Astrophysics

Bachelor of Arts (BA)

The Department of Astronomy offers an undergraduate major and minor in Astrophysics. This program prepares students for astrophysics graduate work or other advanced degrees in related science and engineering fields. It also prepares students for careers in teaching or for working in data science, the tech industry, and other technical fields.

Declaring the Major

Students can apply to declare the major after completing all lower division requirements (see major requirements tab). For applicants with prerequisites in progress, applications will be reviewed after the grades for all prerequisites are available. All the courses applied to the astrophysics major must be taken for a letter grade. A minimum grade point average of 2.0 is required for all prerequisites as well as for upper-division courses used for the major. Additional information including a list of required courses, electives and forms to complete prior declaring can be found on our website (https://astro.berkeley.edu/programs/undergraduate-program/).

Minor Program

The Department of Astronomy offers a minor program in Astrophysics. All courses applied to the astrophysics minor must be taken for a letter grade. A minimum grade point average of 2.0 is required for the lower-division minor requirements as well as for the five upper-division courses used for the minor. Only one upper-division class may overlap between your major and the Astrophysics Minor. Students must complete the College of Letters and Science Completion of L&S Minor form (https://ls.berkeley.edu/sites/default/files/minor.2019.pdf).

In addition to the University, campus, and college requirements, listed on the College Requirements tab, students must fulfill the below requirements specific to their major program.

General Guidelines

- All courses taken to fulfill the major requirements below must be taken for graded credit, other than courses listed which are offered on a Pass/No Pass basis only. Other exceptions to this requirement are noted as applicable.
- Only one upper-division course may be used to simultaneously fulfill requirements for a student's major and minor programs, with the exception of minors offered outside of the College of Letters & Science. Only two upper-division courses can overlap between two majors.
- A minimum grade point average (GPA) of 2.0 must be maintained in both upper and lower division courses used to fulfill the major requirements.

For information regarding residency requirements and unit requirements, please see the College Requirements tab.

Lower Division Major Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1A</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1B</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 53</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 54</td>
<td>Linear Algebra and Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>or PHYSICS 85</td>
<td>Introduction to Mathematical Physics</td>
<td></td>
</tr>
</tbody>
</table>

Upper Division Major Requirements

Optional:

These courses are not required but strongly recommended for anyone considering the Astrophysics major. Please consult with the Undergraduate Adviser.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 7A</td>
<td>Physics for Scientists and Engineers</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 7B</td>
<td>Physics for Scientists and Engineers</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 5A</td>
<td>Introductory Mechanics and Relativity</td>
<td>4</td>
</tr>
<tr>
<td>Or PHYSICS 5B</td>
<td>and PHYSICS 5BL</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 7C</td>
<td>Physics for Scientists and Engineers</td>
<td>4</td>
</tr>
<tr>
<td>Or PHYSICS 5C</td>
<td>and PHYSICS 5CL</td>
<td></td>
</tr>
</tbody>
</table>

Required (choose one of the following):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTRON 7A</td>
<td>Introduction to Astrophysics</td>
<td>4</td>
</tr>
<tr>
<td>ASTRON 7B</td>
<td>Introduction to Astrophysics</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 88</td>
<td>Data Science Applications in Physics</td>
<td>2</td>
</tr>
<tr>
<td>Or COMPSCI 61A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Or PHYSICS 77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Required (choose two of the following):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTRON 160</td>
<td>Stellar Physics</td>
<td>4</td>
</tr>
<tr>
<td>ASTRON C161</td>
<td>Relativistic Astrophysics and Cosmology</td>
<td>4</td>
</tr>
<tr>
<td>ASTRON C162</td>
<td>Planetary Astrophysics</td>
<td>4</td>
</tr>
</tbody>
</table>

Required (as needed):

Upper division electives so that the total is 30 units for a single major and 24 units for a double major.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 104A</td>
<td>Advanced Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 104B</td>
<td>Advanced Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 105</td>
<td>Instrumental Methods in Analytical Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 108</td>
<td>Inorganic Synthesis and Reactions</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 12A</td>
<td>Organic Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 12B</td>
<td>Organic Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 120A</td>
<td>Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 120B</td>
<td>Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 122</td>
<td>Quantum Mechanics and Spectroscopy</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 125</td>
<td>Physical Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 143</td>
<td>Nuclear Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>COMPSCI 160</td>
<td>User Interface Design and Development</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 164</td>
<td>Programming Languages and Compilers</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 169</td>
<td>Software Engineering</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 184</td>
<td>Foundations of Computer Graphics</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 186</td>
<td>Introduction to Database Systems</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 188</td>
<td>Introduction to Artificial Intelligence</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 189</td>
<td>Introduction to Machine Learning</td>
<td>4</td>
</tr>
<tr>
<td>EECS 120</td>
<td>Course Not Available</td>
<td></td>
</tr>
<tr>
<td>EECS 150</td>
<td>Course Not Available</td>
<td></td>
</tr>
<tr>
<td>EPS 108</td>
<td>Geodynamics</td>
<td>4</td>
</tr>
<tr>
<td>EPS 109</td>
<td>Computer Simulations with Jupyter Notebooks</td>
<td>4</td>
</tr>
</tbody>
</table>

1 If you are planning to double major with Physics, We recommend PHYSICS 89
General Guidelines

1. All courses taken to fulfill the minor requirements below must be taken for graded credit.
2. A minimum of three of the upper division courses taken to fulfill the minor requirements must be completed at UC Berkeley.
3. A minimum grade point average (GPA) of 2.0 is required for courses used to fulfill the minor requirements.
4. Courses used to fulfill the minor requirements may be applied toward the Seven-Course Breadth requirement, for Letters & Science students.
5. Only one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.
6. All minor requirements must be completed prior to the last day of finals during the semester in which you plan to graduate. If you cannot finish all courses required for the minor by that time, please see a College of Letters & Science adviser.

7. All minor requirements must be completed within the unit ceiling. (For further information regarding the unit ceiling, please see the College Requirements tab.)

<table>
<thead>
<tr>
<th>Lower Division Minor Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1A</td>
</tr>
<tr>
<td>MATH 1B</td>
</tr>
<tr>
<td>MATH 53</td>
</tr>
<tr>
<td>MATH 54</td>
</tr>
<tr>
<td>PHYSICS 7A</td>
</tr>
<tr>
<td>PHYSICS 7B</td>
</tr>
<tr>
<td>PHYSICS 7C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upper Division Minor Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional: The following are recommended for the minor, but are not required.</td>
</tr>
<tr>
<td>ASTRON 7A</td>
</tr>
<tr>
<td>ASTRON 7B</td>
</tr>
<tr>
<td>Required (choose two of the following):</td>
</tr>
<tr>
<td>ASTRON 120</td>
</tr>
<tr>
<td>ASTRON 121</td>
</tr>
<tr>
<td>ASTRON 128</td>
</tr>
<tr>
<td>ASTRON 160</td>
</tr>
<tr>
<td>ASTRON C161</td>
</tr>
<tr>
<td>ASTRON C162</td>
</tr>
<tr>
<td>Required (choose three of the following electives):</td>
</tr>
<tr>
<td>CHEM 104A</td>
</tr>
<tr>
<td>CHEM 104B</td>
</tr>
<tr>
<td>CHEM 105</td>
</tr>
<tr>
<td>CHEM 108</td>
</tr>
<tr>
<td>CHEM 12A</td>
</tr>
<tr>
<td>CHEM 12B</td>
</tr>
<tr>
<td>CHEM 120A</td>
</tr>
<tr>
<td>CHEM 120B</td>
</tr>
<tr>
<td>CHEM 122</td>
</tr>
<tr>
<td>CHEM 125</td>
</tr>
<tr>
<td>CHEM 143</td>
</tr>
<tr>
<td>EPS 108</td>
</tr>
<tr>
<td>EPS 109</td>
</tr>
<tr>
<td>EPS 122</td>
</tr>
<tr>
<td>EPS C181</td>
</tr>
<tr>
<td>COMPSCI 160</td>
</tr>
<tr>
<td>COMPSCI 164</td>
</tr>
<tr>
<td>COMPSCI 169</td>
</tr>
<tr>
<td>COMPSCI 184</td>
</tr>
<tr>
<td>COMPSCI 186</td>
</tr>
<tr>
<td>COMPSCI 188</td>
</tr>
<tr>
<td>COMPSCI 189</td>
</tr>
<tr>
<td>MATH 104</td>
</tr>
<tr>
<td>MATH 110</td>
</tr>
<tr>
<td>MATH 121A</td>
</tr>
<tr>
<td>MATH 121B</td>
</tr>
<tr>
<td>MATH 128A</td>
</tr>
</tbody>
</table>
College of Letters & Science Essential Skills
Requirements

Quantitative Reasoning (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/quantitative-reasoning-requirement/)
The Quantitative Reasoning requirement is designed to ensure that students graduate with basic understanding and competency in math, statistics, or computer science. The requirement may be satisfied by exam or by taking an approved course.

Foreign Language (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/foreign-language-requirement/)
The Foreign Language requirement may be satisfied by demonstrating proficiency in reading comprehension, writing, and conversaction in a foreign language equivalent to the second semester college level, either by passing an exam or by completing approved course work.

Reading and Composition (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/reading-composition-requirement/)
In order to provide a solid foundation in reading, writing, and critical thinking the College requires two semesters of lower division work in composition in sequence. Students must complete parts A & B reading and composition courses by the end of their second semester and a second-level course by the end of their fourth semester.

College of Letters & Science 7 Course Breadth Requirements
Breadth Requirements (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/#breadthrequirementstext)
The undergraduate breadth requirements provide Berkeley students with a rich and varied educational experience outside of their major program. As the foundation of a liberal arts education, breadth courses give students a view into the intellectual life of the University while introducing them to a multitude of perspectives and approaches to research and scholarship. Engaging students in new disciplines and with peers from other majors, the breadth experience strengthens interdisciplinary connections and context that prepares Berkeley graduates to understand and solve the complex issues of their day.

Unit Requirements

- 120 total units
- Of the 120 units, 36 must be upper division units
- Of the 36 upper division units, 6 must be taken in courses offered outside your major department

Residence Requirements
For units to be considered in 'residence,' you must be registered in courses on the Berkeley campus as a student in the College of Letters & Science. Most students automatically fulfill the residence requirement by attending classes here for four years. In general, there is no need to be concerned about this requirement, unless you go abroad for a semester or year or want to take courses at another institution or through UC Extension during your senior year. In these cases, you should make an appointment to meet an adviser to determine how you can meet the Senior Residence Requirement.
Note: Courses taken through UC Extension do not count toward residence.

Senior Residence Requirement
After you become a senior (with 90 semester units earned toward your BA degree), you must complete at least 24 of the remaining 30 units in residence in at least two semesters. To count as residence, a semester must consist of at least 6 passed units. Intercampus Visitor, EAP, and UC Berkeley-Washington Program (UCDC) units are excluded.

You may use a Berkeley Summer Session to satisfy one semester of the Senior Residence requirement, provided that you successfully complete 6 units of course work in the Summer Session and that you have been enrolled previously in the college.

Modified Senior Residence Requirement
Participants in the UC Education Abroad Program (EAP), Berkeley Summer Abroad, or the UC Berkeley Washington Program (UCDC) may meet a Modified Senior Residence requirement by completing 24 (excluding EAP) of their final 60 semester units in residence. At least 12 of these 24 units must be completed after you have completed 90 units.

Upper Division Residence Requirement
You must complete in residence a minimum of 18 units of upper division courses (excluding UCEAP units), 12 of which must satisfy the requirements for your major.

Major Maps help undergraduate students discover academic, co-curricular, and discovery opportunities at UC Berkeley based on intended major or field of interest. Developed by the Division of Undergraduate Education in collaboration with academic departments, these experience maps will help you:

• Explore your major and gain a better understanding of your field of study
• Connect with people and programs that inspire and sustain your creativity, drive, curiosity and success
• Discover opportunities for independent inquiry, enterprise, and creative expression
• Engage locally and globally to broaden your perspectives and change the world
• Reflect on your academic career and prepare for life after Berkeley

Use the major map below as a guide to planning your undergraduate journey and designing your own unique Berkeley experience.

Undergraduate Faculty Advisor
Mariska Kriek (https://astro.berkeley.edu/people/mariska-kriek/) is the Department of Astronomy's undergraduate faculty adviser. She is a great resource for content of courses, research, and career development in the field of astrophysics. Office hours are available here (https://docs.google.com/spreadsheets/d/1OP-hD_L-bAgjjuDRShHxiUPeRbEnn1GgZt287sKaAHS/edit#gid=1).

Astrophysics
Expand all course descriptions [+]
Collapse all course descriptions [-]

ASTRON 3 Introduction to Modern Cosmology 2 Units
Terms offered: Fall 2015, Spring 2015, Spring 2014
Description of research and results in modern extragalactic astronomy and cosmology. We read the stories of discoveries of the principles of our Universe. Simple algebra is used.

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

Undergraduate Advising
Amber Banayat (https://astro.berkeley.edu/people/amber-banayat/) is the Department of Astronomy's undergraduate and graduate advisor. Students are encouraged to see the undergraduate advisor for information on major and minor requirements, policies, procedures, department resources, events and activities as well as certifying degrees and majors. Advising appointments can be made using Calcentral. Drop-in advising is also available. For general information, please contact astroadvising@berkeley.edu or call (510) 463-1839.
ASTRON 7A Introduction to Astrophysics 4 Units
Terms offered: Fall 2020, Fall 2019, Fall 2018
This is the first part of an overview of astrophysics, with an emphasis on the way in which physics is applied to astronomy. This course deals with the solar system and stars, while 7B covers galaxies and cosmology. Solar system topics include orbital mechanics, geology of terrestrial planets, planetary atmospheres, and the formation of the solar system. The study of stars will treat determination of observations, properties and stellar structure, and evolution. The physics in this course includes mechanics and gravitation; kinetic theory of gases; properties of radiation and radiative energy transport; quantum mechanics of photons, atoms, and electrons; and magnetic fields.

Rules & Requirements
Prerequisites: Math 1A -1B. Physics 5A, 5B/5BL or Physics 7A/B (5B or 7B can be taken concurrently)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of laboratory per week
Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Chiang, Kriek, Weisz, Dressing

ASTRON 7B Introduction to Astrophysics 4 Units
Terms offered: Spring 2020, Spring 2019, Spring 2018
This is the second part of an overview of astrophysics, which begins with 7A. This course covers the Milky Way galaxy, star formation and the interstellar medium, galaxies, black holes, quasars, dark matter, the expansion of the universe and its large-scale structure, and cosmology and the Big Bang. The physics in this course includes that used in 7A (mechanics and gravitation; kinetic theory of gases; properties of radiation and radiative energy transport; quantum mechanics of photons, atoms, and electrons; and magnetic fields) and adds the special and general theories of relativity.

Rules & Requirements
Prerequisites: Math 1A -1B. Physics 5A, 5B/5BL, 5C/5CL, or Physics 7A/B/C (5C or 7C can be taken concurrently)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of laboratory per week
Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Bloom, Chiang

ASTRON 9 Selected Topics in Astronomy 3 Units
Terms offered: Summer 2020 First 6 Week Session, Summer 2020 Second 6 Week Session, Summer 2019 Second 6 Week Session
This seminar will explore one of a variety of subjects in greater depth than in introductory courses. Possible topics include stars, galaxies, the solar system, the interstellar medium, relativity and cosmology, history of astronomy, observational astronomy, and life in the universe.

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 3-3 hours of lecture per week
Summer: 6 weeks - 7.5 hours of lecture per week
Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Selected Topics in Astronomy: Read Less [-]
ASTRON 10 Introduction to General Astronomy 4 Units
Terms offered: Summer 2020 First 6 Week Session, Summer 2020 Second 6 Week Session, Summer 2019 Second 6 Week Session
A description of modern astronomy with emphasis on the structure and evolution of stars, galaxies, and the Universe. Additional topics optionally discussed include quasars, pulsars, black holes, and extraterrestrial communication, etc. Individual instructor's synopses available from the department.

Rules & Requirements
Credit Restrictions: Students will receive no credit for Astronomy 10 after taking Astronomy 7A or 7B, XAstronomy 10. Students can remove a deficient grade in XAstronomy 10 by taking Astronomy 10, Letter and Science C70U or Astronomy C10.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 6 weeks - 8 hours of lecture and 2.5 hours of discussion per week
8 weeks - 6 hours of lecture and 2 hours of discussion per week

Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Bloom

Introduction to General Astronomy: Read More [+]

ASTRON C10 Introduction to General Astronomy 4 Units
Terms offered: Fall 2020, Fall 2019, Fall 2018
A description of modern astronomy with emphasis on the structure and evolution of stars, galaxies, and the Universe. Additional topics optionally discussed include quasars, pulsars, black holes, and extraterrestrial communication, etc. Individual instructor's synopses available from the department.

Rules & Requirements
Credit Restrictions: Students will receive no credit for 10 after taking 7A or 7B.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 6 weeks - 8 hours of lecture and 2.5 hours of discussion per week
8 weeks - 6 hours of lecture and 2 hours of discussion per week

Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Filippenko
Also listed as: L & S C70U

Introduction to General Astronomy: Read Less [-]

ASTRON N10 Introduction to General Astronomy 3 Units
Terms offered: Prior to 2007
The nature and evolution of the universe: history of astronomical knowledge; overall structure of the universe; galaxies, radio galaxies, peculiar galaxies, and quasars; structure and evolution of stars; exploding stars, pulsars, and black holes; exploration of the solar system; the search for extraterrestrial life.

Rules & Requirements
Prerequisites: High school algebra will be presumed but used sparingly
Credit Restrictions: Students will receive no credit for 10 after taking 7.

Hours & Format
Summer: 8 weeks - 6 hours of lecture per week

Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Introduction to General Astronomy: Read Less [-]
ASTRON C12 The Planets 3 Units
Terms offered: Spring 2020, Spring 2019, Spring 2018
A tour of the mysteries and inner workings of our solar system. What are planets made of? Why do they orbit the sun the way they do? How do planets form, and what are they made of? Why do some bizarre moons have oceans, volcanoes, and ice floes? What makes the Earth hospitable for life? Is the Earth a common type of planet or some cosmic quirk? This course will introduce basic physics, chemistry, and math to understand planets, moons, rings, comets, asteroids, atmospheres, and oceans. Understanding other worlds will help us save our own planet and help us understand our place in the universe.
The Planets: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 6 weeks - 7.5 hours of lecture and 2.5 hours of discussion per week

Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Also listed as: EPS C12/L & S C70T

The Planets: Read Less [-]

ASTRON W12 The Planets 3 Units
Terms offered: Summer 2020 8 Week Session, Summer 2019 8 Week Session, Summer 2018 8 Week Session
A tour of the mysteries and inner workings of our solar system. What are planets made of? Why do they orbit the sun the way they do? How do planets form, and what are they made of? Why do some bizarre moons have oceans, volcanoes, and ice floes? What makes the Earth hospitable for life? Is the Earth a common type of planet or some cosmic quirk? This course will introduce basic physics, chemistry, and math to understand planets, moons, rings, comets, asteroids, atmospheres, and oceans. Understanding other worlds will help us save our own planet and help us understand our place in the universe. This course is web-based.
The Planets: Read More [+]

Hours & Format
Summer: 8 weeks - 6 hours of web-based lecture per week
Online: This is an online course.

Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Militzer
Formerly known as: Astronomy W12/Earth and Planetary Science W12
Also listed as: EPS W12

The Planets: Read Less [-]

ASTRON C13 Origins: from the Big Bang to the Emergence of Humans 4 Units
Terms offered: Fall 2018, Fall 2016, Fall 2014
This course will cover our modern scientific understanding of origins, from the Big Bang to the formation of planets like Earth, evolution by natural selection, the genetic basis of evolution, and the emergence of humans. These ideas are of great intrinsic scientific importance and also have far reaching implications for other aspects of people’s lives (e.g., philosophical, religious, and political). A major theme will be the scientific method and how we know what we know.
Origins: from the Big Bang to the Emergence of Humans: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of discussion per week

Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Marshall, Quataert
Also listed as: INTEGBI C13
Origins: from the Big Bang to the Emergence of Humans: Read Less [-]

ASTRON 24 Freshman Seminars 1 Unit
Terms offered: Fall 2015, Fall 2011, Spring 2011
The Berkeley Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Berkeley Seminars are offered in all campus departments, and topics vary from department to department and semester to semester.
Freshman Seminars: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week

Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.
Instructor: Militzer

Freshman Seminars: Read Less [-]
ASTRON 39 Seminar 1.5 Unit
A small-size undergraduate seminar exploring one astronomical topic in depth. Students are responsible for much of the presentation.
Seminar: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week

Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.
Instructors: Basri, Filippenko, Davis
Seminar: Read Less [-]

ASTRON 84 Sophomore Seminar 1 or 2 Units
Terms offered: Spring 2020, Spring 2019, Spring 2017
Sophomore seminars are small interactive courses offered by faculty members in departments all across the campus. Sophomore seminars offer opportunity for close, regular intellectual contact between faculty members and students in the crucial second year. The topics vary from department to department and semester to semester. Enrollment limited to 15 sophomores.
Sophomore Seminar: Read More [+]

Rules & Requirements
Prerequisites: At discretion of instructor
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 5 weeks - 3-6 hours of seminar per week
10 weeks - 1.5-3 hours of seminar per week
15 weeks - 1-2 hours of seminar per week
Summer: 6 weeks - 2.5-5 hours of seminar per week
8 weeks - 1.5-3.5 hours of seminar and 2-4 hours of seminar per week

Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.
Sophomore Seminar: Read Less [-]

ASTRON 98 Directed Group Study 1 - 4 Units
Terms offered: Fall 2020, Spring 2020, Fall 2019
Topics will vary with instructor.
Directed Group Study: Read More [+]

Rules & Requirements
Prerequisites: Restricted to freshmen and sophomores; consent of instructor
Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week

Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Study: Read Less [-]

ASTRON 99 Directed Study in Astronomy 1 - 3 Units
Terms offered: Spring 2016, Spring 2015, Fall 2014
Supervised observational studies or directed reading for lower division students.
Directed Study in Astronomy: Read More [+]

Rules & Requirements
Prerequisites: 7A-B, 10 and consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of independent study per week
Summer: 6 weeks - 2.5-7.5 hours of independent study per week

Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Study in Astronomy: Read Less [-]
ASTRON 120 Optical and Infrared Astronomy Laboratory 4 Units
Terms offered: Fall 2020, Fall 2019, Fall 2018
This course requires four to six experiments such as the following: accurate position and brightness measurements of stars; laboratory exploration of the characteristics of two-dimensional charge-coupled devices (CCDs) and infrared detectors; measurement of the distance, reddening, and age of a star cluster; measurement of the Stokes parameters and linear polarization of diffuse synchrotron and reflection nebulae; measurement of the period and pulse shape of the Crab pulsar using Fourier techniques. Professional telescopes will be used such as those at Leuschner Observatory and Lick Observatory. There is an emphasis on error analysis, software development in the IDL language, and high-quality written reports.
Optical and Infrared Astronomy Laboratory: Read More [+]

Rules & Requirements
Prerequisites: Astronomy 7A-7B recommended; Mathematics 54 or Physics 89 (may be taken concurrently); Physics 7A-7B-7C (7C may be taken concurrently) or Physics 5A-5B-5C (5C may be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 4 hours of laboratory per week

Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Graham, Duchene
Optical and Infrared Astronomy Laboratory: Read Less [-]

ASTRON 121 Radio Astronomy Laboratory 4 Units
Terms offered: Spring 2020, Spring 2019, Spring 2018
Several basic laboratory experiments that concentrate on microwave electronics and techniques; construction of receiving, observing, and data analysis systems for two radioastronomical telescopes, a single-dish 21-cm line system and a 12-GHz interferometer; use of these telescopes for astronomical observing projects including structure of the Milky Way galaxy, precise position measurement of several radio sources, and measurement of the radio brightness distributions of the sun and moon with high angular resolution. There is a heavy emphasis on digital data acquisition, software development in the Python language, and high-quality written reports.
Radio Astronomy Laboratory: Read More [+]

Rules & Requirements
Prerequisites: Astro 7A-7B recommended; Mathematics 53; Mathematics 54 or Physics 89; Physics 7A-7B-7C or Physics 5A-5B-5C

Hours & Format
Fall and/or spring: 15 weeks - 4 hours of discussion and 1 hour of lecture per week

Additional Details
Subject/Course Level: Astronomy/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Parsons
Radio Astronomy Laboratory: Read Less [-]
ASTRON 128 Astronomy Data Science Laboratory 4 Units
Terms offered: Spring 2020, Spring 2019
This course features 3 data-centric laboratory experiments that draw on a variety of tools used by professional astronomers. Students will learn to procure and clean data (drawn from a variety of world-class astronomical facilities), assess the fidelity/quality of data, build and apply models to describe data, learn statistical and computational techniques to analyze data (e.g., Bayesian inference, machine learning, parallel computing), and effectively communicate data and scientific results. There is a heavy emphasis on software development in the Python language, statistical techniques, and high-quality communication (e.g., written reports, oral presentations, and data visualization).

Rules & Requirements
Prerequisites: Astro 7A-7B; Mathematics 53; Mathematics 54 or Physics 89; Astro 160; Astro C161 (may be taken concurrently) and Data C8 or C100 (or equivalent level of fluency of the Python programming language)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of laboratory per week

Astronomy Data Science Laboratory: Read More [+]

ASTRON 160 Stellar Physics 4 Units
Terms offered: Fall 2020, Fall 2019, Spring 2019

Rules & Requirements
Prerequisites: Astro 7A recommended; Physics 7A-7B-7C (7C may be taken concurrently) or Physics 5A-5B-5C (5C may be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Stellar Physics: Read Less [-]

ASTRON C161 Relativistic Astrophysics and Cosmology 4 Units
Terms offered: Spring 2020, Spring 2019, Spring 2018
Elements of general relativity. Physics of pulsars, cosmic rays, black holes. The cosmological distance scale, elementary cosmological models, properties of galaxies and quasars. The mass density and age of the universe. Evidence for dark matter and dark energy and concepts of the early universe and of galaxy formation. Reflections on astrophysics as a probe of the extrema of physics.

Rules & Requirements
Prerequisites: 110A-110B; 112 (may be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Relativistic Astrophysics and Cosmology: Read Less [-]
ASTRON C162 Planetary Astrophysics 4 Units
Terms offered: Fall 2020, Fall 2019, Fall 2018
Physics of planetary systems, both solar and extra-solar. Star and planet formation, radioactive dating, small-body dynamics and interaction of radiation with matter, tides, planetary interiors, atmospheres, and magnetospheres. High-quality oral presentations may be required in addition to problem sets and a final exam.
Planetary Astrophysics: Read More [+]

Rules & Requirements

Prerequisites: Mathematics 53, 54; Physics 7A-7B-7C

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Astronomy/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Instructors: Chiang, de Pater, Marcy

Also listed as: EPS C162

Planetary Astrophysics: Read Less [-]

ASTRON 198 Directed Group Study 1 - 4 Units
Terms offered: Fall 2020, Spring 2020, Fall 2019
Topics will vary with instructor.
Directed Group Study: Read More [+]

Rules & Requirements

Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week

Additional Details

Subject/Course Level: Astronomy/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Directed Group Study: Read Less [-]

ASTRON 199 Supervised Independent Study and Research 1 - 4 Units
Terms offered: Fall 2020, Spring 2020, Fall 2019
Supervised Independent Study and Research: Read More [+]

Rules & Requirements

Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-4 hours of independent study per week

Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week

Additional Details

Subject/Course Level: Astronomy/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Supervised Independent Study and Research: Read Less [-]