
COMPSCI 285 Deep Reinforcement Learning, Decision Making, and Control 3
COMPSCI 286A Introduction to Database Systems 4
COMPSCI 286B Implementation of Data Base Systems 3
COMPSCI 287 Advanced Robotics 3
COMPSCI 287H Algorithmic Human-Robot Interaction 4
COMPSCI 288 Natural Language Processing 4
COMPSCI 289A Introduction to Machine Learning 4
COMPSCI 294 Special Topics 1-4

Six units of Engineering 270 (1 Units each) — ENGIN 270 AB and C in Fall and three more in Spring
ENGIN 270A Organizational Behavior for Engineers 1
ENGIN 270B R&D Technology Management & Ethics 1
ENGIN 270C Team & Project Management 1
ENGIN 270D Entrepreneurship for Engineers 1
ENGIN 270E Technology Strategy & Industry Analysis 1
ENGIN 270F Data Analytics 1
ENGIN 270G Marketing & Product Management 1
ENGIN 270H Accounting & Finance for Engineers 1
ENGIN 270I Technology Strategy for Engineering Leaders 1
ENGIN 270J Industry Analysis for Engineering Leaders 1
ENGIN 270K Coaching for High Performance Teams 1
ENGIN 270L Global Leadership Expertise 1
ENGIN 270M Professional Ethics in Technology, Law and Business 1
ENGIN 270N Innovation Management 1
ENGIN 270P Power and Persuasion for Engineering Leadership 1

Plus 4–5 Units of Capstone Project
ENGIN 296MA Master of Engineering Capstone Project 1-12
ENGIN 296MB Master of Engineering Capstone Project 1-5
Capstone/Master's Project (Plan II)

Students will join a team of three to five students, working on a specific problem or opportunity that can be addressed by technology and gaining direct experience in applying the skills learned in leadership courses.

Select a subject to view courses

- Electrical Engineering and Computer Sciences (p. 9)
- Computer Science (p. 13)
- Electrical Engineering (p. 26)

Electrical Engineering and Computer Sciences

EECS C206A Introduction to Robotics 4 Units

Terms offered: Fall 2022

This course is an introduction to the field of robotics. It covers the fundamentals of kinematics, dynamics, control of robot manipulators, robotic vision, sensing, forward & inverse kinematics of serial chain manipulators, the manipulator Jacobian, force relations, dynamics, & control. We will present techniques for geometric motion planning & obstacle avoidance. Open problems in trajectory generation with dynamic constraints will also be discussed. The course also presents the use of the same analytical techniques as manipulation for the analysis of images & computer vision. Low level vision, structure from motion, & an introduction to vision & learning will be covered. The course concludes with current applications of robotics.

Introduction to Robotics: Read More [+]

Rules & Requirements

Prerequisites: Familiarity with linear algebra at level of EECS 16A/EECS 16B or MATH 54. Experience doing coding in python at the level of COMPSCI 61A. Preferred: experience developing software at level of COMPSCI 61B and experience using Linux. EECS 120 is not required, but some knowledge of linear systems may be helpful for the control of robots.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engin and Computer Sci/Graduate

Grading: Letter grade.

Instructors: Sastry, Sreenath

Formerly known as: Electrical Engin and Computer Sci 206A

Also listed as: MEC ENG C206A

EECS C206B Robotic Manipulation and Interaction 4 Units

Terms offered: Not yet offered

This course is a sequel to EECS C106A/206A, which covers kinematics, dynamics and control of a single robot. This course will cover dynamics and control of groups of robotic manipulators coordinating with each other and interacting with the environment. Concepts will include an introduction to grasping and the constrained manipulation, contacts and force control for interaction with the environment. We will also cover active perception guided manipulation, as well as the manipulation of non-rigid objects. Throughout, we will emphasize design and human-robot interactions, and applications to applications in manufacturing, service robotics, tele-surgery, and locomotion.

Robotic Manipulation and Interaction: Read More [+]

Rules & Requirements

Prerequisites: Students are expected to have taken EECS C106A / BioE C106A / ME C106A / ME C206A/ EECS C206A or an equivalent course. A strong programming background, knowledge of Python and Matlab, and some coursework in feedback controls (such as EE C128 / ME C134) are also useful. Students who have not taken EECS C106A / BioE C106A / ME C106A / ME C206A/ EECS C206A should have a strong programming background, knowledge of Python and Matlab, and exposure to linear algebra, and Lagrangian dynamics.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engin and Computer Sci/Graduate

Grading: Letter grade.

Instructors: Bajcsy, Sastry

Formerly known as: Electrical Engin and Computer Sci 206B

Also listed as: MEC ENG C206B

Robotic Manipulation and Interaction: Read Less [-]
EECS 208 Computational Principles for High-dimensional Data Analysis 4 Units
Terms offered: Fall 2022, Fall 2021
Introduction to fundamental geometric and statistical concepts and principles of low-dimensional models for high-dimensional signal and data analysis, spanning basic theory, efficient algorithms, and diverse real-world applications. Systematic study of both sampling complexity and computational complexity for sparse, low-rank, and low-dimensional models – including important cases such as matrix completion, robust principal component analysis, dictionary learning, and deep networks. Computational Principles for High-dimensional Data Analysis: Read More [+]
Rules & Requirements
Prerequisites: The following courses are recommended undergraduate linear algebra (Math 110), statistics (Stat 134), and probability (EE126). Background in signal processing (ELENG 123), optimization (ELENG C227T), machine learning (CS189/289), and computer vision (COMPSCI C280) may allow you to appreciate better certain aspects of the course material, but not necessary all at once. The course is open to senior undergraduates, with consent from the instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Electrical Engin and Computer Sci/Graduate
Grading: Letter grade.
Instructor: Ma
Computational Principles for High-dimensional Data Analysis: Read Less [-]

EECS 219C Formal Methods: Specification, Verification, and Synthesis 3 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020
Introduction to the theory and practice of formal methods for the design and analysis of systems, with a focus on algorithmic techniques. Covers selected topics in computational logic and automata theory including modeling and specification formalisms, temporal logics, satisfiability solving, model checking, synthesis, learning, and theorem proving. Applications to software and hardware design, cyber-physical systems, robotics, computer security, and other areas will be explored as time permits.
Formal Methods: Specification, Verification, and Synthesis: Read More [+]
Rules & Requirements
Prerequisites: Graduate standing or consent of instructor; COMPSCI 170 is recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Electrical Engin and Computer Sci/Graduate
Grading: Letter grade.
Instructor: Seshia
Formerly known as: Electrical Engineering 219C
Formal Methods: Specification, Verification, and Synthesis: Read Less [-]

EECS 225A Statistical Signal Processing 3 Units
Terms offered: Fall 2021, Fall 2020, Spring 2020
This course connects classical statistical signal processing (Hilbert space filtering theory by Wiener and Kolmogorov, state space model, signal representation, detection and estimation, adaptive filtering) with modern statistical and machine learning theory and applications. It focuses on concrete algorithms and combines principled theoretical thinking with real applications.
Statistical Signal Processing: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 120 and EECS 126
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Electrical Engin and Computer Sci/Graduate
Grading: Letter grade.
Instructors: Jiao, Waller
Formerly known as: Electrical Engineering 225A
Statistical Signal Processing: Read Less [-]
EECS 225B Digital Image Processing 3 Units

Terms offered: Fall 2022, Fall 2020, Spring 2020

This course deals with computational methods as applied to digital imagery. It focuses on image sensing and acquisition, image sampling and quantization; spatial transformation, linear and nonlinear filtering; introduction to convolutional neural networks, and GANs; applications of deep learning methods to image processing problems; image enhancement, histogram equalization, image restoration, Weiner filtering, tomography, image reconstruction from projections and partial Fourier information, Radon transform, multiresolution analysis, continuous and discrete wavelet transform and computation, subband coding, image and video compression, sparse signal approximation, dictionary techniques, image and video compression standards, and more. Digital Image Processing: Read More [+]

Rules & Requirements

Prerequisites: Basic knowledge of signals and systems, convolution, and Fourier Transform

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Electrical Engin and Computer Sci/Graduate

Grading: Letter grade.

Instructor: Zakhor

Formerly known as: Electrical Engineering 225B

Digital Image Processing: Read Less [-]

EECS 227AT Optimization Models in Engineering 4 Units

Terms offered: Fall 2022, Spring 2022, Fall 2021

This course offers an introduction to optimization models and their applications, ranging from machine learning and statistics to decision-making and control, with emphasis on numerically tractable problems, such as linear or constrained least-squares optimization. Optimization Models in Engineering: Read More [+]

Rules & Requirements

Prerequisites: MATH 54 or consent of instructor

Credit Restrictions: Students will receive no credit for EECS 227AT after taking EECS 127 or Electrical Engineering 127/227AT.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Electrical Engin and Computer Sci/Graduate

Grading: Letter grade.

Instructor: El Ghaoui

Formerly known as: Electrical Engineering 227AT

Optimization Models in Engineering: Read Less [-]

EECS 251A Introduction to Digital Design and Integrated Circuits 3 Units

Terms offered: Fall 2022, Spring 2022, Fall 2021

An introduction to digital circuit and system design. The material provides a top-down view of the principles, components, and methodologies for large scale digital system design. The underlying CMOS devices and manufacturing technologies are introduced, but quickly abstracted to higher levels to focus the class on design of larger digital modules for both FGPs (field programmable gate arrays) and ASICs (application specific integrated circuits). The class includes extensive use of industrial grade design automation and verification tools for assignments, labs, and projects. Introduction to Digital Design and Integrated Circuits: Read More [+]

Objectives & Outcomes

Course Objectives: The Verilog hardware description language is introduced and used. Basic digital system design concepts, Boolean operations/combinational logic, sequential elements and finite-state-machines, are described. Design of larger building blocks such as arithmetic units, interconnection networks, input/output units, as well as memory design (SRAM, Caches, FIFOs) and integration are also covered. Parallelism, pipelining and other micro-architectural optimizations are introduced. A number of physical design issues visible at the architecture level are covered as well, such as interconnects, power, and reliability.

Student Learning Outcomes: Although the syllabus is the same as EECS151, the assignments and exams for EECS251A will have harder problems that test deeper understanding expected from a graduate level course.

Rules & Requirements

Prerequisites: EECS 16A and EECS 16B; COMPSCI 61C; and recommended: EL ENG 105. Students must enroll concurrently in at least one the laboratory flavors EECS 251A or EECS 251B. Students wishing to take a second laboratory flavor next term can sign-up only for that laboratory section and receive a letter grade. The prerequisite for “Lab-only” enrollment that term will be EECS 251A from previous terms

Credit Restrictions: Students must enroll concurrently in at least one the laboratory flavors Electrical Engineering and Computer Science 251LA or Electrical Engineering and Computer Science 251LB. Students wishing to take a second laboratory flavor next term can sign-up only for that laboratory section and receive a letter grade. The pre-requisite for “Lab-only” enrollment that term will be Electrical Engineering and Computer Science 251A from previous terms.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Electrical Engin and Computer Sci/Graduate

Grading: Letter grade.

Instructors: Stojanovic, Wawrzynek

Formerly known as: Electrical Engineering 241A

Introduction to Digital Design and Integrated Circuits: Read Less [-]
EECS 251B Advanced Digital Integrated Circuits and Systems 4 Units
Terms offered: Spring 2022
This course aims to convey a knowledge of advanced concepts of digital circuit and system-on-a-chip design in state-of-the-art technologies. Emphasis is on the circuit and system design and optimization for both energy efficiency and high performance for use in a broad range of applications, from edge computing to datacenters. Special attention will be devoted to the most important challenges facing digital circuit designers in the coming decade. The course is accompanied with practical laboratory exercises that introduce students to modern tool flows.

Rules & Requirements

Prerequisites: Introduction to Digital Design and Integrated Circuits, EECS151 (taken with either EECS151LA or EECS151LB lab) or EECS251A (taken with either EECS251LA or EECS251LB lab)

Credit Restrictions: Students will receive no credit for EECS 251B after completing COMPSCI 250, or EL ENG 241B.

Hours & Format

Fall and/or spring: 15 weeks - 4 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Electrical Engin and Computer Sci/Graduate

Grading: Letter grade.

Instructors: Nikoli#, Shao, Wawrzynek, Asanovi#, Stojanovic#, Seshia

Advanced Digital Integrated Circuits and Systems: Read More [+]

EECS 251LA Introduction to Digital Design and Integrated Circuits Lab 2 Units
Terms offered: Fall 2022, Spring 2022, Fall 2021
This lab lays the foundation of modern digital design by first presenting the scripting and hardware description language base for specification of digital systems and interactions with tool flows. The labs are centered on a large design with the focus on rapid design space exploration. The lab exercises culminate with a project design, e.g. implementation of a 3-stage RISC-V processor with a register file and caches. The design is mapped to simulation and layout specification.

Objectives & Outcomes

Course Objectives: Software testing of digital designs is covered leading to a set of exercises that cover the design flow. Digital synthesis, floor-planning, placement and routing are covered, as well as tools to evaluate timing and power consumption. Chip-level assembly is covered, including instantiation of custom blocks: I/O pads, memories, PLLs, etc.

Student Learning Outcomes: Although the syllabus is the same as EECS151LA, the assignments and exams for EECS251LA will have harder problems in labs and in the project that test deeper understanding expected from a graduate level course.

Rules & Requirements

Prerequisites: EECS 16A, EECS 16B, and COMPSCI 61C; and EL ENG 105 is recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engin and Computer Sci/Graduate

Grading: Letter grade.

Instructors: Stojanovic, Wawrzynek

Introduction to Digital Design and Integrated Circuits Lab: Read Less [-]
EECS 251LB Introduction to Digital Design and Integrated Circuits Lab 2 Units

Terms offered: Fall 2022, Spring 2022, Fall 2021

This lab covers the design of modern digital systems with Field-Programmable Gate Array (FPGA) platforms. A series of lab exercises provide the background and practice of digital design using a modern FPGA design tool flow. Digital synthesis, partitioning, placement, routing, and simulation tools for FPGAs are covered in detail. The labs exercises culminate with a large design project, e.g., an implementation of a full 3-stage RISC-V processor system, with caches, graphics acceleration, and external peripheral components. The design is mapped and demonstrated on an FPGA hardware platform.

Student Learning Outcomes: Although the syllabus is the same as EECS151LB, the assignments and exams for EECS251LB will have harder problems in labs and in the project that test deeper understanding expected from a graduate level course.

Rules & Requirements

Prerequisites: EECS 16A, EECS 16B, and COMPSCI 61C; and EL ENG 105 is recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engin and Computer Sci/Graduate

Grading: Letter grade.

Instructors: Stojanovic, Wawrzynek

Introduction to Digital Design and Integrated Circuits Lab: Read More [+]

Objectives & Outcomes

COMPSCI C200A Principles and Techniques of Data Science 4 Units

Terms offered: Fall 2022, Spring 2022, Fall 2021, Spring 2021, Spring 2020

Explores the data science lifecycle: question formulation, data collection and cleaning, exploratory, analysis, visualization, statistical inference, prediction, and decision-making. Focuses on quantitative critical thinking and key principles and techniques: languages for transforming, querying and analyzing data; algorithms for machine learning methods: regression, classification and clustering; principles of informative visualization; measurement error and prediction; and techniques for scalable data processing. Research term project.

Principles and Techniques of Data Science: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI C8 / INFO C8 / STAT C8 or ENGIN 7; and either COMPSCI 61A or COMPSCI 88. Corequisites: MATH 54 or EECS 16A

Credit Restrictions: Students will receive no credit for DATA C200/COMPSCI C200A/STAT C200C after completing DATA C100.

Hours & Format

Fall and/or spring:
8 weeks - 6 hours of lecture, 2 hours of discussion, and 2 hours of laboratory per week
15 weeks - 3 hours of lecture, 1 hour of discussion, and 1 hour of laboratory per week

Summer: 8 weeks - 6 hours of lecture, 2 hours of discussion, and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Computer Science/Graduate

Grading: Letter grade.

Formerly known as: Statistics C200C/Computer Science C200A

Also listed as: DATA C200/STAT C200C

Principles and Techniques of Data Science: Read Less [-]
COMPSCI C249A Introduction to Embedded Systems 4 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020
This course introduces students to the basics of models, analysis tools, and control for embedded systems operating in real time. Students learn how to combine physical processes with computation. Topics include models of computation, control, analysis and verification, interfacing with the physical world, mapping to platforms, and distributed embedded systems. The course has a strong laboratory component, with emphasis on a semester-long sequence of projects.
Introduction to Embedded Systems: Read More [+]

Rules & Requirements
Credit Restrictions: Students will receive no credit for Electrical Engineering/Computer Science C249A after completing Electrical Engineering/Computer Science C149.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructors: Lee, Seshia
Formerly known as: Electrical Engineering C249M/Computer Science C249M
Also listed as: EL ENG C249A

Introduction to Embedded Systems: Read Less [-]

COMPSCI 250 VLSI Systems Design 4 Units
Terms offered: Fall 2020, Spring 2017, Spring 2016
Unified top-down and bottom-up design of integrated circuits and systems concentrating on architectural and topological issues. VLSI architectures, systolic arrays, self-timed systems. Trends in VLSI development. Physical limits. Tradeoffs in custom-design, standard cells, gate arrays. VLSI design tools.
VLSI Systems Design: Read More [+]

Rules & Requirements
Prerequisites: COMPSCI 150

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 4 hours of laboratory per week

Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructor: Wawrzynek

Formerly known as: Computer Science 252
Graduate Computer Architecture: Read Less [-]

COMPSCI 252A Graduate Computer Architecture 4 Units
Terms offered: Spring 2022, Spring 2021
Graduate survey of contemporary computer organizations covering: early systems, CPU design, instruction sets, control, processors, busses, ALU, memory, I/O interfaces, connection networks, virtual memory, pipelined computers, multiprocessors, and case studies. Term paper or project is required.
Graduate Computer Architecture: Read More [+]

Rules & Requirements
Prerequisites: COMPSCI 61C

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of discussion per week

Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructors: Asanović, Kubiatowicz

Formerly known as: Computer Science 252
Graduate Computer Architecture: Read Less [-]

COMPSCI 260A User Interface Design and Development 4 Units
Terms offered: Fall 2020, Spring 2020, Fall 2019
The design, implementation, and evaluation of user interfaces. User-centered design and task analysis. Conceptual models and interface metaphors. Usability inspection and evaluation methods. Analysis of user study data. Input methods (keyboard, pointing, touch, tangible) and input models. Visual design principles. Interface prototyping and implementation methodologies and tools. Students will develop a user interface for a specific task and target user group in teams.
User Interface Design and Development: Read More [+]

Rules & Requirements
Prerequisites: COMPSCI 61B, COMPSCI 61BL, or consent of instructor
Credit Restrictions: Students will receive no credit for Computer Science 260A after taking Computer Science 160.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructors: Agrawala, Canny, Hartmann

User Interface Design and Development: Read Less [-]
COMPSCI 260B Human-Computer Interaction Research 3 Units
Terms offered: Fall 2017
This course is a broad introduction to conducting research in Human-Computer Interaction. Students will become familiar with seminal and recent literature; learn to review and critique research papers; re-implement and evaluate important existing systems; and gain experience in conducting research. Topics include input devices, computer-supported cooperative work, crowdsourcing, design tools, evaluation methods, search and mobile interfaces, usable security, help and tutorial systems.

Rules & Requirements
Prerequisites: COMPSCI 160 recommended, or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

COMPSCI 261 Security in Computer Systems 3 Units
Terms offered: Spring 2021, Fall 2018, Fall 2017
Graduate survey of modern topics in computer security, including protection, access control, distributed access security, firewalls, secure coding practices, safe languages, mobile code, and case studies from real-world systems. May also cover cryptographic protocols, privacy and anonymity, and/or other topics as time permits.

Rules & Requirements
Prerequisites: COMPSCI 162 or equivalent; and COMPSCI 161 or familiarity with basic security concepts

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

COMPSCI 261N Internet and Network Security 4 Units
Terms offered: Spring 2020, Fall 2016, Spring 2015
Develops a thorough grounding in Internet and network security suitable for those interested in conducting research in the area or those more broadly interested in security or networking. Potential topics include denial-of-service; capabilities; network intrusion detection/prevention; worms; forensics; scanning; traffic analysis; legal issues; web attacks; anonymity; wireless and networked devices; honeypots; botnets; scams; underground economy; attacker infrastructure; research pitfalls.

Rules & Requirements
Prerequisites: EL ENG 122 or equivalent; and COMPSCI 161 or familiarity with basic security concepts

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

COMPSCI 262A Advanced Topics in Computer Systems 4 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020
Graduate survey of systems for managing computation and information, covering a breadth of topics: early systems; volatile memory management, including virtual memory and buffer management; persistent memory systems, including both file systems and transactional storage managers; storage metadata, physical vs. logical naming, schemas, process scheduling, threading and concurrency control; system support for networking, including remote procedure calls, transactional RPC, TCP, and active messages; security infrastructure; extensible systems and APIs; performance analysis and engineering of large software systems. Homework assignments, exam, and term paper or project required.

Rules & Requirements
Prerequisites: COMPSCI 162 and entrance exam

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
COMPSCI 262B Advanced Topics in Computer Systems 3 Units
Terms offered: Spring 2020, Spring 2009, Fall 2008
Continued graduate survey of large-scale systems for managing information and computation. Topics include basic performance measurement; extensibility, with attention to protection, security, and management of abstract data types; index structures, including support for concurrency and recovery; parallelism, including parallel architectures, query processing and scheduling; distributed data management, including distributed and mobile file systems and databases; distributed caching; large-scale data analysis and search. Homework assignments, exam, and term paper or project required.
Advanced Topics in Computer Systems: Read More [+]
Rules & Requirements
Prerequisites: COMPSCI 262A

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructors: Brewer, Culler, Hellerstein, Joseph

Advanced Topics in Computer Systems: Read Less [-]

COMPSCI 263 Design of Programming Languages 3 Units
Terms offered: Fall 2021, Fall 2019, Spring 2019
Selected topics from: analysis, comparison, and design of programming languages, formal description of syntax and semantics, advanced programming techniques, structured programming, debugging, verification of programs and compilers, and proofs of correctness. Design of Programming Languages: Read More [+]
Rules & Requirements
Prerequisites: COMPSCI 164

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructor: Necula
Design of Programming Languages: Read Less [-]
COMPSCI C267 Applications of Parallel Computers 3 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020
Applications of Parallel Computers: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of laboratory per week

Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructors: Demmel, Yelick
Also listed as: ENGIN C233

Applications of Parallel Computers: Read Less [-]

COMPSCI W267 Applications of Parallel Computers 3 Units
Terms offered: Prior to 2007
Parallel programming, from laptops to supercomputers to the cloud. Goals include writing programs that run fast while minimizing programming effort. Parallel architectures and programming languages and models, including shared memory (eg OpenMP on your multicore laptop), distributed memory (MPI and UPC on a supercomputer), GPUs (CUDA and OpenCL), and cloud (MapReduce, Hadoop and Spark). Parallel algorithms and software tools for common computations (eg dense and sparse linear algebra, graphs, structured grids). Tools for load balancing, performance analysis, debugging. How high level applications are built (eg climate modeling). On-line lectures and office hours.

Applications of Parallel Computers: Read More [+]

Objectives & Outcomes
Student Learning Outcomes:
An understanding of computer architectures at a high level, in order to understand what can and cannot be done in parallel, and the relative costs of operations like arithmetic, moving data, etc.
To master parallel programming languages and models for different computer architectures
To recognize programming "patterns" to use the best available algorithms and software to implement them.
To understand sources of parallelism and locality in simulation in designing fast algorithms

Rules & Requirements
Prerequisites: Computer Science W266 or the consent of the instructor
Credit Restrictions: Students will receive no credit for Computer Science W267 after completing Computer Science C267.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of web-based lecture per week
Online: This is an online course.

Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructors: Demmel, Yelick

Applications of Parallel Computers: Read Less [-]
COMPSCI 268 Computer Networks 3 Units
Terms offered: Spring 2021, Spring 2019, Spring 2016
Distributed systems, their motivations, applications, and organization.
The network component. Network architectures. Local and long-haul
networks, technologies, and topologies. Data link, network, and transport
protocols. Point-to-point and broadcast networks. Routing and congestion
control. Higher-level protocols. Naming. Internetworking. Examples and
case studies.
Computer Networks: Read More [+]

Rules & Requirements
Prerequisites: COMPSCI 162

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructors: Joseph, Katz, Stoica
Formerly known as: 292V

Computer Networks: Read Less [-]

COMPSCI 270 Combinatorial Algorithms and Data Structures 3 Units
Terms offered: Spring 2021, Spring 2019, Spring 2017
Design and analysis of efficient algorithms for combinatorial problems.
Network flow theory, matching theory, matroid theory; augmenting-path
algorithms; branch-and-bound algorithms; data structure techniques for
efficient implementation of combinatorial algorithms; analysis of data
structures; applications of data structure techniques to sorting, searching,
and geometric problems.
Combinatorial Algorithms and Data Structures: Read More [+]

Rules & Requirements
Prerequisites: COMPSCI 170

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of
discussion per week

Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructors: Papadimitriou, Rao, Sinclair, Vazirani

Combinatorial Algorithms and Data Structures: Read Less [-]

COMPSCI 271 Randomness and Computation 3 Units
Terms offered: Fall 2022, Spring 2020, Spring 2018
Computational applications of randomness and computational theories
of randomness. Approximate counting and uniform generation of
combinatorial objects, rapid convergence of random walks on expander
graphs, explicit construction of expander graphs, randomized reductions,
Kolmogorov complexity, pseudo-random number generation, semi-
random sources.
Randomness and Computation: Read More [+]

Rules & Requirements
Prerequisites: COMPSCI 170 and at least one course from the following:
COMPSCI 270 - COMPSCI 279

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructor: Sinclair

Randomness and Computation: Read Less [-]

COMPSCI 273 Foundations of Parallel Computation 3 Units
Terms offered: Spring 2012, Fall 2010, Spring 2009
Fundamental theoretical issues in designing parallel algorithms and
architectures. Shared memory models of parallel computation. Parallel
algorithms for linear algebra, sorting, Fourier Transform, recurrence
evaluation, and graph problems. Interconnection network based models.
Algorithm design techniques for networks like hypercubes, shuffle-
exchanges, threes, meshes and butterfly networks. Systolic arrays and
techniques for generating them. Message routing.
Foundations of Parallel Computation: Read More [+]

Rules & Requirements
Prerequisites: COMPSCI 170, or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructor: Rao

Foundations of Parallel Computation: Read Less [-]
COMPSCI 274 Computational Geometry 3 Units
Terms offered: Spring 2019, Spring 2017, Spring 2015
Constructive problems in computational geometry: convex hulls, triangulations, Voronoi diagrams, arrangements of hyperplanes; relationships among these problems. Search problems: advanced data structures; subdivision search; various kinds of range searches. Models of computation; lower bounds.
Computational Geometry: Read More [+]

Rules & Requirements
Prerequisites: COMPSCI 170
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructor: Shewchuk
Computational Geometry: Read Less [-]

COMPSCI 276 Cryptography 3 Units
Terms offered: Fall 2020, Fall 2018, Fall 2017
Graduate survey of modern topics on theory, foundations, and applications of modern cryptography. One-way functions; pseudorandomness; encryption; authentication; public-key cryptosystems; notions of security. May also cover zero-knowledge proofs, multi-party cryptographic protocols, practical applications, and/or other topics, as time permits.
Cryptography: Read More [+]

Rules & Requirements
Prerequisites: COMPSCI 170
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructors: Trevisan, Wagner
Cryptography: Read Less [-]

COMPSCI C280 Computer Vision 3 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020
Computer Vision: Read More [+]

Rules & Requirements
Prerequisites: MATH 1A; MATH 1B; MATH 53; and MATH 54 (Knowledge of linear algebra and calculus)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructor: Malik
Also listed as: VIS SCI C280
Computer Vision: Read Less [-]

COMPSCI C281A Statistical Learning Theory 3 Units
Terms offered: Fall 2021, Fall 2020, Fall 2019
Classification regression, clustering, dimensionality, reduction, and density estimation. Mixture models, hierarchical models, factorial models, hidden Markov, and state space models, Markov properties, and recursive algorithms for general probabilistic inference nonparametric methods including decision trees, kernal methods, neural networks, and wavelets. Ensemble methods.
Statistical Learning Theory: Read More [+]

Rules & Requirements
Prerequisites: COMPSCI 170
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructors: Bartlett, Jordan, Wainwright
Also listed as: STAT C241A
Statistical Learning Theory: Read Less [-]
COMPSCI C281B Advanced Topics in Learning and Decision Making 3 Units
Terms offered: Spring 2022, Spring 2017, Spring 2016
Advanced Topics in Learning and Decision Making: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructors: Bartlett, Jordan, Wainwright
Also listed as: STAT C241B

Advanced Topics in Learning and Decision Making: Read Less [-]

COMPSCI 282A Designing, Visualizing and Understanding Deep Neural Networks 4 Units
Terms offered: Fall 2022, Spring 2022, Spring 2021
Deep Networks have revolutionized computer vision, language technology, robotics and control. They have growing impact in many other areas of science and engineering. They do not however, follow a closed or compact set of theoretical principles. In Yann LeCun's words they require "an interplay between intuitive insights, theoretical modeling, practical implementations, empirical studies, and scientific analyses."
This course attempts to cover that ground.
Designing, Visualizing and Understanding Deep Neural Networks: Read More [+]

Objectives & Outcomes
Student Learning Outcomes: Students will come to understand visualizing deep networks. Exploring the training and use of deep networks with visualization tools.
Students will learn design principles and best practices: design motifs that work well in particular domains, structure optimization and parameter optimization.
Understanding deep networks. Methods with formal guarantees: generative and adversarial models, tensor factorization.

Rules & Requirements
Prerequisites: MATH 53 and MATH 54 or equivalent; COMPSCI 70 or STAT 134; COMPSCI 61B or equivalent; COMPSCI 189 or COMPSCI 289A (recommended)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructor: Canny

Designing, Visualizing and Understanding Deep Neural Networks: Read Less [-]
COMPSCI 284A Foundations of Computer Graphics 4 Units

Terms offered: Spring 2022, Spring 2021, Spring 2020
Techniques of modeling objects for the purpose of computer rendering: boundary representations, constructive solids geometry, hierarchical scene descriptions. Mathematical techniques for curve and surface representation. Basic elements of a computer graphics rendering pipeline; architecture of modern graphics display devices. Geometrical transformations such as rotation, scaling, translation, and their matrix representations. Homogeneous coordinates, projective and perspective transformations.
Foundations of Computer Graphics: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 61B or COMPSCI 61BL; programming skills in C, C++, or Java; linear algebra and calculus; or consent of instructor

Credit Restrictions: Students will receive no credit for Computer Science 284A after taking 184.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructors: Agrawala, Barsky, O’Brien, Ramamoorthi, Sequin

Foundations of Computer Graphics: Read Less [-]

COMPSCI 284B Advanced Computer Graphics Algorithms and Techniques 4 Units

Terms offered: Spring 2022, Spring 2019, Spring 2017
This course provides a graduate-level introduction to advanced computer graphics algorithms and techniques. Students should already be familiar with basic concepts such as transformations, scan-conversion, scene graphs, shading, and light transport. Topics covered in this course include global illumination, mesh processing, subdivision surfaces, basic differential geometry, physically based animation, inverse kinematics, imaging and computational photography, and precomputed light transport.
Advanced Computer Graphics Algorithms and Techniques: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 184

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Computer Science/Graduate
Grading: Letter grade.
Instructors: O’Brien, Ramamoorthi

Formerly known as: Computer Science 283

Advanced Computer Graphics Algorithms and Techniques: Read Less [-]
COMPSCI 285 Deep Reinforcement Learning, Decision Making, and Control 3 Units

Terms offered: Fall 2022, Fall 2021, Fall 2020

Intersection of control, reinforcement learning, and deep learning. Deep learning methods, which train large parametric function approximators, achieve excellent results on problems that require reasoning about unstructured real-world situations (e.g., computer vision, speech recognition, NLP). Advanced treatment of the reinforcement learning formalism, the most critical model-free reinforcement learning algorithms (policy gradients, value function and Q-function learning, and actor-critic), a discussion of model-based reinforcement learning algorithms, an overview of imitation learning, and a range of advanced topics (e.g., exploration, model-based learning with video prediction, transfer learning, multi-task learning, and meta-learning).

Deep Reinforcement Learning, Decision Making, and Control: Read More [+]

Objectives & Outcomes

Student Learning Outcomes: Provide an opportunity to embark on a research-level final project with support from course staff.

- Provide hands-on experience with several commonly used RL algorithms;
- Provide students with an overview of advanced deep reinforcement learning topics, including current research trends;
- Provide students with foundational knowledge to understand deep reinforcement learning algorithms;

Rules & Requirements

Prerequisites: COMPSCI 189 or COMPSCI 289A or equivalent

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Computer Science/Graduate

Grading: Letter grade.

Instructors: Levine, Abbeel

Deep Reinforcement Learning, Decision Making, and Control: Read Less [-]

COMPSCI 286A Introduction to Database Systems 4 Units

Terms offered: Spring 2018, Fall 2017, Spring 2017

Access methods and file systems to facilitate data access. Hierarchical, network, relational, and object-oriented data models. Query languages for models. Embedding query languages in programming languages. Database services including protection, integrity control, and alternative views of data. High-level interfaces including application generators, browsers, and report writers. Introduction to transaction processing. Database system implementation to be done as term project.

Introduction to Database Systems: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 61B and COMPSCI 61C

Credit Restrictions: Students will receive no credit for CS 286A after taking CS 186.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Computer Science/Graduate

Grading: Letter grade.

Instructors: Franklin, Hellerstein

Introduction to Database Systems: Read Less [-]

COMPSCI 286B Implementation of Data Base Systems 3 Units

Terms offered: Spring 2020, Fall 2014

Implementation of data base systems on modern hardware systems. Considerations concerning operating system design, including buffering, page size, prefetching, etc. Query processing algorithms, design of crash recovery and concurrency control systems. Implementation of distributed data bases and data base machines.

Implementation of Data Base Systems: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 162 and COMPSCI 186; or COMPSCI 286A

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Computer Science/Graduate

Grading: Letter grade.

Instructors: Franklin, Hellerstein

Implementation of Data Base Systems: Read Less [-]
COMPSCI 287 Advanced Robotics 3 Units
Terms offered: Fall 2019, Fall 2015, Spring 2015
Advanced topics related to current research in algorithms and artificial intelligence for robotics. Planning, control, and estimation for realistic robot systems, taking into account: dynamic constraints, control and sensing uncertainty, and non-holonomic motion constraints.
Advanced Robotics: Read More [+]

Rules & Requirements

Prerequisites: Instructor consent for undergraduate and masters students

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Computer Science/Graduate

Grading: Letter grade.

Instructor: Abbeel

Advanced Robotics: Read Less [-]

COMPSCI 287H Algorithmic Human-Robot Interaction 4 Units
Terms offered: Spring 2021, Spring 2020
As robot autonomy advances, it becomes more and more important to develop algorithms that are not solely functional, but also mindful of the end-user. How should the robot move differently when it's moving in the presence of a human? How should it learn from user feedback? How should it assist the user in accomplishing day to day tasks? These are the questions we will investigate in this course.

We will contrast existing algorithms in robotics with studies in human-robot interaction, discussing how to tackle interaction challenges in an algorithmic way, with the goal of enabling generalization across robots and tasks. We will also sharpen research skills: giving good talks, experimental design, statistical analysis, literature surveys.

Algorithmic Human-Robot Interaction: Read More [+]

Objectives & Outcomes

Student Learning Outcomes: Students will have gained both knowledge/abilities related to human-robot interaction, as well as to research and presentation skills including being able to apply Bayesian inference and learning techniques to enhance coordination in collaborative tasks.

Students will have gained both knowledge/abilities related to human-robot interaction, as well as to research and presentation skills including being able to apply optimization techniques to generate motion for HRI.

Students will have gained both knowledge/abilities related to human-robot interaction, as well as to research and presentation skills including being able to contrast and relate model-based and model-free learning from demonstration.

Students will have gained both knowledge/abilities related to human-robot interaction, as well as to research and presentation skills including being able to develop a basic understanding of verbal and non-verbal communication.

Students will have gained both knowledge/abilities related to human-robot interaction, as well as to research and presentation skills including being able to ground algorithmic HRI in the relevant psychology background.

Students will have gained both knowledge/abilities related to human-robot interaction, as well as to research and presentation skills including being able to tease out the intricacies of developing algorithms that support HRI.

Students will have gained both knowledge/abilities related to human-robot interaction, as well as to research and presentation skills including being able to communicate scientific content to a peer audience.

Students will have gained both knowledge/abilities related to human-robot interaction, as well as to research and presentation skills including being able to critique a scientific paper's experimental design and analysis.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Computer Science/Graduate

Grading: Letter grade.

Instructor: Dragan
COMPSCI 288 Natural Language Processing
4 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020
Methods and models for the analysis of natural (human) language data. Topics include: language modeling, speech recognition, linguistic analysis (syntactic parsing, semantic analysis, reference resolution, discourse modeling), machine translation, information extraction, question answering, and computational linguistics techniques.
Natural Language Processing: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 188; and COMPSCI 170 is recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Computer Science/Graduate

Grading: Letter grade.

Instructor: Klein

Natural Language Processing: Read Less [-]

COMPSCI 289A Introduction to Machine Learning
4 Units
Terms offered: Fall 2022, Spring 2022, Fall 2021
This course provides an introduction to theoretical foundations, algorithms, and methodologies for machine learning, emphasizing the role of probability and optimization and exploring a variety of real-world applications. Students are expected to have a solid foundation in calculus and linear algebra as well as exposure to the basic tools of logic and probability, and should be familiar with at least one modern, high-level programming language.
Introduction to Machine Learning: Read More [+]

Rules & Requirements

Prerequisites: MATH 53, MATH 54, COMPSCI 70, and COMPSCI 188; or consent of instructor

Credit Restrictions: Students will receive no credit for Comp Sci 289A after taking Comp Sci 189.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Computer Science/Graduate

Grading: Letter grade.

Instructors: Listgarten, Malik, Recht, Sahai, Shewchuk

Introduction to Machine Learning: Read Less [-]

COMPSCI 294 Special Topics 1 - 4 Units
Terms offered: Fall 2022, Spring 2022, Fall 2021
Topics will vary from semester to semester. See Computer Science Division announcements.
Special Topics: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring:
4 weeks - 3-15 hours of lecture per week
6 weeks - 3-9 hours of lecture per week
8 weeks - 2-6 hours of lecture per week
10 weeks - 2-5 hours of lecture per week
15 weeks - 1-3 hours of lecture per week

Additional Details

Subject/Course Level: Computer Science/Graduate

Grading: Letter grade.

Instructors: Klein

Special Topics: Read Less [-]

COMPSCI 297 Field Studies in Computer Science
12.0 Units
Terms offered: Fall 2022, Spring 2016, Fall 2015
Supervised experience in off-campus companies relevant to specific aspects and applications of electrical engineering and/or computer science. Written report required at the end of the semester.
Field Studies in Computer Science: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-12 hours of independent study per week
Summer:
6 weeks - 1-30 hours of independent study per week
8 weeks - 1.5-22.5 hours of independent study per week
10 weeks - 1-18 hours of independent study per week

Additional Details

Subject/Course Level: Computer Science/Graduate

Grading: Offered for satisfactory/unsatisfactory grade only.

Field Studies in Computer Science: Read Less [-]
COMPSCI 298 Group Studies Seminars, or Group Research 1 - 4 Units
Terms offered: Fall 2022, Spring 2022, Fall 2021
Advanced study in various subjects through seminars on topics to be selected each year, informal group studies of special problems, group participation in comprehensive design problems, or group research on complete problems for analysis and experimentation.
Group Studies Seminars, or Group Research: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction. Students may enroll in multiple sections of this course within the same semester.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of lecture per week
Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: The grading option will be decided by the instructor when the class is offered.
Group Studies Seminars, or Group Research: Read Less [-]

COMPSCI 299 Individual Research 1 - 12 Units
Terms offered: Fall 2022, Summer 2017 Second 6 Week Session, Fall 2016
Investigations of problems in computer science.
Individual Research: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 0-1 hours of independent study per week
Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week
Additional Details
Subject/Course Level: Computer Science/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Individual Research: Read Less [-]

COMPSCI 300 Teaching Practice 1 - 6 Units
Terms offered: Fall 2012, Fall 2011, Spring 2011
Supervised teaching practice, in either a one-on-one tutorial or classroom discussion setting.
Teaching Practice: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week
Additional Details
Subject/Course Level: Computer Science/Professional course for teachers or prospective teachers
Grading: Offered for satisfactory/unsatisfactory grade only.
Teaching Practice: Read Less [-]

COMPSCI 302 Designing Computer Science Education 3 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020
Discussion and review of research and practice relating to the teaching of computer science: knowledge organization and misconceptions, curriculum and topic organization, evaluation, collaborative learning, technology use, and administrative issues. As part of a semester-long project to design a computer science course, participants invent and refine a variety of homework and exam activities, and evaluate alternatives for textbooks, grading and other administrative policies, and innovative uses of technology.
Designing Computer Science Education: Read More [+]
Rules & Requirements
Prerequisites: COMPSCI 301 and two semesters of GSI experience

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week
Additional Details
Subject/Course Level: Computer Science/Professional course for teachers or prospective teachers
Grading: Letter grade.
Instructor: Garcia
Designing Computer Science Education: Read Less [-]
COMPSCI 370 Adaptive Instruction Methods in Computer Science 3 Units
Terms offered: Fall 2022, Spring 2022, Fall 2021
This is a course for aspiring teachers or those who want to instruct with expertise from evidence-based research and proven equity-oriented practices. It provides pedagogical training by introducing the big ideas of teaching and learning, and illustrating how to put them into practice. The course is divided into three sections—instructing the individual; a group; and psycho-social factors that affect learning at any level. These sections are designed to enhance any intern’s, tutor’s, or TA’s teaching skillset. Class is discussion based, and covers theoretical and practical pedagogical aspects to teaching in STEM. An integral feature of the course involves providing weekly tutoring sessions.
Adaptive Instruction Methods in Computer Science: Read More [+]

Rules & Requirements
Prerequisites: Prerequisite satisfied Concurrently: experience tutoring or as an academic intern; or concurrently serving as an academic intern while taking course

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details
Subject/Course Level: Computer Science/Professional course for teachers or prospective teachers
Grading: Letter grade.
Instructor: Hunn

COMPSCI 375 Teaching Techniques for Computer Science 2 Units
Terms offered: Fall 2022, Spring 2022, Fall 2021
Discussion and practice of techniques for effective teaching, focusing on issues most relevant to teaching assistants in computer science courses.
Teaching Techniques for Computer Science: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 10 weeks - 3 hours of discussion per week
Summer: 8 weeks - 4 hours of discussion per week

Additional Details
Subject/Course Level: Computer Science/Professional course for teachers or prospective teachers
Grading: Offered for satisfactory/unsatisfactory grade only.
Instructors: Barsky, Garcia, Harvey
Teaching Techniques for Computer Science: Read Less [-]

COMPSCI 399 Professional Preparation: Supervised Teaching of Computer Science 1 or 2 Units
Terms offered: Spring 2020, Fall 2018, Fall 2016
Discussion, problem review and development, guidance of computer science laboratory sections, course development, supervised practice teaching.
Professional Preparation: Supervised Teaching of Computer Science: Read More [+]

Rules & Requirements
Prerequisites: Appointment as graduate student instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-2 hours of independent study per week
Summer: 8 weeks - 1-2 hours of independent study per week

Additional Details
Subject/Course Level: Computer Science/Professional course for teachers or prospective teachers
Grading: Offered for satisfactory/unsatisfactory grade only.
Professional Preparation: Supervised Teaching of Computer Science: Read Less [-]

COMPSCI 602 Individual Study for Doctoral Students 1 - 8 Units
Terms offered: Fall 2015, Fall 2014, Spring 2014
Individual study in consultation with the major field adviser, intended to provide an opportunity for qualified students to prepare themselves for the various examinations required of candidates for the Ph.D. (and other doctoral degrees).
Individual Study for Doctoral Students: Read More [+]

Rules & Requirements
Credit Restrictions: Course does not satisfy unit or residence requirements for doctoral degree.
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Summer: 8 weeks - 6-45 hours of independent study per week

Additional Details
Subject/Course Level: Computer Science/Graduate examination preparation
Grading: Offered for satisfactory/unsatisfactory grade only.
Individual Study for Doctoral Students: Read Less [-]

Electrical Engineering and Computer Sciences
Expand all course descriptions [+]
Collapse all course descriptions [-]
EL ENG 206A Introduction to Robotics 4 Units
Terms offered: Fall 2017, Fall 2016, Fall 2015
An introduction to the kinematics, dynamics, and control of robot manipulators, robotic vision, and sensing. The course will cover forward and inverse kinematics of serial chain manipulators, the manipulator Jacobian, force relations, dynamics and control-position, and force control. Proximity, tactile, and force sensing. Network modeling, stability, and fidelity in teleoperation and medical applications of robotics.
Introduction to Robotics: Read More [+]

Rules & Requirements

Prerequisites: 120 or equivalent, or consent of instructor

Credit Restrictions: Students will receive no credit for 206A after taking C125/Bioengineering C125 or EE C106A

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Instructor: Bajcsy

Formerly known as: Electrical Engineering 215A

Introduction to Robotics: Read Less [-]

EL ENG 206B Robotic Manipulation and Interaction 4 Units
Terms offered: Spring 2018, Spring 2017
This course is a sequel to EECS 125/225, which covers kinematics, dynamics and control of a single robot. This course will cover dynamics and control of groups of robotic manipulators coordinating with each other and interacting with the environment. Concepts will include an introduction to grasping and the constrained manipulation, contacts and force control for interaction with the environment. We will also cover active perception guided manipulation, as well as the manipulation of non-rigid objects. Throughout, we will emphasize design and human-robot interactions, and applications to applications in manufacturing, service robotics, tele-surgery, and locomotion.
Robotic Manipulation and Interaction: Read More [+]

Objectives & Outcomes

Course Objectives: To teach students the connection between the geometry, physics of manipulators with experimental setups that include sensors, control of large degrees of freedom manipulators, mobile robots and different grippers.

Student Learning Outcomes: By the end of the course students will be able to build a complete system composed of perceptual planning and autonomously controlled manipulators and/or mobile systems, justified by predictive theoretical models of performance.

Rules & Requirements

Prerequisites: EL ENG 206A / BIO ENG C125; or consent of the instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Instructors: Bajcsy, Sastry

Robotic Manipulation and Interaction: Read Less [-]
EL ENG 210 Applied Electromagnetic Theory
3 Units
Terms offered: Spring 2011, Spring 2010, Fall 2006
Advanced treatment of classical electromagnetic theory with engineering applications. Boundary value problems in electrostatics. Applications of Maxwell's Equations to the study of waveguides, resonant cavities, optical fiber guides, Gaussian optics, diffraction, scattering, and antennas.

Applied Electromagnetic Theory: Read More [+]

Rules & Requirements
Prerequisites: EL ENG 117; or PHYSICS 110A and PHYSICS 110B

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.

Formerly known as: 210A-210B

EL ENG C213 X-rays and Extreme Ultraviolet Radiation 3 Units
Terms offered: Spring 2022, Spring 2021, Fall 2019
This course explores modern developments in the physics and applications of x-rays and extreme ultraviolet (EUV) radiation. It begins with a review of electromagnetic radiation at short wavelengths including dipole radiation, scattering and refractive index, using a semi-classical atomic model. Subject matter includes the generation of x-rays with synchrotron radiation, high harmonic generation, x-ray free electron lasers, laser-plasma sources. Spatial and temporal coherence concepts are explained. Optics appropriate for this spectral region are described. Applications include nanoscale and astrophysical imaging, femtosecond and attosecond probing of electron dynamics in molecules and solids, EUV lithography, and materials characteristics.

X-rays and Extreme Ultraviolet Radiation: Read More [+]

Rules & Requirements
Prerequisites: Physics 110, 137, and Mathematics 53, 54 or equivalent

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructor: Attwood
Also listed as: AST C210

EL ENG 218A Introduction to Optical Engineering 4 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020

Introduction to Optical Engineering: Read More [+]

Rules & Requirements
Prerequisites: MATH 53; EECS 16A and EECS 16B, or MATH 54
Credit Restrictions: Students will receive no credit for Electrical Engineering 218A after taking Electrical Engineering 118 or 119.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: Waller, Kante

Introduction to Optical Engineering: Read Less [-]
EL ENG 219A Numerical Simulation and Modeling 4 Units

Terms offered: Spring 2021, Fall 2019, Fall 2017

Numerical simulation and modeling are enabling technologies that pervade science and engineering. This course provides a detailed introduction to the fundamental principles of these technologies and their translation to engineering practice. The course emphasizes hands-on programming in MATLAB and application to several domains, including circuits, nanotechnology, and biology.

Rules & Requirements

Prerequisites: Consent of instructor; a course in linear algebra and on circuits is very useful

Hours & Format

Fall and/or spring: 15 weeks - 4 hours of lecture per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Instructor: Roychowdhury

Numerical Simulation and Modeling: Read More [+]

EL ENG C220A Advanced Control Systems I 3 Units

Terms offered: Fall 2022, Fall 2021, Fall 2020

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Instructors: Borrelli, Horowitz, Tomizuka, Tomlin

Also listed as: MEC ENG C232

Advanced Control Systems I: Read Less [-]

EL ENG 219B Logic Synthesis 4 Units

Terms offered: Spring 2016, Spring 2015, Spring 2011

The course covers the fundamental techniques for the design and analysis of digital circuits. The goal is to provide a detailed understanding of basic logic synthesis and analysis algorithms, and to enable students to apply this knowledge in the design of digital systems and EDA tools. The course will present combinational circuit optimization (two-level and multi-level synthesis), sequential circuit optimization (state encoding, retiming), timing analysis, testing, and logic verification.

Logic Synthesis: Read More [+]

Rules & Requirements

Prerequisites: Consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Instructor: Roychowdhury

Logic Synthesis: Read Less [-]

EL ENG C220B Experiential Advanced Control Design I 3 Units

Terms offered: Fall 2022, Fall 2021, Fall 2020

Experience-based learning in the design of SISO and MIMO feedback controllers for linear systems. The student will master skills needed to apply linear control design and analysis tools to classical and modern control problems. In particular, the participant will be exposed to and develop expertise in two key control design technologies: frequency-domain control synthesis and time-domain optimization-based approach.

Rules & Requirements

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Instructors: Borrelli, Horowitz, Tomizuka, Tomlin

Also listed as: MEC ENG C231A

Experiential Advanced Control Design I: Read Less [-]
EL ENG C220C Experiential Advanced Control Design II 3 Units
Terms offered: Spring 2022, Fall 2021, Spring 2021, Spring 2020
Experience-based learning in the design, analysis, and verification of automatic control systems. The course emphasizes the use of computer-aided design techniques through case studies and design tasks. The student will master skills needed to apply advanced model-based control analysis, design, and estimation to a variety of industrial applications. The role of these specific design methodologies within the larger endeavor of control design is also addressed.

Experiential Advanced Control Design II: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Also listed as: MEC ENG C231B
Experiential Advanced Control Design II: Read Less [-]

EL ENG C220D Input/Output Methods for Compositional System Analysis 2 Units
Terms offered: Prior to 2007
Introduction to input/output concepts from control theory, systems as operators in signal spaces, passivity and small-gain theorems, dissipativity theory, integral quadratic constraints. Compositional stability and performance certification for interconnected systems from subsystems input/output properties. Case studies in multi-agent systems, biological networks, Internet congestion control, and adaptive control.

Input/Output Methods for Compositional System Analysis: Read More [+]

Objectives & Outcomes
Course Objectives: Standard computational tools for control synthesis and verification do not scale well to large-scale, networked systems in emerging applications. This course presents a compositional methodology suitable when the subsystems are amenable to analytical and computational methods but the interconnection, taken as a whole, is beyond the reach of these methods. The main idea is to break up the task of certifying desired stability and performance properties into subproblems of manageable size using input/output properties. Students learn about the fundamental theory, as well as relevant algorithms and applications in several domains.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: Arcak, Packard
Also listed as: MEC ENG C220D
Input/Output Methods for Compositional System Analysis: Read Less [-]

EL ENG 221A Linear System Theory 4 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020

Linear System Theory: Read More [+]

Rules & Requirements
Prerequisites: EL ENG 120; and MATH 110 recommended

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of recitation per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Linear System Theory: Read Less [-]
EL ENG 222 Nonlinear Systems--Analysis, Stability and Control 3 Units
Terms offered: Spring 2017, Spring 2016, Spring 2015
Nonlinear Systems--Analysis, Stability and Control: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 221A (may be taken concurrently)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Nonlinear Systems--Analysis, Stability and Control: Read Less [-]

EL ENG C222 Nonlinear Systems 3 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020
Nonlinear Systems: Read More [+]
Rules & Requirements
Prerequisites: MATH 54 (undergraduate level ordinary differential equations and linear algebra)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: Arcak, Tomlin, Kameshwar
Also listed as: MEC ENG C237
Nonlinear Systems: Read Less [-]

EL ENG 223 Stochastic Systems: Estimation and Control 3 Units
Terms offered: Fall 2022, Spring 2021, Spring 2020
Stochastic Systems: Estimation and Control: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 226A (which students are encouraged to take concurrently)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Stochastic Systems: Estimation and Control: Read Less [-]

EL ENG 224A Digital Communications 4 Units
Terms offered: Fall 2010, Fall 2009, Fall 2008
Introduction to the basic principles of the design and analysis of modern digital communication systems. Topics include source coding; channel coding; baseband and passband modulation techniques; receiver design; channel equalization; information theoretic techniques; block, convolutional, and trellis coding techniques; multiuser communications and spread spectrum; multi-carrier techniques and FDM; carrier and symbol synchronization. Applications to design of digital telephone modems, compact disks, and digital wireless communication systems are illustrated. The concepts are illustrated by a sequence of MATLAB exercises.
Digital Communications: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 120 and EL ENG 126
Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Formerly known as: 224
Digital Communications: Read Less [-]
EL ENG 224B Fundamentals of Wireless Communication 3 Units
Terms offered: Spring 2013, Spring 2012, Spring 2010

Prerequisites: EL ENG 121 and EL ENG 226A

EL ENG C225E Principles of Magnetic Resonance Imaging 4 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019, Spring 2017
Fundamentals of MRI including signal-to-noise ratio, resolution, and contrast as dictated by physics, pulse sequences, and instrumentation. Image reconstruction via 2D FFT methods. Fast imaging reconstruction via convolution-back projection and gridding methods and FFTs. Hardware for modern MRI scanners including main field, gradient fields, RF coils, and shim supplies. Software for MRI including imaging methods such as 2D FT, RARE, SSFP, spiral and echo planar imaging methods. Principles of Magnetic Resonance Imaging: Read More [+]

Objectives & Outcomes
Course Objectives: Graduate level understanding of physics, hardware, and systems engineering description of image formation, and image reconstruction in MRI. Experience in Imaging with different MR Imaging systems. This course should enable students to begin graduate level research at Berkeley (Neuroscience labs, EECS and Bioengineering), LBNL or at UCSF (Radiology and Bioengineering) at an advanced level and make research-level contribution

Rules & Requirements
Prerequisites: EL ENG 120 or BIO ENG C165/EL ENG C145B or consent of instructor
Credit Restrictions: Students will receive no credit for Bioengineering C265/El Engineering C225E after taking El Engineering 265.
Repeat rules: Course may be repeated for credit under special circumstances: Students can only receive credit for 1 of the 2 versions of the class, BioEc265 or EE c225e, not both

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details
Instructors: Connolly, Vandsburger
Also listed as: BIO ENG C265/NUC ENG C235
Principles of Magnetic Resonance Imaging: Read Less [-]

EL ENG 225D Audio Signal Processing in Humans and Machines 3 Units
Terms offered: Fall 2022, Fall 2021, Spring 2014
Audio Signal Processing in Humans and Machines: Read More [+]

Rules & Requirements
Prerequisites: EL ENG 123 and STAT 200A; or graduate standing and consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Instructor: Morgan
Audio Signal Processing in Humans and Machines: Read Less [-]
EL ENG 226A Random Processes in Systems 4 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020
Random Processes in Systems: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 120 and STAT 200A

EL ENG 226B Applications of Stochastic Process Theory 2 Units
Terms offered: Spring 2017, Spring 2013, Spring 1997
Advanced topics such as: Martingale theory, stochastic calculus, random fields, queueing networks, stochastic control. Applications of Stochastic Process Theory: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 226A
Repeat rules: Course may be repeated for credit without restriction.

EL ENG 227BT Convex Optimization 4 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020
Convex optimization is a class of nonlinear optimization problems where the objective to be minimized, and the constraints, are both convex. The course covers some convex optimization theory and algorithms, and describes various applications arising in engineering design, machine learning and statistics, finance, and operations research. The course includes laboratory assignments, which consist of hands-on experiments with the optimization software CVX, and a discussion section.
Convex Optimization: Read More [+]
Rules & Requirements
Prerequisites: MATH 54 and STAT 2

EL ENG C227C Convex Optimization and Approximation 3 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020, Spring 2019, Spring 2018, Spring 2017
Convex optimization as a systematic approximation tool for hard decision problems. Approximations of combinatorial optimization problems, of stochastic programming problems, of robust optimization problems (i.e., with optimization problems with unknown but bounded data), of optimal control problems. Quality estimates of the resulting approximation. Applications in robust engineering design, statistics, control, finance, data mining, operations research.
Convex Optimization and Approximation: Read More [+]
Rules & Requirements
Prerequisites: 227A or consent of instructor

EL ENG C227B Convex Optimization and Approximation 3 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020, Spring 2019, Spring 2018, Spring 2017
Convex optimization as a systematic approximation tool for hard decision problems. Approximations of combinatorial optimization problems, of stochastic programming problems, of robust optimization problems (i.e., with optimization problems with unknown but bounded data), of optimal control problems. Quality estimates of the resulting approximation. Applications in robust engineering design, statistics, control, finance, data mining, operations research.
Convex Optimization and Approximation: Read More [+]
Rules & Requirements
Prerequisites: 227A or consent of instructor

EL ENG C227C Convex Optimization and Approximation 3 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020, Spring 2019, Spring 2018, Spring 2017
Convex optimization as a systematic approximation tool for hard decision problems. Approximations of combinatorial optimization problems, of stochastic programming problems, of robust optimization problems (i.e., with optimization problems with unknown but bounded data), of optimal control problems. Quality estimates of the resulting approximation. Applications in robust engineering design, statistics, control, finance, data mining, operations research.
Convex Optimization and Approximation: Read More [+]
Rules & Requirements
Prerequisites: 227A or consent of instructor

Instructors: Anantharam, Varaiya

Also listed as: IND ENG C227B
Convex Optimization and Approximation: Read Less [-]
EL ENG C227T Introduction to Convex Optimization 4 Units

Terms offered: Prior to 2007
The course covers some convex optimization theory and algorithms, and describes various applications arising in engineering design, machine learning and statistics, finance, and operations research. The course includes laboratory assignments, which consist of hands-on experience.
Introduction to Convex Optimization: Read More [+]

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: El Ghaoui, Wainwright
Formerly known as: Electrical Engineering C227A/Industrial Engin and Oper Research C227A
Also listed as: IND ENG C227A

Introduction to Convex Optimization: Read Less [-]

EL ENG 228A High Speed Communications Networks 3 Units

Terms offered: Fall 2014, Spring 2014, Fall 2011
Descriptions, models, and approaches to the design and management of networks. Optical transmission and switching technologies are described and analyzed using deterministic, stochastic, and simulation models. FDDI, DQDB, SMDS, Frame Relay, ATM, networks, and SONET.
Applications demanding high-speed communication.
High Speed Communications Networks: Read More [+]

Rules & Requirements

Prerequisites: EL ENG 122; and EL ENG 226A (may be taken concurrently)

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.

High Speed Communications Networks: Read Less [-]

EL ENG 229A Information Theory and Coding 3 Units

Terms offered: Fall 2022, Fall 2021, Fall 2020
Fundamental bounds of Shannon theory and their application. Source and channel coding theorems. Galois field theory, algebraic error-correction codes. Private and public-key cryptographic systems.
Information Theory and Coding: Read More [+]

Rules & Requirements

Prerequisites: STAT 200A; and EL ENG 226 recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: Anantharam, Tse
Formerly known as: 229
Also listed as: Information Theory and Coding: Read Less [-]

EL ENG 229B Error Control Coding 3 Units

Terms offered: Spring 2019, Spring 2016, Fall 2013
Error control codes are an integral part of most communication and recording systems where they are primarily used to provide resiliency to noise. In this course, we will cover the basics of error control coding for reliable digital transmission and storage. We will discuss the major classes of codes that are important in practice, including Reed Muller codes, cyclic codes, Reed Solomon codes, convolutional codes, concatenated codes, turbo codes, and low density parity check codes.
The relevant background material from finite field and polynomial algebra will be developed as part of the course. Overview of topics: binary linear block codes; Reed Muller codes; Galois fields; linear block codes over a finite field; cyclic codes; BCH and Reed Solomon codes; convolutional codes and trellis based decoding, message passing decoding algorithms; trellis based soft decision decoding of block codes; turbo codes; low density parity check codes.
Error Control Coding: Read More [+]

Rules & Requirements

Prerequisites: 126 or equivalent (some familiarity with basic probability). Prior exposure to information theory not necessary

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructor: Anatharam
Error Control Coding: Read Less [-]
EL ENG 230A Integrated-Circuit Devices 4 Units
Terms offered: Fall 2022, Spring 2022, Fall 2021
Overview of electronic properties of semiconductors. Metal-semiconductor contacts, pn junctions, bipolar transistors, and MOS field-effect transistors. Properties that are significant to device operation for integrated circuits. Silicon device fabrication technology.
Integrated-Circuit Devices: Read More [+]
Rules & Requirements
Prerequisites: 40 or 100
Credit Restrictions: Students will receive no credit for Electrical Engineering 230A after taking Electrical Engineering 130.

EL ENG 230B Solid State Devices 4 Units
Terms offered: Fall 2020, Spring 2019, Spring 2018
Physical principles and operational characteristics of semiconductor devices. Emphasis is on MOS field-effect transistors and their behaviors dictated by present and probable future technologies. Metal-oxide-semiconductor systems, short-channel and high field effects, device modeling, and impact on analog, digital circuits.
Solid State Devices: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 130
Credit Restrictions: Students will receive no credit for EL ENG 230B after completing EL ENG 231, or EL ENG W230B. A deficient grade in EL ENG 230B may be removed by taking EL ENG W230B.

EL ENG 230C Solid State Electronics 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Solid State Electronics: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 131; and PHYSICS 137B

EL ENG W230A Integrated-Circuit Devices 4 Units
Terms offered: Spring 2019, Spring 2018, Spring 2017
Overview of electronic properties of semiconductors. Metal-semiconductor contacts, pn junctions, bipolar transistors, and MOS field-effect transistors. Properties that are significant to device operation for integrated circuits. Silicon device fabrication technology.
Integrated-Circuit Devices: Read More [+]
Rules & Requirements
Prerequisites: MAS-IC students only
Credit Restrictions: Students will receive no credit for Electrical Engineering W230A after taking Electrical Engineering 130, Electrical Engineering W130 or Electrical Engineering 230A.

EL ENG W230B Solid State Devices 4 Units
Terms offered: Spring 2020, Spring 2019, Spring 2018
Physical principles and operational characteristics of semiconductor devices. Emphasis is on MOS field-effect transistors and their behaviors dictated by present and probable future technologies. Metal-oxide-semiconductor systems, short-channel and high field effects, device modeling, and impact on analog, digital circuits.
Solid State Devices: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 130
Credit Restrictions: Students will receive no credit for EL ENG 230B after completing EL ENG 231, or EL ENG W230B. A deficient grade in EL ENG 230B may be removed by taking EL ENG W230B.

EL ENG W230C Solid State Electronics 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Solid State Electronics: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 131; and PHYSICS 137B

EL ENG W230A Integrated-Circuit Devices 4 Units
Terms offered: Spring 2019, Spring 2018, Spring 2017
Overview of electronic properties of semiconductors. Metal-semiconductor contacts, pn junctions, bipolar transistors, and MOS field-effect transistors. Properties that are significant to device operation for integrated circuits. Silicon device fabrication technology.
Integrated-Circuit Devices: Read More [+]
Rules & Requirements
Prerequisites: MAS-IC students only
Credit Restrictions: Students will receive no credit for Electrical Engineering W230A after taking Electrical Engineering 130, Electrical Engineering W130 or Electrical Engineering 230A.

EL ENG W230B Solid State Devices 4 Units
Terms offered: Spring 2020, Spring 2019, Spring 2018
Physical principles and operational characteristics of semiconductor devices. Emphasis is on MOS field-effect transistors and their behaviors dictated by present and probable future technologies. Metal-oxide-semiconductor systems, short-channel and high field effects, device modeling, and impact on analog, digital circuits.
Solid State Devices: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 130
Credit Restrictions: Students will receive no credit for EL ENG 230B after completing EL ENG 231, or EL ENG W230B. A deficient grade in EL ENG 230B may be removed by taking EL ENG W230B.

EL ENG W230C Solid State Electronics 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Solid State Electronics: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 131; and PHYSICS 137B

EL ENG W230A Integrated-Circuit Devices 4 Units
Terms offered: Spring 2019, Spring 2018, Spring 2017
Overview of electronic properties of semiconductors. Metal-semiconductor contacts, pn junctions, bipolar transistors, and MOS field-effect transistors. Properties that are significant to device operation for integrated circuits. Silicon device fabrication technology.
Integrated-Circuit Devices: Read More [+]
Rules & Requirements
Prerequisites: MAS-IC students only
Credit Restrictions: Students will receive no credit for Electrical Engineering W230A after taking Electrical Engineering 130, Electrical Engineering W130 or Electrical Engineering 230A.

EL ENG W230B Solid State Devices 4 Units
Terms offered: Spring 2020, Spring 2019, Spring 2018
Physical principles and operational characteristics of semiconductor devices. Emphasis is on MOS field-effect transistors and their behaviors dictated by present and probable future technologies. Metal-oxide-semiconductor systems, short-channel and high field effects, device modeling, and impact on analog, digital circuits.
Solid State Devices: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 130
Credit Restrictions: Students will receive no credit for EL ENG 230B after completing EL ENG 231, or EL ENG W230B. A deficient grade in EL ENG 230B may be removed by taking EL ENG W230B.

EL ENG W230C Solid State Electronics 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Solid State Electronics: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 131; and PHYSICS 137B

EL ENG W230A Integrated-Circuit Devices 4 Units
Terms offered: Spring 2019, Spring 2018, Spring 2017
Overview of electronic properties of semiconductors. Metal-semiconductor contacts, pn junctions, bipolar transistors, and MOS field-effect transistors. Properties that are significant to device operation for integrated circuits. Silicon device fabrication technology.
Integrated-Circuit Devices: Read More [+]
Rules & Requirements
Prerequisites: MAS-IC students only
Credit Restrictions: Students will receive no credit for Electrical Engineering W230A after taking Electrical Engineering 130, Electrical Engineering W130 or Electrical Engineering 230A.

EL ENG W230B Solid State Devices 4 Units
Terms offered: Spring 2020, Spring 2019, Spring 2018
Physical principles and operational characteristics of semiconductor devices. Emphasis is on MOS field-effect transistors and their behaviors dictated by present and probable future technologies. Metal-oxide-semiconductor systems, short-channel and high field effects, device modeling, and impact on analog, digital circuits.
Solid State Devices: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 130
Credit Restrictions: Students will receive no credit for EL ENG 230B after completing EL ENG 231, or EL ENG W230B. A deficient grade in EL ENG 230B may be removed by taking EL ENG W230B.

EL ENG W230C Solid State Electronics 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Solid State Electronics: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 131; and PHYSICS 137B

EL ENG W230A Integrated-Circuit Devices 4 Units
Terms offered: Spring 2019, Spring 2018, Spring 2017
Overview of electronic properties of semiconductors. Metal-semiconductor contacts, pn junctions, bipolar transistors, and MOS field-effect transistors. Properties that are significant to device operation for integrated circuits. Silicon device fabrication technology.
Integrated-Circuit Devices: Read More [+]
Rules & Requirements
Prerequisites: MAS-IC students only
Credit Restrictions: Students will receive no credit for Electrical Engineering W230A after taking Electrical Engineering 130, Electrical Engineering W130 or Electrical Engineering 230A.

EL ENG W230B Solid State Devices 4 Units
Terms offered: Spring 2020, Spring 2019, Spring 2018
Physical principles and operational characteristics of semiconductor devices. Emphasis is on MOS field-effect transistors and their behaviors dictated by present and probable future technologies. Metal-oxide-semiconductor systems, short-channel and high field effects, device modeling, and impact on analog, digital circuits.
Solid State Devices: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 130
Credit Restrictions: Students will receive no credit for EL ENG 230B after completing EL ENG 231, or EL ENG W230B. A deficient grade in EL ENG 230B may be removed by taking EL ENG W230B.
EL ENG W230B Solid State Devices 4 Units
Terms offered: Fall 2015
Physical principles and operational characteristics of semiconductor devices. Emphasis is on MOS field-effect transistors and their behaviors dictated by present and probable future technologies. Metal-oxide-semiconductor systems, short-channel and high field effects, device modeling, and impact on analog, digital circuits.
Solid State Devices: Read More [+]

Rules & Requirements

Prerequisites: EL ENG W230A; MAS-IC students only

Credit Restrictions: Students will receive no credit for EE W230B after taking EE 230B.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of web-based lecture and 1 hour of web-based discussion per week

Summer: 10 weeks - 4.5 hours of web-based lecture and 1.5 hours of web-based discussion per week

Online: This is an online course.

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Instructors: Subramanian, King Liu, Salahuddin

Formerly known as: Electrical Engineering W231

Solid State Devices: Read Less [-]

EL ENG 232 Lightwave Devices 4 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020
This course is designed to give an introduction and overview of the fundamentals of optoelectronic devices. Topics such as optical gain and absorption spectra, quantization effects, strained quantum wells, optical waveguiding and coupling, and hetero p-n junction will be covered. This course will focus on basic physics and design principles of semiconductor diode lasers, light emitting diodes, photodetectors and integrated optics. Practical applications of the devices will be also discussed.
Lightwave Devices: Read More [+]

Rules & Requirements

Prerequisites: EL ENG 130; PHYSICS 137A; and EL ENG 117 recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Instructor: Wu

Lightwave Devices: Read Less [-]

EL ENG C235 Nanoscale Fabrication 4 Units
Terms offered: Spring 2022, Spring 2016, Spring 2015, Spring 2013
This course discusses various top-down and bottom-up approaches to synthesizing and processing nanostructured materials. The topics include fundamentals of self assembly, nano-imprint lithography, electron beam lithography, nanowire and nanotube synthesis, quantum dot synthesis (strain patterned and colloidal), post-synthesis modification (oxidation, doping, diffusion, surface interactions, and etching techniques). In addition, techniques to bridging length scales such as heterogeneous integration will be discussed. We will discuss new electronic, optical, thermal, mechanical, and chemical properties brought forth by the very small sizes.
Nanoscale Fabrication: Read More [+]

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Instructor: Chang-Hasnain

Also listed as: NSE C203

Nanoscale Fabrication: Read Less [-]

EL ENG 236A Quantum and Optical Electronics 3 Units
Terms offered: Fall 2022, Spring 2021, Fall 2019
Interaction of radiation with atomic and semiconductor systems, density matrix treatment, semiclassical laser theory (Lamb's), laser resonators, specific laser systems, laser dynamics, Q-switching and mode-locking, noise in lasers and optical amplifiers. Nonlinear optics, phase-conjugation, electrooptics, acoustooptics and magnetooptics, coherent optics, stimulated Raman and Brillouin scattering.
Quantum and Optical Electronics: Read More [+]

Rules & Requirements

Prerequisites: EL ENG 117A and PHYSICS 137A

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Quantum and Optical Electronics: Read Less [-]
EL ENG C239 Partially Ionized Plasmas 3
Units
Terms offered: Spring 2010, Spring 2009, Spring 2007
Introduction to partially ionized, chemically reactive plasmas, including collisional processes, diffusion, sources, sheaths, boundaries, and diagnostics. DC, RF, and microwave discharges. Applications to plasma-assisted materials processing and to plasma wall interactions.
Partially Ionized Plasmas: Read More [+]

Rules & Requirements
Prerequisites: An upper division course in electromagnetics or fluid dynamics

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Formerly known as: 239
Also listed as: AST C239
Partially Ionized Plasmas: Read Less [-]

EL ENG 240A Analog Integrated Circuits 4
Units
Terms offered: Fall 2022, Fall 2021, Fall 2020
Single and multiple stage transistor amplifiers. Operational amplifiers. Feedback amplifiers, 2-port formulation, source, load, and feedback network loading. Frequency response of cascaded amplifiers, gain-bandwidth exchange, compensation, dominant pole techniques, root locus. Supply and temperature independent biasing and references. Selected applications of analog circuits such as analog-to-digital converters, switched capacitor filters, and comparators. Hardware laboratory and design project.
Analog Integrated Circuits: Read More [+]

Rules & Requirements
Prerequisites: EL ENG 105

Credit Restrictions: Students will receive no credit for EL ENG 240A after completing EL ENG 140, or EL ENG W240A. A deficient grade in EL ENG 240A may be removed by taking EL ENG W240A.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: Sanders, Nguyen
Analog Integrated Circuits: Read Less [-]

EL ENG 240B Advanced Analog Integrated Circuits 4
Units
Terms offered: Spring 2022, Spring 2021, Spring 2019
Advanced Analog Integrated Circuits: Read More [+]

Rules & Requirements
Prerequisites: EL ENG 140 / EL ENG 240A

Credit Restrictions: Students will receive no credit for EL ENG 240B after completing EL ENG 240, or EL ENG W240B. A deficient grade in EL ENG 240B may be removed by taking EL ENG W240B.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Advanced Analog Integrated Circuits: Read Less [-]
EL ENG 240C Analysis and Design of VLSI Analog-Digital Interface Integrated Circuits 3 Units
Terms offered: Fall 2019, Fall 2017, Fall 2015
Architectural and circuit level design and analysis of integrated analog-to-digital and digital-to-analog interfaces in CMOS and BiCMOS VLSI technology. Analog-digital converters, digital-analog converters, sample/hold amplifiers, continuous and switched-capacitor filters. RF integrated electronics including synthesizers, LNA’s, and baseband processing. Low power mixed signal design. Data communications functions including clock recovery. CAD tools for analog design including simulation and synthesis.

Analysis and Design of VLSI Analog-Digital Interface Integrated Circuits: Read More [+]

Rules & Requirements

Prerequisites: EL ENG 140

Credit Restrictions: Students will receive no credit for EL ENG 240C after completing EL ENG 290Y, or EL ENG W240C. A deficient grade in EL ENG 240C may be removed by taking EL ENG W240C.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Instructor: Boser

Formerly known as: Electrical Engineering 247

Analysis and Design of VLSI Analog-Digital Interface Integrated Circuits: Read Less [-]

EL ENG W240A Analog Integrated Circuits 4 Units
Terms offered: Spring 2020, Spring 2019, Spring 2018

Analyse and Design of VLSI Analog-Digital Interface Integrated Circuits: Read More [+]

Rules & Requirements

Prerequisites: MAS-IC students only

Credit Restrictions: Students will receive no credit for EE W240A after taking EE 140 or EE 240A.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of web-based lecture and 1 hour of web-based discussion per week

Summer: 10 weeks - 4.5 hours of web-based lecture and 1.5 hours of web-based discussion per week

Online: This is an online course.

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Instructors: Alon, Sanders, Nguyen

Analyze and Design of VLSI Analog-Digital Interface Integrated Circuits: Read Less [-]
EL ENG W240B Advanced Analog Integrated Circuits 3 Units
Terms offered: Spring 2020, Spring 2019, Fall 2015
Rules & Requirements
Prerequisites: EL ENG W240A; MAS-IC students only
Credit Restrictions: Students will receive no credit for EE W240B after taking EE 240B.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of web-based lecture per week
Summer: 10 weeks - 4.5 hours of web-based lecture per week
Online: This is an online course.
Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Formerly known as: Electrical Engineering W240

EL ENG W240C Analysis and Design of VLSI Analog-Digital Interface Integrated Circuits 3 Units
Terms offered: Spring 2017, Spring 2016
Architectural and circuit level design and analysis of integrated analog-to-digital and digital-to-analog interfaces in modern CMOS and BiCMOS VLSI technology. Analog-digital converters, digital-analog converters, sample/hold amplifiers, continuous and switched-capacitor filters. Low power mixed signal design techniques. Data communications systems including interface circuitry. CAD tools for analog design for simulation and synthesis.
Rules & Requirements
Prerequisites: EL ENG W240A; MAS-IC students only
Credit Restrictions: Students will receive no credit for EE W240C after taking EE 240C.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of web-based lecture per week
Summer: 10 weeks - 4.5 hours of web-based lecture per week
Online: This is an online course.
Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructor: Boser
Formerly known as: Electrical Engineering W247

Advanced Analog Integrated Circuits: Read More [+]
Analysis and Design of VLSI Analog-Digital Interface Integrated Circuits: Read Less [-]
EL ENG 241B Advanced Digital Integrated Circuits 3 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019
Analysis and design of MOS and bipolar large-scale integrated circuits at
the circuit level. Fabrication processes, device characteristics, parasitic
effects static and dynamic digital circuits for logic and memory functions.
Calculation of speed and power consumption from layout and fabrication
parameters. ROM, RAM, EEPROM circuit design. Use of SPICE and
other computer aids.
Advanced Digital Integrated Circuits: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 141
Credit Restrictions: Students will receive no credit for EL ENG 241B
after completing EL ENG 241, or EL ENG W241B. A deficient grade in
EL ENG 241B may be removed by taking EL ENG W241B.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: Nikolic, Rabaey
Formerly known as: Electrical Engineering 241
Advanced Digital Integrated Circuits: Read Less [-]

EL ENG W241A Introduction to Digital Integrated Circuits 4 Units
Terms offered: Fall 2015, Fall 2014, Spring 2014
CMOS devices and deep sub-micron manufacturing technology.
CMOS inverters and complex gates. Modeling of interconnect wires.
Optimization of designs with respect to a number of metrics: cost,
reliability, performance, and power dissipation. Sequential circuits,
timing considerations, and clocking approaches. Design of large system
blocks, including arithmetic, interconnect, memories, and programmable
logic arrays. Introduction to design methodologies, including laboratory
experience.
Introduction to Digital Integrated Circuits: Read More [+]
Rules & Requirements
Prerequisites: MAS-IC students only
Credit Restrictions: Students will receive no credit for W241A after
taking EE 141 or EE 241A.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of web-based lecture and 4 hours
of web-based discussion per week
Summer: 10 weeks - 4.5 hours of web-based lecture and 6 hours of web-
based discussion per week
Online: This is an online course.
Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: Alon, Rabaey, Nikolic
Introduction to Digital Integrated Circuits: Read Less [-]
EL ENG W241B Advanced Digital Integrated Circuits 3 Units
Terms offered: Spring 2017, Spring 2016, Spring 2015
Analysis and design of MOS and bipolar large-scale integrated circuits at the circuit level. Fabrication processes, device characteristics, parasitic effects static and dynamic digital circuits for logic and memory functions. Calculation of speed and power consumption from layout and fabrication parameters. ROM, RAM, EEPROM circuit design. Use of SPICE and other computer aids.
Advanced Digital Integrated Circuits: Read More [+]
Rules & Requirements
Prerequisites: EL ENG W241A; MAS-IC students only
Credit Restrictions: Students will receive no credit for EE W241B after taking EE 241B.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of web-based lecture per week
Summer: 10 weeks - 4.5 hours of web-based lecture per week
Online: This is an online course.

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: Nikolic, Rabaey
Formerly known as: Electrical Engineering W241
Advanced Digital Integrated Circuits: Read Less [-]

EL ENG 242A Integrated Circuits for Communications 4 Units
Terms offered: Spring 2022, Spring 2021, Fall 2019
Analysis and design of electronic circuits for communication systems, with an emphasis on integrated circuits for wireless communication systems. Analysis of noise and distortion in amplifiers with application to radio receiver design. Power amplifier design with application to wireless radio transmitters. Radio-frequency mixers, oscillators, phase-locked loops, modulators, and demodulators.
Integrated Circuits for Communications: Read More [+]
Rules & Requirements
Prerequisites: 20N and 140 or equivalent
Credit Restrictions: Students will receive no credit for Electrical Engineering 242A after taking Electrical Engineering 142.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Formerly known as: Electrical Engineering 242M
Integrated Circuits for Communications: Read Less [-]
EL ENG 242B Advanced Integrated Circuits for Communications 3 Units

Terms offered: Fall 2020, Fall 2014

Analysis, evaluation and design of present-day integrated circuits for communications application, particularly those for which nonlinear response must be included. MOS, bipolar and BICMOS circuits, audio and video power amplifiers, optimum performance of near-sinusoidal oscillators and frequency-translation circuits. Phase-locked loop ICs, analog multipliers and voltage-controlled oscillators; advanced components for telecommunication circuits. Use of new CAD tools and systems.

Prerequisites: EL ENG 142 and EL ENG 240

Credit Restrictions: Students will receive no credit for EL ENG 242B after completing EL ENG 242, or EL ENG W242B. A deficient grade in EL ENG 242B may be removed by taking EL ENG W242B.

Rules & Requirements

Subject/Course Level: Electrical Engineering/Graduate

Instructor: Niknejad

Formerly known as: Electrical Engineering 242

Advanced Integrated Circuits for Communications: Read Less [-]

EL ENG W242A Integrated Circuits for Communications 4 Units

Terms offered: Spring 2020, Spring 2019, Spring 2018

Analysis and design of electronic circuits for communication systems, with an emphasis on integrated circuits for wireless communication systems. Analysis of noise and distortion in amplifiers with application to radio receiver design. Power amplifier design with application to wireless radio transmitters. Radio-frequency mixers, oscillators, phase-locked loops, modulators, and demodulators.

Prerequisites: EL ENG W240A; MAS-IC students only

Credit Restrictions: Students will receive no credit for EE W242A after taking EE 142, EE 242A, or EE 242B.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of web-based lecture and 1 hour of web-based discussion per week

Summer: 10 weeks - 4.5 hours of web-based lecture and 1.5 hours of web-based discussion per week

Online: This is an online course.

Subject/Course Level: Electrical Engineering/Graduate

Instructor: Niknejad

Formerly known as: Electrical Engineering W142

Integrated Circuits for Communications: Read Less [-]
EL ENG W242B Advanced Integrated Circuits for Communications 3 Units
Terms offered: Spring 2017, Spring 2016
Analysis, evaluation, and design of present-day integrated circuits for communications application, particularly those for which nonlinear response must be included. MOS, bipolar and BICMOS circuits, audio and video power amplifiers, optimum performance of near-sinusoidal oscillators and frequency-translation circuits. Phase-locked loop ICs, analog multipliers and voltage-controlled oscillators; advanced components for telecommunication circuits. Use of new CAD tools and systems.
Advanced Integrated Circuits for Communications: Read More [+]

Rules & Requirements
Prerequisites: EL ENG W240A; EL ENG W242A; MAS-IC students only
Credit Restrictions: Students will receive no credit for EE W242B after taking EE 242B.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of web-based lecture per week
Summer: 10 weeks - 4.5 hours of web-based lecture per week
Online: This is an online course.

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructor: Niknejad
Formerly known as: Electrical Engineering W242
Advanced Integrated Circuits for Communications: Read Less [-]

EL ENG 244 Fundamental Algorithms for Systems Modeling, Analysis, and Optimization 4 Units
Terms offered: Fall 2016, Fall 2015, Fall 2014
The modeling, analysis, and optimization of complex systems requires a range of algorithms and design software. This course reviews the fundamental techniques underlying the design methodology for complex systems, using integrated circuit design as example. Topics include design flows, discrete and continuous models and algorithms, and strategies for implementing algorithms efficiently and correctly in software. Laboratory assignments and a class project will expose students to state-of-the-art.
Fundamental Algorithms for Systems Modeling, Analysis, and Optimization: Read More [+]

Rules & Requirements
Prerequisites: Graduate standing
Credit Restrictions: Students will receive no credit for EL ENG 244 after completing EL ENG W244.

Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: Keutzer, Lee, Roychowdhury, Seshia
Fundamental Algorithms for Systems Modeling, Analysis, and Optimization: Read Less [-]

EL ENG 243 Advanced IC Processing and Layout 3 Units
Terms offered: Spring 2014, Spring 2012, Spring 2011
The key processes for the fabrication of integrated circuits. Optical, X-ray, and e-beam lithography, ion implantation, oxidation and diffusion. Thin film deposition. Wet and dry etching and ion milling. Effect of phase and defect equilibria on process control.
Advanced IC Processing and Layout: Read More [+]

Rules & Requirements
Prerequisites: EL ENG 143; and either EL ENG 140 or EL ENG 141

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Advanced IC Processing and Layout: Read Less [-]
EL ENG W244 Fundamental Algorithms for System Modeling, Analysis, and Optimization
4 Units
Terms offered: Fall 2015
The modeling, analysis, and optimization of complex systems require a range of algorithms and design tools. This course reviews the fundamental techniques underlying the design methodology for complex systems, using integrated circuit design as an example. Topics include design flows, discrete and continuous models and algorithms, and strategies for implementing algorithms efficiently and correctly in software.

Rules & Requirements
Prerequisites: MAS-IC students only
Credit Restrictions: Students will receive no credit for W244 after taking 144 and 244.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of web-based lecture per week
Summer: 10 weeks - 4.5 hours of web-based lecture per week
Online: This is an online course.

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: Keutzer, Lee, Roychowdhury, Seshia

EL ENG C246 Parametric and Optimal Design of MEMS 3 Units
Terms offered: Spring 2013, Spring 2012, Spring 2011
Parametric design and optimal design of MEMS. Emphasis on design, not fabrication. Analytic solution of MEMS design problems to determine the dimensions of MEMS structures for specified function. Trade-off of various performance requirements despite conflicting design requirements. Structures include flexure systems, accelerometers, and rate sensors.

Rules & Requirements
Prerequisites: Graduate standing or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: Lin, Pisano
Formerly known as: 219
Also listed as: MEC ENG C219

Fundamental Algorithms for System Modeling, Analysis, and Optimization: Read Less [-]
EL ENG 247A Introduction to Microelectromechanical Systems (MEMS) 3 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020
This course will teach fundamentals of micromachining and microfabrication techniques, including planar thin-film process technologies, photolithographic techniques, deposition and etching techniques, and the other technologies that are central to MEMS fabrication. It will pay special attention to teaching of fundamentals necessary for the design and analysis of devices and systems in mechanical, electrical, fluidic, and thermal energy/signal domains, and will teach basic techniques for multi-domain analysis. Fundamentals of sensing and transduction mechanisms including capacitive and piezoresistive techniques, and design and analysis of micromachined miniature sensors and actuators using these techniques will be covered.
Introduction to Microelectromechanical Systems (MEMS): Read More [+]

Rules & Requirements
Prerequisites: EECS 16A and EECS 16B; or consent of instructor required
Credit Restrictions: Students will receive no credit for EE 247A after taking EE 147.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: Maharbiz, Nguyen, Pister
Introduction to Microelectromechanical Systems (MEMS): Read Less [-]

EL ENG C247B Introduction to MEMS Design 4 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020
Physics, fabrication, and design of micro-electromechanical systems (MEMS). Micro and nanofabrication processes, including silicon surface and bulk micromachining and non-silicon micromachining. Integration strategies and assembly processes. Microsensor and microactuator devices: electrostatic, piezoresistive, piezoelectric, thermal, magnetic transduction. Electronic position-sensing circuits and electrical and mechanical noise. CAD for MEMS. Design project is required.
Introduction to MEMS Design: Read More [+]

Rules & Requirements
Prerequisites: Graduate standing in engineering or science; undergraduates with consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: Nguyen, Pister
Formerly known as: Electrical Engineering C245, Mechanical Engineering C218
Also listed as: MEC ENG C218
Introduction to MEMS Design: Read Less [-]
EL ENG W247B Introduction to MEMS Design
4 Units
Terms offered: Prior to 2007
Physics, fabrication and design of micro electromechanical systems (MEMS). Micro and nano-fabrication processes, including silicon surface and bulk micromachining and non-silicon micromachining. Integration strategies and assembly processes. Microsensor and microactuator devices: electrostatic, piezoresistive, piezoelectric, thermal, and magnetic transduction. Electronic position-sensing circuits and electrical and mechanical noise. CAD for MEMS. Design project is required.
Introduction to MEMS Design: Read More [+]

Rules & Requirements
Prerequisites: MAS-IC students only
Credit Restrictions: Students will receive no credit for EE W247B after taking EE C247B or Mechanical Engineering C218.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of web-based lecture and 1 hour of web-based discussion per week
Summer: 10 weeks - 4.5 hours of web-based lecture and 1.5 hours of web-based discussion per week
Online: This is an online course.

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: Nguyen, Pister
Formerly known as: Electrical Engineering W245
Introduction to MEMS Design: Read Less [-]

EL ENG 248C Numerical Modeling and Analysis: Nonlinear Systems and Noise
4 Units
Terms offered: Prior to 2007
Numerical modelling and analysis techniques are widely used in scientific and engineering practice; they are also an excellent vehicle for understanding and concretizing theory.
This course covers topics important for a proper understanding of nonlinearity and noise: periodic steady state and envelope ("RF") analyses; oscillatory systems; nonstationary and phase noise; and homotopy/continuation techniques for solving "difficult" equation systems. An underlying theme of the course is relevance to different physical domains, from electronics (e.g., analog/RF/mixed-signal circuits, high-speed digital circuits, interconnect, etc.) to optics, nanotechnology, chemistry, biology and mechanics.
Hands-on coding using the MATLAB-based Berkeley Model Numerical Modeling and Analysis: Nonlinear Systems and Noise: Read More [+]

Objectives & Outcomes
Course Objectives:
- Homotopy techniques for robust nonlinear equation solution
- Modelling and analysis of oscillatory systems
 - harmonic, ring and relaxation oscillators
 - oscillator steady state analysis
 - perturbation analysis of amplitude-stable oscillators
- RF (nonlinear periodic steady state) analysis
 - harmonic balance and shooting
 - Multi-time PDE and envelope methods
 - perturbation analysis of periodic systems (Floquet theory)
- RF (nonlinear, nonstationary) noise concepts and their application
 - cyclostationary noise analysis
 - concepts of phase noise in oscillators
Using MAPP for fast/convenient modelling and analysis

Student Learning Outcomes: Students will develop a facility in the above topics and be able to apply them widely across science and engineering.

Rules & Requirements
Prerequisites: Consent of Instructor

Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructor: Roychowdhury
Numerical Modeling and Analysis: Nonlinear Systems and Noise: Read Less [-]
EL ENG C249A Introduction to Embedded Systems 4 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020
This course introduces students to the basics of models, analysis tools, and control for embedded systems operating in real time. Students learn how to combine physical processes with computation. Topics include models of computation, control, analysis and verification, interfacing with the physical world, mapping to platforms, and distributed embedded systems. The course has a strong laboratory component, with emphasis on a semester-long sequence of projects.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructors: Lee, Seshia
Formerly known as: Electrical Engineering C249M/Computer Science C249M
Also listed as: COMPSCI C249A
Introduction to Embedded Systems: Read Less [-]

EL ENG C249B Embedded System Design: Modeling, Analysis, and Synthesis 4 Units
Principles of embedded system design. Focus on design methodologies and foundations. Platform-based design and communication-based design and their relationship with design time, re-use, and performance. Models of computation and their use in design capture, manipulation, verification, and synthesis. Mapping into architecture and systems platforms. Performance estimation. Scheduling and real-time requirements. Synchronous languages and time-triggered protocols to simplify the design process.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 2 hours of laboratory per week
Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Instructor: Sangiovanni-Vincentelli
Formerly known as: Electrical Engineering C249/Civil and Environmental Engineering C289
Also listed as: CIV ENG C289
Embedded System Design: Modeling, Analysis, and Synthesis: Read Less [-]
EL ENG C261 Medical Imaging Signals and Systems 4 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020
Biomedical imaging is a clinically important application of engineering, applied mathematics, physics, and medicine. In this course, we apply linear systems theory and basic physics to analyze X-ray imaging, computerized tomography, nuclear medicine, and MRI. We cover the basic physics and instrumentation that characterizes medical image as an ideal perfect-resolution image blurred by an impulse response. This material could prepare the student for a career in designing new medical imaging systems that reliably detect small tumors or infarcts.

Course Objectives: • understand how 2D impulse response or 2D spatial frequency transfer function (or Modulation Transfer Function) allow one to quantify the spatial resolution of an imaging system.
• understand 2D sampling requirements to avoid aliasing
• understand 2D filtered backprojection reconstruction from projections based on the projection-slice theorem of Fourier Transforms
• understand the concept of image reconstruction as solving a mathematical inverse problem.
• understand the limitations of poorly conditioned inverse problems and noise amplification
• understand how diffraction can limit resolution—but not for the imaging systems in this class
• understand the hardware components of an X-ray imaging scanner
• understand the physics and hardware limits to spatial resolution of an X-ray imaging system
• understand tradeoffs between depth, contrast, and dose for X-ray sources
• understand resolution limits for CT scanners
• understand how to reconstruct a 2D CT image from projection data using the filtered backprojection algorithm
• understand the hardware and physics of Nuclear Medicine scanners
• understand how PET and SPECT images are created using filtered backprojection
• understand resolution limits of nuclear medicine scanners
• understand MRI hardware components, resolution limits and image reconstruction via a 2D FFT
• understand how to construct a medical imaging scanner that will achieve a desired spatial resolution specification.

Student Learning Outcomes: • students will be tested for their understanding of the key concepts above
• undergraduate students will apply to graduate programs and be admitted
• students will apply this knowledge to their research at Berkeley, UCSF.
EL ENG 290B Advanced Topics in Electrical Engineering: Advanced Topics in Solid State Devices 1 - 3 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019
The 290 courses cover current topics of research interest in electrical engineering. The course content may vary from semester to semester.
Advanced Topics in Electrical Engineering: Advanced Topics in Solid State Devices: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture per week
Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Advanced Topics in Electrical Engineering: Advanced Topics in Solid State Devices: Read Less [-]

EL ENG 290D Advanced Topics in Electrical Engineering: Advanced Topics in Semiconductor Technology 1 - 3 Units
Terms offered: Spring 2021, Fall 2014, Fall 2013
The 290 courses cover current topics of research interest in electrical engineering. The course content may vary from semester to semester.
Advanced Topics in Electrical Engineering: Advanced Topics in Semiconductor Technology: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture per week
Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Advanced Topics in Electrical Engineering: Advanced Topics in Semiconductor Technology: Read Less [-]

EL ENG 290C Advanced Topics in Electrical Engineering: Advanced Topics in Circuit Design 1 - 3 Units
Terms offered: Spring 2019, Fall 2018, Spring 2018
The 290 courses cover current topics of research interest in electrical engineering. The course content may vary from semester to semester.
Advanced Topics in Electrical Engineering: Advanced Topics in Circuit Design: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture per week
Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Advanced Topics in Electrical Engineering: Advanced Topics in Circuit Design: Read Less [-]

EL ENG 290F Advanced Topics in Electrical Engineering: Advanced Topics in Photonics 1 - 3 Units
Terms offered: Spring 2014, Fall 2013, Fall 2012
The 290 courses cover current topics of research interest in electrical engineering. The course content may vary from semester to semester.
Advanced Topics in Electrical Engineering: Advanced Topics in Photonics: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture per week
Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.
Advanced Topics in Electrical Engineering: Advanced Topics in Photonics: Read Less [-]
EL ENG 290G Advanced Topics in Electrical Engineering: Advanced Topics in Memis, Microsensors, and Microactuators 1 - 3 Units
Terms offered: Fall 2017, Fall 2016, Spring 2002
The 290 courses cover current topics of research interest in electrical engineering. The course content may vary from semester to semester. Advanced Topics in Electrical Engineering: Advanced Topics in Memis, Microsensors, and Microactuators: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.

Formerly known as: Engineering 210
Advanced Topics in Electrical Engineering: Advanced Topics in Memis, Microsensors, and Microactuators: Read Less [-]

EL ENG 290N Advanced Topics in Electrical Engineering: Advanced Topics in System Theory 1 - 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2015
The 290 courses cover current topics of research interest in electrical engineering. The course content may vary from semester to semester. Advanced Topics in Electrical Engineering: Advanced Topics in System Theory: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.

Advanced Topics in Electrical Engineering: Advanced Topics in System Theory: Read Less [-]

EL ENG 290O Advanced Topics in Electrical Engineering: Advanced Topics in Control 1 - 3 Units
Terms offered: Spring 2019, Fall 2018, Fall 2017
The 290 courses cover current topics of research interest in electrical engineering. The course content may vary from semester to semester. Advanced Topics in Electrical Engineering: Advanced Topics in Control: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.

Advanced Topics in Electrical Engineering: Advanced Topics in Control: Read Less [-]

EL ENG 290P Advanced Topics in Electrical Engineering: Advanced Topics in Bioelectronics 1 - 3 Units
Terms offered: Spring 2019, Spring 2018, Fall 2017
The 290 courses cover current topics of research interest in electrical engineering. The course content may vary from semester to semester. Advanced Topics in Electrical Engineering: Advanced Topics in Bioelectronics: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Letter grade.

Advanced Topics in Electrical Engineering: Advanced Topics in Bioelectronics: Read Less [-]
EL ENG 290Q Advanced Topics in Electrical Engineering: Advanced Topics in Communication Networks 1 - 3 Units

Terms offered: Spring 2017, Spring 2016, Fall 2014

The 290 courses cover current topics of research interest in electrical engineering. The course content may vary from semester to semester.

Advanced Topics in Electrical Engineering: Advanced Topics in Communication Networks: Read More [+]

Rules & Requirements

Prerequisites: Consent of instructor

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-3 hours of lecture per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Advanced Topics in Electrical Engineering: Advanced Topics in Communication Networks: Read Less [-]

EL ENG 290S Advanced Topics in Electrical Engineering: Advanced Topics in Communications and Information Theory 1 - 3 Units

Terms offered: Fall 2018, Fall 2016, Fall 2009

The 290 courses cover current topics of research interest in electrical engineering. The course content may vary from semester to semester.

Advanced Topics in Electrical Engineering: Advanced Topics in Communications and Information Theory: Read More [+]

Rules & Requirements

Prerequisites: Consent of instructor

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-3 hours of lecture per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Advanced Topics in Electrical Engineering: Advanced Topics in Communications and Information Theory: Read Less [-]

EL ENG 290T Advanced Topics in Electrical Engineering: Advanced Topics in Signal Processing 1 - 3 Units

Terms offered: Fall 2018, Fall 2017, Fall 2016

The 290 courses cover current topics of research interest in electrical engineering. The course content may vary from semester to semester.

Advanced Topics in Electrical Engineering: Advanced Topics in Signal Processing: Read More [+]

Rules & Requirements

Prerequisites: Consent of instructor

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-3 hours of lecture per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Advanced Topics in Electrical Engineering: Advanced Topics in Signal Processing: Read Less [-]

EL ENG 290Y Advanced Topics in Electrical Engineering: Organic Materials in Electronics 3 Units

Terms offered: Spring 2014, Spring 2013, Fall 2009

Organic materials are seeing increasing application in electronics applications. This course will provide an overview of the properties of the major classes of organic materials with relevance to electronics. Students will study the technology, physics, and chemistry of their use in the three most rapidly growing major applications—energy conversion/generation devices (fuel cells and photovoltaics), organic light-emitting diodes, and organic transistors.

Advanced Topics in Electrical Engineering: Organic Materials in Electronics: Read More [+]

Rules & Requirements

Prerequisites: EL ENG 130; and undergraduate general chemistry

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Instructor: Subramanian

Advanced Topics in Electrical Engineering: Organic Materials in Electronics: Read Less [-]
EL ENG C291 Advanced Topics in Circuit Design 3 Units
Terms offered: Prior to 2007
Seminar-style course presenting an in-depth perspective on one specific domain of integrated circuit design. Most often, this will address an application space that has become particularly relevant in recent times. Examples are serial links, ultra low-power design, wireless transceiver design, etc.
Advanced Topics in Circuit Design: Read More [+]

Rules & Requirements

Prerequisites: MAS-IC students only

Credit Restrictions: Students will receive no credit for W290C after taking 290C.

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of web-based lecture per week

Summer: 10 weeks - 4.5 hours of web-based lecture per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

EL ENG C291 Control and Optimization of Distributed Parameters Systems 3 Units
Terms offered: Fall 2017, Spring 2016, Spring 2015, Spring 2014
Control and Optimization of Distributed Parameters Systems: Read More [+]

Rules & Requirements

Prerequisites: ENGIN 7 and MATH 54; or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Letter grade.

Advanced Topics in Circuit Design: Read Less [-]

EL ENG 297 Field Studies in Electrical Engineering 12 Units
Terms offered: Summer 2022 8 Week Session, Summer 2018 8 Week Session, Fall 2011
Supervised experience in off-campus companies relevant to specific aspects and applications of electrical engineering. Written report required at the end of the semester.
Field Studies in Electrical Engineering: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-12 hours of independent study per week

Summer: 8 weeks - 1-12 hours of independent study per week

Additional Details

Subject/Course Level: Electrical Engineering/Graduate

Grading: Offered for satisfactory/unsatisfactory grade only.

Field Studies in Electrical Engineering: Read Less [-]
EL ENG 298 Group Studies, Seminars, or Group Research 1 - 4 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020
Advanced study in various subjects through special seminars on topics to be selected each year, informal group studies of special problems, group participation in comprehensive design problems, or group research on complete problems for analysis and experimentation.

Group Studies, Seminars, or Group Research: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 0 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: The grading option will be decided by the instructor when the class is offered.

Group Studies, Seminars, or Group Research: Read Less [-]

EL ENG 299 Individual Research 1 - 12 Units
Terms offered: Fall 2022, Spring 2022, Fall 2021
Investigation of problems in electrical engineering.

Individual Research: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-12 hours of independent study per week
Summer: 6 weeks - 2.5-30 hours of independent study per week
8 weeks - 1.5-22.5 hours of independent study per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.

Individual Research: Read Less [-]

EL ENG 375 Teaching Techniques for Electrical Engineering 2 Units
Terms offered: Fall 2022, Spring 2022, Fall 2021
Discussion of effective teaching techniques. Use of educational objectives, alternative forms of instruction, and proven techniques to enhance student learning. This course is intended to orient new student instructors to more effectively teach courses offered by the Department of Electrical Engineering and Computer Sciences at UC Berkeley.

Teaching Techniques for Electrical Engineering: Read More [+]

Rules & Requirements
Prerequisites: Teaching assistant or graduate student
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1.5 hours of seminar per week

Additional Details
Subject/Course Level: Electrical Engineering/Professional course for teachers or prospective teachers
Grading: Offered for satisfactory/unsatisfactory grade only.

Teaching Techniques for Electrical Engineering: Read Less [-]

EL ENG 602 Individual Study for Doctoral Students 1 - 8 Units
Terms offered: Fall 2016, Fall 2015, Fall 2014
Individual study in consultation with the major field adviser, intended to provide an opportunity for qualified students to prepare themselves for the various examinations required of candidates for the Ph.D. (and other doctoral degrees).

Individual Study for Doctoral Students: Read More [+]

Rules & Requirements
Credit Restrictions: Course does not satisfy unit or residence requirements for doctoral degree.
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Summer: 8 weeks - 6-45 hours of independent study per week

Additional Details
Subject/Course Level: Electrical Engineering/Graduate examination preparation
Grading: Offered for satisfactory/unsatisfactory grade only.

Individual Study for Doctoral Students: Read Less [-]