Chemical Engineering

Bachelor of Science (BS)
The College of Chemistry offers a major in Chemical Engineering leading to the Bachelor of Science (BS) degree, through the Department of Chemical and Biomolecular Engineering. The program equips the student for professional work in development, design, and operation of chemical processes and of process equipment. Students with high scholastic attainment are well prepared to enter graduate programs. The curriculum is accredited by ABET (http://www.abet.org).

Admission to the Major
For information on admission to the major, please see the College of Chemistry Admissions tab (http://guide.berkeley.edu/undergraduate/colleges-schools/chemistry/#admissiontext) in this Guide.

Minor Program
The Department of Chemical and Biomolecular Engineering offers an undergraduate minor in Chemical Engineering. For information regarding how to declare the minor, please contact the department. Please be sure to consult with your college or school for information on rules regarding overlap of courses between majors and minors.

Joint Major Programs with the College of Engineering
Chemical Engineering/Materials Science and Engineering (http://guide.berkeley.edu/undergraduate/degree-programs/chemical-engineering-materials-science-joint-major): BS
Chemical Engineering/Nuclear Engineering (http://guide.berkeley.edu/undergraduate/degree-programs/chemical-engineering-nuclear-joint-major): BS

In addition to the University, campus, and college requirements, listed in the College Requirements tab, students must fulfill the below requirements specific to their major program.

General Guidelines
1. A minimum grade point average (GPA) of 2.0 must be maintained in all courses undertaken at UC Berkeley, including those from UC Summer Sessions, UC Education Abroad Program, UC Berkeley in Washington Program, and XB courses from University Extension.
2. A minimum GPA of 2.0 in all courses taken in the college is required in order to advance and continue in the upper division.
3. A minimum GPA of 2.0 in all upper division courses taken at the University is required to satisfy major requirements.
4. Students in the College of Chemistry who receive a grade of D+ or lower in a chemical and biomolecular engineering or chemistry course for which a grade of C- or higher is required must repeat the course at UC Berkeley.

For information regarding grade requirements in specific courses, please see the notes sections below.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

Lower Division Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 4A</td>
<td>General Chemistry and Quantitative Analysis</td>
<td>4</td>
</tr>
</tbody>
</table>

Upper Division Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120A</td>
<td>Physical Chemistry</td>
<td>3-4</td>
</tr>
<tr>
<td>or PHYSICS 137A</td>
<td>Quantum Mechanics</td>
<td></td>
</tr>
<tr>
<td>CHM ENG 140</td>
<td>Introduction to Chemical Process Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 141</td>
<td>Chemical Engineering Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 142</td>
<td>Chemical Kinetics and Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 150A</td>
<td>Transport Processes</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 150B</td>
<td>Transport and Separation Processes</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 154</td>
<td>Chemical Engineering Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 160</td>
<td>Chemical Process Design</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 162</td>
<td>Dynamics and Control of Chemical Processes</td>
<td>4</td>
</tr>
<tr>
<td>3 units engineering electives chosen from the Lower Division Engineering Electives List OR the Upper Division Engineering Electives List ¹</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
1. Students should take CHEM 4A and CHEM 4B during their freshman year, and CHEM 12A and CHEM 12B during their sophomore year.
2. A grade of C- or better is required in CHEM 4A before taking CHEM 4B, and before CHEM 12A before taking CHEM 12B.
3. A grade of C- or better is required in CHEM 12A before taking BIOLOGY 1A or CHEM 12B.
4. All freshmen are required to complete CHEM ENG 40 during their first semester.
5. A grade of C- or better in CHM ENG 140 is required before enrolling in any other chemical engineering courses.
6. ENGIN W7 may be substituted for ENGIN 7.
7. ENGIN 7 must be taken before or concurrently with CHM ENG 140 and before CHM ENG 150B.
8. Students should start MATH 1A in the first semester of their freshman year.
9. Students should start PHYSICS 7A in the second semester of the freshman year.

Electives and Concentrations: Select one of the following: ²
Open Elective Program: 12 units (see below for details)
Physical and Biological Sciences Electives List

Open Elective Program

Students who do not choose a concentration must complete the following requirements for the open elective program:

- One science elective, selected from physical and biological sciences electives list (see below) 3 units
- CBE elective 3 units
- Engineering electives, selected from the engineering electives list 6 units

A maximum of 6 units of research can be applied toward electives.

1. CHEM 135 Nuclear Chemistry 2 units
2. CHEM 146 Radiocative Methods in Nuclear Technology and Forensics 3 units
3. CHEM C150 Introduction to Materials Chemistry 3 units
4. CHEM C182 Atmospheric Chemistry and Physics Laboratory 3 units
5. CHEM C191 Quantum Information Science and Technology 3 units
6. CHEM 192 Individual Study for Advanced Undergraduates 1-3 units
7. CHEM H194 Research for Advanced Undergraduates 2-4 units
8. CHEM 196 Special Laboratory Study 2-4 units
9. CIV ENG C106 Air Pollution 3 units
10. CIV ENG C116 Chemistry of Soils 3 units
11. COG SCI C102 Scientific Approaches to Consciousness 3 units
12. COG SCI C126 Perception 3 units
13. COG SCI C127 Cognitive Neuroscience 3 units
14. EPS 3 The Water Planet 3 units
15. EPS C12 The Planets 3 units
16. EPS 20 Earthquakes in Your Backyard 3 units
17. EPS C20 Earthquakes in Your Backyard 3 units
18. EPS 50 The Planet Earth 4 units
19. EPS 80 Environmental Earth Sciences 3 units
20. EPS C82 Oceans 3 units
21. EPS 100A Minerals: Their Constitution and Origin 4 units
22. EPS 103 Introduction to Aquatic and Marine Geochemistry 4 units
23. EPS 108 Geodynamics 4 units
24. EPS 117 Geomorphology 4 units
25. EPS C129 Biometeorology 3 units
26. EPS 130 Strong Motion Seismology 3 units
27. EPS C146 Geological Oceanography 4 units
28. EPS C162 Planetary Astrophysics 4 units
29. EPS C180 Air Pollution 3 units
30. EPS C181 Atmospheric Chemistry and Physics Laboratory 3 units
31. EPS C182 Atmospheric Chemistry and Physics Laboratory 3 units
32. ENGLISH C77 Introduction to Environmental Studies 4 units
33. ESPM 2 The Biosphere 3 units
34. ESPM 15 Introduction to Environmental Sciences 3 units
35. ESPM C10 Environmental Issues 4 units
36. ESPM C11 Americans and the Global Forest 4 units
37. ESPM C12 Introduction to Environmental Studies 4 units
38. ESPM 40 Insects and Human Society 3 units
39. ESPM 42 Natural History of Insects 3 units
40. ESPM 44 Biological Control 2 units
41. ESPM 100 Environmental Problem Solving 4 units
42. ESPM 102A Terrestrial Resource Ecology 4 units
43. ESPM 102B Natural Resource Sampling 2 units
44. ESPM 102C Resource Management 4 units
45. ESPM C103 Principles of Conservation Biology 4 units
46. ESPM 106 American Wildlife: Management and Policy in the 21st Century 3 units
47. ESPM C107 Biology and Geomorphology of Tropical Islands 13 units
48. ESPM 108A Trees: Taxonomy, Growth, and Structures 3 units
49. ESPM 108B Environmental Change Genetics 3 units
50. ESPM 110 Primate Ecology 4 units

1. Effective Fall 2017, MSE 45/L is replacing E 45/L. MSE 45L is not required if the student took E 45 during spring 2016 or earlier. However, these students must complete 4 units of engineering elective instead of 3.
2. A course used toward satisfaction of the open elective program or a concentration cannot also be used toward satisfaction of another college or major requirement.
3. CHM ENG 196 may not be used to fulfill this elective requirement.
4. Other engineering courses may be approved by the CBE Department.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGBI 112</td>
<td>Microbial Ecology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 113</td>
<td>Insect Ecology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 114</td>
<td>Wildlife Ecology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 115B</td>
<td>Biology of Aquatic Insects</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 117</td>
<td>Urban Garden Ecosystems</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 118</td>
<td>Agricultural Ecology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 119</td>
<td>Chemical Ecology</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 120</td>
<td>Soil Characteristics</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C128</td>
<td>Chemistry of Soils</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C129</td>
<td>Biometeorology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C130</td>
<td>Terrestrial Hydrology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 131</td>
<td>Soil Microbial Ecology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 134</td>
<td>Fire, Insects, and Diseases in Forest Ecosystems</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 137</td>
<td>Landscape Ecology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C138</td>
<td>Introduction to Comparative Virology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 140</td>
<td>General Entomology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 142</td>
<td>Insect Behavior</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 144</td>
<td>Insect Physiology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C148</td>
<td>Pesticide Chemistry and Toxicology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C149</td>
<td>Molecular Ecology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 152</td>
<td>Global Change Biology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 172</td>
<td>Photogrammetry and Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 174</td>
<td>Design and Analysis of Ecological Research</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C180</td>
<td>Air Pollution</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 185</td>
<td>Applied Forest Ecology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 186</td>
<td>Management and Conservation of Rangeland Ecosystems</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 187</td>
<td>Restoration Ecology</td>
<td>4</td>
</tr>
<tr>
<td>ENV SCI 10</td>
<td>Introduction to Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ENV SCI 125</td>
<td>Environments of the San Francisco Bay Area</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 1</td>
<td>Course Not Available</td>
<td></td>
</tr>
<tr>
<td>GEOG 35</td>
<td>Global Ecology and Development</td>
<td>4</td>
</tr>
<tr>
<td>GEOG 40</td>
<td>Introduction to Earth System Science</td>
<td>4</td>
</tr>
<tr>
<td>GEOG C82</td>
<td>Course Not Available</td>
<td></td>
</tr>
<tr>
<td>GEOG C136</td>
<td>Terrestrial Hydrology</td>
<td>4</td>
</tr>
<tr>
<td>GEOG 137</td>
<td>Top Ten Global Environmental Problems</td>
<td>4</td>
</tr>
<tr>
<td>GEOG 140A</td>
<td>Physical Landscapes: Process and Form</td>
<td>4</td>
</tr>
<tr>
<td>GEOG 143</td>
<td>Global Change Biogeochemistry</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 144</td>
<td>Principles of Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>GEOG C145</td>
<td>Geological Oceanography</td>
<td>4</td>
</tr>
<tr>
<td>GEOG C148</td>
<td>Course Not Available</td>
<td></td>
</tr>
<tr>
<td>GEOG 171</td>
<td>Special Topics in Physical Geography</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 31</td>
<td>The Ecology and Evolution of Animal Behavior</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 41</td>
<td>Marine Mammals</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI C82</td>
<td>Oceans</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 102LF</td>
<td>Introduction to California Plant Life with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 103LF</td>
<td>Invertebrate Zoology with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 104LF</td>
<td>Natural History of the Vertebrates with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 106A</td>
<td>Physical and Chemical Environment of the Ocean</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C107L</td>
<td>Principles of Plant Morphology with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 115</td>
<td>Introduction to Systems in Biology and Medicine</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 117</td>
<td>Medical Ethnobotany</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 118</td>
<td>Host-Microbe Interactions</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 123AL</td>
<td>Exercise and Environmental Physiology with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 131</td>
<td>General Human Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 135</td>
<td>The Mechanics of Organisms</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 137</td>
<td>Human Endocrinology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C142L</td>
<td>Introduction to Human Osteology</td>
<td>6</td>
</tr>
<tr>
<td>INTEGBI C143A</td>
<td>Biological Clocks: Physiology and Behavior</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C143B</td>
<td>Hormones and Behavior</td>
<td></td>
</tr>
<tr>
<td>INTEGBI 148</td>
<td>Comparative Animal Physiology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C149</td>
<td>Molecular Ecology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 151</td>
<td>Plant Physiological Ecology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 152</td>
<td>Environmental Toxicology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 153</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 154</td>
<td>Plant Ecology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 154L</td>
<td>Plant Ecology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI C156</td>
<td>Principles of Conservation Biology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 158LF</td>
<td>Biology and Geomorphology of Tropical Islands</td>
<td>13</td>
</tr>
<tr>
<td>INTEGBI 159</td>
<td>The Living Planet: Impact of the Biosphere on the Earth System</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 161</td>
<td>Population and Evolutionary Genetics</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 162</td>
<td>Ecological Genetics</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 164</td>
<td>Human Genetics and Genomics</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 168</td>
<td>Systematics of Vascular Plants</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 168L</td>
<td>Systematics of Vascular Plants with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 169</td>
<td>Evolutionary Medicine</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 174LF</td>
<td>Ornithology with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 183L</td>
<td>Evolution of the Vertebrates with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 184L</td>
<td>Morphology of the Vertebrate Skeleton with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C185L</td>
<td>Human Paleontology</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI C187</td>
<td>Human Biogeography of the Pacific</td>
<td>3</td>
</tr>
<tr>
<td>L & S C30U</td>
<td>Americans and the Global Forest</td>
<td>4</td>
</tr>
<tr>
<td>L & S C30V</td>
<td>Environmental Issues</td>
<td>4</td>
</tr>
<tr>
<td>L & S C70T</td>
<td>The Planets</td>
<td>3</td>
</tr>
<tr>
<td>L & S C70U</td>
<td>Introduction to General Astronomy</td>
<td>4</td>
</tr>
<tr>
<td>L & S C70W</td>
<td>Physics and Music</td>
<td>3</td>
</tr>
<tr>
<td>L & S C70Y</td>
<td>Earthquakes in Your Backyard</td>
<td>3</td>
</tr>
<tr>
<td>MAT SCI C150</td>
<td>Introduction to Materials Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI 32</td>
<td>Introduction to Human Physiology</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI 41</td>
<td>Genetics and Society</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI 50</td>
<td>The Immune System and Disease</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI C61</td>
<td>Brain, Mind, and Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI C62</td>
<td>Drugs and the Brain</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI C100A</td>
<td>Biophysical Chemistry: Physical Principles and the Molecules of Life</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 100B</td>
<td>Biochemistry: Pathways, Mechanisms, and Regulation</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 102</td>
<td>Survey of the Principles of Biochemistry and Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI C103</td>
<td>Bacterial Pathogenesis</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI 104</td>
<td>Genetics, Genomics, and Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI C112</td>
<td>General Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>PSYCH C116</td>
<td>Hormones and Behavior</td>
<td></td>
</tr>
<tr>
<td>PSYCH 117</td>
<td>Human Neuropsychology</td>
<td></td>
</tr>
<tr>
<td>PSYCH 122</td>
<td>Introduction to Human Learning and Memory</td>
<td></td>
</tr>
<tr>
<td>PSYCH C126</td>
<td>Perception</td>
<td></td>
</tr>
<tr>
<td>PSYCH C127</td>
<td>Cognitive Neuroscience</td>
<td></td>
</tr>
<tr>
<td>PSYCH C129</td>
<td>Scientific Approaches to Consciousness</td>
<td></td>
</tr>
<tr>
<td>PB HLTH C102</td>
<td>Bacterial Pathogenesis</td>
<td></td>
</tr>
<tr>
<td>PB HLTH 162A</td>
<td>Public Health Microbiology</td>
<td></td>
</tr>
</tbody>
</table>

Lower Division Engineering Electives List

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM ENG 90</td>
<td>Science and Engineering of Sustainable Energy</td>
</tr>
<tr>
<td>COMPSCI 61B</td>
<td>Data Structures</td>
</tr>
<tr>
<td>EL ENG 16A</td>
<td>Designing Information Devices and Systems I</td>
</tr>
<tr>
<td>EL ENG 16B</td>
<td>Designing Information Devices and Systems II</td>
</tr>
</tbody>
</table>

Upper Division Engineering Electives List

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO ENG 101</td>
<td>Instrumentation in Biology and Medicine</td>
</tr>
<tr>
<td>BIO ENG 102</td>
<td>Biomechanics: Analysis and Design</td>
</tr>
<tr>
<td>BIO ENG 103</td>
<td>Engineering Molecules 2</td>
</tr>
<tr>
<td>BIO ENG 104</td>
<td>Biological Transport Phenomena</td>
</tr>
<tr>
<td>BIO ENG 110</td>
<td>Biomedical Physiology for Engineers</td>
</tr>
<tr>
<td>BIO ENG 111</td>
<td>Functional Biomaterials Development and Characterization</td>
</tr>
<tr>
<td>BIO ENG 113</td>
<td>Stem Cells and Technologies</td>
</tr>
<tr>
<td>BIO ENG C112</td>
<td>Molecular Biomechanics and Mechanobiology of the Cell</td>
</tr>
<tr>
<td>BIO ENG 114</td>
<td>Cell Engineering</td>
</tr>
<tr>
<td>BIO ENG 115</td>
<td>Cell Biology for Engineers</td>
</tr>
<tr>
<td>BIO ENG 116</td>
<td>Cell and Tissue Engineering</td>
</tr>
<tr>
<td>BIO ENG C117</td>
<td>Structural Aspects of Biomaterials</td>
</tr>
<tr>
<td>BIO ENG C118</td>
<td>Biological Performance of Materials</td>
</tr>
<tr>
<td>BIO ENG C119</td>
<td>Orthopedic Biomechanics</td>
</tr>
<tr>
<td>BIO ENG 121</td>
<td>BioMEMS and Medical Devices</td>
</tr>
<tr>
<td>BIO ENG 121L</td>
<td>BioMems and BioNanotechnology Laboratory</td>
</tr>
<tr>
<td>BIO ENG 124</td>
<td>Basic Principles of Drug Delivery</td>
</tr>
<tr>
<td>BIO ENG C125</td>
<td>Introduction to Robotics</td>
</tr>
<tr>
<td>BIO ENG 131</td>
<td>Introduction to Computational Molecular and Cell Biology</td>
</tr>
<tr>
<td>BIO ENG 132</td>
<td>Genetic Devices</td>
</tr>
<tr>
<td>BIO ENG 135</td>
<td>Frontiers in Microbial Systems Biology</td>
</tr>
<tr>
<td>BIO ENG C136L</td>
<td>Laboratory in the Mechanics of Organisms</td>
</tr>
<tr>
<td>BIO ENG 140L</td>
<td>Synthetic Biology Laboratory</td>
</tr>
<tr>
<td>BIO ENG 143</td>
<td>Computational Methods in Biology</td>
</tr>
<tr>
<td>BIO ENG C145L</td>
<td>Introductory Electronic Transducers Laboratory</td>
</tr>
<tr>
<td>BIO ENG C145M</td>
<td>Introductory Microcomputer Interfacing Laboratory</td>
</tr>
<tr>
<td>BIO ENG 147</td>
<td>Principles of Synthetic Biology</td>
</tr>
<tr>
<td>BIO ENG 148</td>
<td>Bioenergy and Sustainable Chemical Synthesis: Metabolic Engineering and Synthetic Biology Approaches</td>
</tr>
<tr>
<td>BIO ENG 150</td>
<td>Introduction of Bionanoscience and Bionanotechnology</td>
</tr>
<tr>
<td>BIO ENG 151</td>
<td>Micro/Nanofluidics for Bioengineering and Lab-On-A-Chip</td>
</tr>
<tr>
<td>BIO ENG 163</td>
<td>Principles of Molecular and Cellular Biophotonics</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>CIV ENG 163L</td>
<td>Molecular and Cellular Biophotonics Laboratory</td>
</tr>
<tr>
<td>BIO ENG 164</td>
<td>Optics and Microscopy</td>
</tr>
<tr>
<td>BIO ENG C165</td>
<td>Medical Imaging Signals and Systems</td>
</tr>
<tr>
<td>BIO ENG 168L</td>
<td>Practical Light Microscopy</td>
</tr>
<tr>
<td>BIO ENG C181</td>
<td>The Berkeley Lectures on Energy: Energy from Biomass</td>
</tr>
<tr>
<td>CHM ENG 143</td>
<td>Computational Methods in Chemical Engineering</td>
</tr>
<tr>
<td>CHM ENG 170A</td>
<td>Biochemical Engineering</td>
</tr>
<tr>
<td>CHM ENG 170B</td>
<td>Biochemical Engineering</td>
</tr>
<tr>
<td>CHM ENG C170L</td>
<td>Biochemical Engineering Laboratory</td>
</tr>
<tr>
<td>CHM ENG 171</td>
<td>Transport Phenomena</td>
</tr>
<tr>
<td>CHM ENG 176</td>
<td>Principles of Electrochemical Processes</td>
</tr>
<tr>
<td>CHM ENG C178</td>
<td>Polymer Science and Technology</td>
</tr>
<tr>
<td>CHM ENG 180</td>
<td>Chemical Engineering Economics</td>
</tr>
<tr>
<td>CHM ENG H194</td>
<td>Research for Advanced Undergraduates</td>
</tr>
<tr>
<td>CHM ENG C195A</td>
<td>The Berkeley Lectures on Energy: Energy from Biomass may be repeated for credit when the topic changes</td>
</tr>
<tr>
<td>CHM ENG 196</td>
<td>Special Laboratory Study</td>
</tr>
<tr>
<td>CHEM C138</td>
<td>The Berkeley Lectures on Energy: Energy from Biomass</td>
</tr>
<tr>
<td>CIV ENG 101</td>
<td>Fluid Mechanics of Rivers, Streams, and Wetlands</td>
</tr>
<tr>
<td>CIV ENG 103</td>
<td>Introduction to Hydrology</td>
</tr>
<tr>
<td>CIV ENG 105</td>
<td>Environmental Fluid Mechanics and Hydrology</td>
</tr>
<tr>
<td>CIV ENG C106</td>
<td>Air Pollution</td>
</tr>
<tr>
<td>CIV ENG 107</td>
<td>Climate Change Mitigation</td>
</tr>
<tr>
<td>CIV ENG 110</td>
<td>Water Systems of the Future</td>
</tr>
<tr>
<td>CIV ENG 111</td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td>CIV ENG 111L</td>
<td>Water and Air Quality Laboratory</td>
</tr>
<tr>
<td>CIV ENG 112</td>
<td>Environmental Engineering Design</td>
</tr>
<tr>
<td>CIV ENG 114</td>
<td>Environmental Microbiology</td>
</tr>
<tr>
<td>CIV ENG 115</td>
<td>Water Chemistry</td>
</tr>
<tr>
<td>CIV ENG C116</td>
<td>Chemistry of Soils</td>
</tr>
<tr>
<td>CIV ENG 120</td>
<td>Structural Engineering</td>
</tr>
<tr>
<td>CIV ENG 121</td>
<td>Structural Analysis</td>
</tr>
<tr>
<td>CIV ENG 122L</td>
<td>Structural Steel Design Project</td>
</tr>
<tr>
<td>CIV ENG 122N</td>
<td>Design of Steel Structures</td>
</tr>
<tr>
<td>CIV ENG 123L</td>
<td>Structural Concrete Design Project</td>
</tr>
<tr>
<td>CIV ENG 123N</td>
<td>Design of Reinforced Concrete Structures</td>
</tr>
<tr>
<td>CIV ENG 124</td>
<td>Structural Design in Timber</td>
</tr>
<tr>
<td>CIV ENG 130N</td>
<td>Mechanics of Structures</td>
</tr>
<tr>
<td>CIV ENG C133</td>
<td>Engineering Analysis Using the Finite Element Method</td>
</tr>
<tr>
<td>CIV ENG 153</td>
<td>Transportation Facility Design</td>
</tr>
<tr>
<td>CIV ENG 155</td>
<td>Transportation Systems Engineering</td>
</tr>
<tr>
<td>CIV ENG 156</td>
<td>Infrastructure Planning and Management</td>
</tr>
<tr>
<td>CIV ENG 167</td>
<td>Engineering Project Management</td>
</tr>
<tr>
<td>CIV ENG 171</td>
<td>Rock Mechanics</td>
</tr>
<tr>
<td>CIV ENG 173</td>
<td>Groundwater and Seepage</td>
</tr>
<tr>
<td>CIV ENG 175</td>
<td>Geotechnical and Geoenvironment Engineering</td>
</tr>
<tr>
<td>CIV ENG 176</td>
<td>Environmental Geotechnics</td>
</tr>
<tr>
<td>CIV ENG C178</td>
<td>Applied Geophysics</td>
</tr>
<tr>
<td>CIV ENG 180</td>
<td>Life-Cycle Design and Construction</td>
</tr>
<tr>
<td>CIV ENG 186</td>
<td>Design of Cyber-Physical Systems</td>
</tr>
<tr>
<td>CIV ENG 191</td>
<td>Civil and Environmental Engineering Systems Analysis</td>
</tr>
<tr>
<td>CIV ENG 193</td>
<td>Engineering Risk Analysis</td>
</tr>
<tr>
<td>COMPSCI C149</td>
<td>Course Not Available</td>
</tr>
<tr>
<td>COMPSCI 161</td>
<td>Computer Security</td>
</tr>
<tr>
<td>COMPSCI 162</td>
<td>Operating Systems and System Programming</td>
</tr>
<tr>
<td>EL ENG 105</td>
<td>Microelectronic Devices</td>
</tr>
<tr>
<td>EL ENG C106A</td>
<td>Introduction to Robotics</td>
</tr>
<tr>
<td>EL ENG C106B</td>
<td>Robotic Manipulation and Interaction</td>
</tr>
<tr>
<td>EL ENG 113</td>
<td>Power Electronics</td>
</tr>
<tr>
<td>EL ENG 118</td>
<td>Introduction to Optical Engineering</td>
</tr>
<tr>
<td>EL ENG 137A</td>
<td>Introduction to Electric Power Systems</td>
</tr>
<tr>
<td>EL ENG 137B</td>
<td>Introduction to Electric Power Systems</td>
</tr>
<tr>
<td>EL ENG 130</td>
<td>Integrated-Circuit Devices</td>
</tr>
<tr>
<td>EL ENG 134</td>
<td>Fundamentals of Photovoltaic Devices</td>
</tr>
<tr>
<td>EL ENG 140</td>
<td>Linear Integrated Circuits</td>
</tr>
<tr>
<td>EL ENG 142</td>
<td>Integrated Circuits for Communications</td>
</tr>
<tr>
<td>EL ENG 143</td>
<td>Microfabrication Technology</td>
</tr>
<tr>
<td>EL ENG C145B</td>
<td>Medical Imaging Signals and Systems</td>
</tr>
<tr>
<td>EL ENG C145L</td>
<td>Introductory Electronic Transducers Laboratory</td>
</tr>
<tr>
<td>EL ENG C145O</td>
<td>Laboratory in the Mechanics of Organisms</td>
</tr>
<tr>
<td>EL ENG 147</td>
<td>Introduction to Microelectromechanical Systems (MEMS)</td>
</tr>
<tr>
<td>EL ENG C149</td>
<td>Course Not Available</td>
</tr>
<tr>
<td>ENGIN 117</td>
<td>Methods of Engineering Analysis</td>
</tr>
<tr>
<td>ENGIN 120</td>
<td>Principles of Engineering Economics</td>
</tr>
<tr>
<td>IND ENG 160</td>
<td>Nonlinear and Discrete Optimization</td>
</tr>
<tr>
<td>IND ENG 153</td>
<td>Logistics Network Design and Supply Chain Management</td>
</tr>
<tr>
<td>IND ENG 162</td>
<td>Linear Programming and Network Flows</td>
</tr>
<tr>
<td>IND ENG 166</td>
<td>Decision Analytics</td>
</tr>
<tr>
<td>IND ENG 170</td>
<td>Industrial Design and Human Factors</td>
</tr>
<tr>
<td>MAT SCI 112</td>
<td>Corrosion (Chemical Properties)</td>
</tr>
<tr>
<td>MAT SCI 102</td>
<td>Bonding, Crystallography, and Crystal Defects</td>
</tr>
<tr>
<td>MAT SCI 104</td>
<td>Materials Characterization</td>
</tr>
<tr>
<td>MAT SCI 111</td>
<td>Properties of Electronic Materials</td>
</tr>
<tr>
<td>MAT SCI 113</td>
<td>Mechanical Behavior of Engineering Materials</td>
</tr>
<tr>
<td>MAT SCI 117</td>
<td>Properties of Dielectric and Magnetic Materials</td>
</tr>
<tr>
<td>MAT SCI C118</td>
<td>Biological Performance of Materials</td>
</tr>
<tr>
<td>MAT SCI 120</td>
<td>Materials Production</td>
</tr>
<tr>
<td>MAT SCI 121</td>
<td>Metals Processing</td>
</tr>
<tr>
<td>MAT SCI 122</td>
<td>Ceramic Processing</td>
</tr>
<tr>
<td>MAT SCI 123</td>
<td>ELECTRONIC MATERIALS PROCESSING</td>
</tr>
<tr>
<td>MAT SCI 125</td>
<td>Thin-Film Materials Science</td>
</tr>
<tr>
<td>MAT SCI 136</td>
<td>Materials in Energy Technologies</td>
</tr>
<tr>
<td>MAT SCI 140</td>
<td>Nanomaterials for Scientists and Engineers</td>
</tr>
<tr>
<td>MAT SCI 151</td>
<td>Polymeric Materials</td>
</tr>
<tr>
<td>MEC ENG 102A</td>
<td>Introduction to Mechanical Systems for Mechatronics</td>
</tr>
<tr>
<td>MEC ENG 102B</td>
<td>Mechatronics Design</td>
</tr>
</tbody>
</table>
Concentrations

The concentrations are biotechnology, chemical processing, environmental technology, materials science and technology, and applied physical science. Students who plan to declare a concentration must do so no later than the end of their junior year. Double concentrations are not permitted.

Biotechnology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 12B</td>
<td>Organic Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>or MCELLBI C112</td>
<td>General Microbiology</td>
<td></td>
</tr>
<tr>
<td>or MCELLBI 104</td>
<td>Genetics, Genomics, and Cell Biology</td>
<td></td>
</tr>
<tr>
<td>CHM ENG 170A</td>
<td>Biochemical Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Choose two from the following, such that at least 3 units come from an engineering course (CHM ENG or BIO ENG):

- CHM ENG 170ABiochemical Engineering
- CHM ENG C178Biochemical Engineering Laboratory
- CHM ENG C27Protein Engineering
- CHM ENG 274Biomolecular Engineering
- BIO ENG 111Functional Biomatlas Development and Characterization
- BIO ENG 116Cell and Tissue Engineering
- BIO ENG 144Introduction to Protein Informatics and Protein Informatics Laboratory (Students must sign up for Bio Eng 144L (3) if taking 144)
- BIO ENG 148Bioenergy and Sustainable Chemical Synthesis: Metabolic Engineering and Synthetic Biology Approaches
- BIO ENG C213Fluid Mechanics of Biological Systems
- MCELLBI 130Cell and Systems Biology
- MCELLBI 150Molecular Immunology

Chemical Processing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 104A</td>
<td>Advanced Inorganic Chemistry</td>
<td>3-5</td>
</tr>
<tr>
<td>or CHEM 12B</td>
<td>Organic Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

Select 6 units from the following:

- CHM ENG 170ABiochemical Engineering
- CHM ENG 170BBiochemical Engineering Laboratory
- CHM ENG C178Biochemical Engineering Laboratory
- CHM ENG 171Transport Phenomena
- CHM ENG 176Principles of Electrochemical Processes
- CHM ENG C178Polymer Science and Technology
CHM ENG 179 Process Technology of Solid-State Materials Devices
CHM ENG 180 Chemical Engineering Economics
CHM ENG H195 Research for Advanced Undergraduates (up to 3 units)

Select 3 units from the following:
- CIV ENG C30 Introduction to Solid Mechanics
- CIV ENG 111 Environmental Engineering
- CIV ENG 114 Environmental Microbiology
- CIV ENG 173 Groundwater and Seepage
- MAT SCI 111 Properties of Electronic Materials
- MAT SCI 112 Corrosion (Chemical Properties)
- MAT SCI 113 Mechanical Behavior of Engineering Materials
- MAT SCI C118 Biological Performance of Materials
- MAT SCI 120 Materials Production
- MAT SCI 121 Metals Processing
- MAT SCI 122 Ceramic Processing
- MAT SCI 123 ELECTRONIC MATERIALS PROCESSING
- MEC ENG 140 Combustion Processes
- MEC ENG 151 Advanced Heat Transfer

Energy and Environment
Select at least 3 units from the following:
- CHEM 12B Organic Chemistry
- CHEM 104A Advanced Inorganic Chemistry
- CHEM 143 Nuclear Chemistry
- PHYSICS 7C Physics for Scientists and Engineers

Select 9 units from the following:
- CHM ENG 170 Biochemical Engineering
- CHM ENG 176 Principles of Electrochemical Processes
- CHM ENG C178 Polymer Science and Technology
- CHM ENG 179 Process Technology of Solid-State Materials Devices
- CHM ENG C195 Berkeley Lectures on Energy: Energy from Biomass

Or other approved CHM ENG 195 courses with energy or environment topics as the main focus, including Carbon Capture and Sequestration
- NUC ENG 101 Nuclear Reactions and Radiation
- NUC ENG 150 Introduction to Nuclear Reactor Theory
- NUC ENG 161 Nuclear Power Engineering
- CIV ENG 107 Climate Change Mitigation
- CIV ENG 111 Environmental Engineering
- CIV ENG C116 Chemistry of Soils
- CIV ENG 173 Groundwater and Seepage
- MEC ENG 140 Combustion Processes
- MEC ENG 146 Energy Conversion Principles

Materials Science and Technology
Select one of the following:
- CHEM 104A Advanced Inorganic Chemistry
- CHEM 108 Inorganic Synthesis and Reactions
- CHEM 12B Organic Chemistry

Select 3 units from the following:
- CHM ENG 176 Principles of Electrochemical Processes
- CHM ENG C178 Polymer Science and Technology
- CHM ENG 179 Process Technology of Solid-State Materials Devices

Select 6 units from the following:
- CIV ENG C30 Introduction to Solid Mechanics
- EL ENG 130 Integrated-Circuit Devices
- EL ENG 143 Microfabrication Technology
- MAT SCI 102 Bonding, Crystallography, and Crystal Defects
- MAT SCI 103 Phase Transformations and Kinetics
- MAT SCI 111 Properties of Electronic Materials
- MAT SCI 112 Corrosion (Chemical Properties)
- MAT SCI 120 Materials Production
- MAT SCI 121 Metals Processing
- MAT SCI 122 Ceramic Processing
- MAT SCI 123 ELECTRONIC MATERIALS PROCESSING
- MAT SCI 125 Thin-Film Materials Science
- MEC ENG 122 Processing of Materials in Manufacturing

1 Students may take MEC ENG 122 without the prerequisites of CIV ENG 130N and MEC ENG 108.

Business and Management
CHM ENG 180 Chemical Engineering Economics 3
3 units of science electives selected from the list of physical and biological science electives 3
3 units of engineering electives selected from the list of engineering electives 3
3 units chosen from the following:
- UGBA 102A Introduction to Financial Accounting
- UGBA 195P Entrepreneurship: How to Successfully start a New Business
- UGBA 10 Principles of Business
- MBA 209F Fundamentals of Business

Upper division preferred.

Applied Physical Science
6 units of chemistry or physics courses selected from the list of 6
Physical and Biological Sciences List
3 units of CHM ENG electives (excluding CHM ENG 196) 3
3 units chosen from engineering electives list 3

Students who have a strong interest in an area of study outside their major often decide to complete a minor program. These programs have set requirements and are noted officially on the transcript in the memoranda section but are not noted on diplomas.

General Guidelines
1. All courses taken to fulfill the minor requirements below must be taken for graded credit.
2. A minimum of three of the upper division courses taken to fulfill the minor requirements must be completed at UC Berkeley.
3. A minimum grade point average (GPA) of 2.0 is required for courses used to fulfill the minor requirements.
4. Students must consult with their college/school for information regarding overlap of courses between their majors and minors.

Requirements

Upper Division

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM ENG 140</td>
<td>Introduction to Chemical Process Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 141</td>
<td>Chemical Engineering Thermodynamics ¹</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 150A</td>
<td>Transport Processes</td>
<td>4</td>
</tr>
</tbody>
</table>

Select two of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM ENG 142</td>
<td>Chemical Kinetics and Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 143</td>
<td>Computational Methods in Chemical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 150B</td>
<td>Transport and Separation Processes</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 162</td>
<td>Dynamics and Control of Chemical Processes</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 170A</td>
<td>Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHM ENG 170B</td>
<td>Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHM ENG 171</td>
<td>Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>CHM ENG 176</td>
<td>Principles of Electrochemical Processes</td>
<td>3</td>
</tr>
<tr>
<td>CHM ENG C178</td>
<td>Polymer Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>CHM ENG 179</td>
<td>Process Technology of Solid-State Materials Devices</td>
<td>3</td>
</tr>
<tr>
<td>CHM ENG 180</td>
<td>Chemical Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>CHM ENG C195A</td>
<td>The Berkeley Lectures on Energy: Energy from Biomass</td>
<td>3</td>
</tr>
</tbody>
</table>

¹ Students who have completed courses in other departments at Berkeley that are essentially equivalent to CHM ENG 141 and CHM ENG 150A can substitute other courses from the above list.

Undergraduate students in the College of Chemistry must fulfill the following requirements in addition to those required by the major program.

For detailed lists of courses that fulfill college requirements, please see the College of Chemistry (http://guide.berkeley.edu/undergraduate/colleges-schools/chemistry/#collegerequirementstext) page in this Guide.

Entry Level Writing

All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing Requirement. Fulfillment of this requirement is also a prerequisite to enrollment in all reading and composition courses at UC Berkeley.

American History and American Institutions

The American History and Institutions requirements are based on the principle that a US resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.

American Cultures

American Cultures is the one requirement that all undergraduate students at Cal need to take and pass in order to graduate. The requirement offers an exciting intellectual environment centered on the study of race, ethnicity and culture of the United States. AC courses offer students opportunities to be part of research-led, highly accomplished teaching environments, grappling with the complexity of American Culture.

Foreign Language

Applies to Chemistry and Chemical Biology majors only.

The Foreign Language requirement may be satisfied with one foreign language, in one of the following ways:

- By completing in high school the third year of one foreign language with minimum grades of C-.
- By completing at Berkeley the second semester of a sequence of courses in one foreign language, or the equivalent at another institution. Only foreign language courses that include reading and composition as well as conversation are accepted in satisfaction of this requirement. Foreign language courses may be taken on a Pass/No Pass basis.
- By demonstrating equivalent knowledge of a foreign language through examination, including a College Entrance Examination Board (CEEB) Advanced Placement Examination with a score of 3 or higher (if taken before admission to college), an SAT II: Subject Test with a score of 590 or higher, or a proficiency examination offered by some departments at Berkeley or at another campus of the University of California.

Reading and Composition

In order to provide a solid foundation in reading, writing and critical thinking the College requires lower division work in composition.

- Chemical Engineering majors – A-level R&C course (e.g., English R1A) by end of freshman year
- Chemical Biology and Chemistry majors – A- and B-level courses by end of sophomore year

Humanities and Social Sciences Breadth Requirement – Chemistry & Chemical Biology majors

- 15 units total; includes Reading & Composition (R1A + R1B) and American Cultures courses
- Remaining units must come from the College of Chemistry’s lists of approved humanities and social science courses
- Breadth courses may be taken on a Pass/No Pass basis (excluding R&C)
- AP, IB, and GCE A-level exam credit may be used to satisfy the breadth requirement

Humanities and Social Sciences Breadth Requirement – Chemical Engineering major

- 22 units total; includes Reading & Composition (R1A only) and American Cultures courses
- Breadth Series requirement: As part of the 22 units, students must complete two courses, at least one being upper division, in the same or very closely allied humanities or social science department(s). AP credit may be used to satisfy the lower division aspect of the requirement.
• Breadth Series courses and all remaining units must come from the College of Chemistry’s lists of approved humanities and social science courses

• Breadth courses may be taken on a Pass/No Pass basis (excluding R&C)

• AP, IB, and GCE A-level exam credit may be used to satisfy the breadth requirement

Class Schedule Requirements
Minimum units per semester – 13

Maximum units per semester – 19.5

12 units of course work each semester must satisfy degree requirements.

Chemical engineering freshmen and Chemistry majors are required to enroll in a minimum of one chemistry course each semester.

After the freshman year, Chemical Engineering majors must enroll in a minimum of one chemical and biomolecular engineering course each semester.

Semester Limit
• Students who entered as freshmen – 8 semesters
• Chemistry & Chemical Biology majors who entered as transfer students – 4 semesters
• Chemical Engineering and Joint majors who entered as transfer students – 5 semesters

Summer sessions are excluded when determining the limit on semesters. Students who wish to delay graduation to complete a minor, a double major, or simultaneous degrees must request approval for delay of graduation before what would normally be their final two semesters. The College of Chemistry does not have a rule regarding maximum units that a student can accumulate.

Senior Residence
After 90 units toward the bachelor’s degree have been completed, at least 24 of the remaining units must be completed in residence in the College of Chemistry, in at least two semesters (the semester in which the 90 units are exceeded, plus at least one additional semester).

To count as a semester of residence for this requirement, a program must include at least 4 units of successfully completed courses. A summer session can be credited as a semester in residence if this minimum unit requirement is satisfied.

Juniors and seniors who participate in the UC Education Abroad Program (EAP) for a full year may meet a modified senior residence requirement. After 60 units toward the bachelor’s degree have been completed, at least 24 (excluding EAP) of the remaining units must be completed in residence in the College of Chemistry, in at least two semesters. At least 12 of the 24 units must be completed after the student has already completed 90 units. Undergraduate Dean’s approval for the modified senior residence requirement must be obtained before enrollment in the Education Abroad Program.

Minimum Total Units
A student must successfully complete at least 120 semester units in order to graduate.

Minimum Academic Requirements

Grades
A student must earn at least a C average (2.0 GPA) in all courses undertaken at UC, including those from UC Summer Sessions, UC Education Abroad Program, and UC Berkeley Washington Program, as well as XB courses from University Extension.

Minimum Course Grade Requirements
Students in the College of Chemistry who receive a grade of D+ or lower in a chemical and biomolecular engineering or chemistry course for which a grade of C- or higher is required must repeat the course at Berkeley.

Students in the College of Chemistry must achieve:
• C- or higher in CHEM 4A before taking CHEM 4B
• C- or higher in CHEM 4B before taking more advanced courses
• C- or higher in CHEM 12A before taking CHEM 12B
• GPA of at least 2.0 in all courses taken in the college in order to advance to and continue in the upper division

Chemistry or chemical biology majors must also achieve:
• C- or higher in CHEM 120A and CHEM 120B if taken before CHEM 125 or CHEM C182

Chemical engineering students must also achieve:
• C- or higher in CHM ENG 150A to be eligible to take any other course in the 150 series

Chemical engineering students who do not achieve a grade of C- or higher in CHM ENG 150A on their first attempt are advised to change to another major. If the course is not passed with a grade of C- or higher on the second attempt, continuation in the Chemical Engineering program is normally not allowed.
Minimum Progress
To make normal progress toward a degree, undergraduates must successfully complete 30 units of coursework each year. The continued enrollment of students who do not maintain normal progress will be subject to the approval of the Undergraduate Dean. To achieve minimum academic progress, the student must meet two criteria:

1. Completed no fewer units than 15 multiplied by the number of semesters, less one, in which the student has been enrolled at Berkeley. Summer sessions do not count as semesters for this purpose.

2. A student’s class schedule must contain at least 13 units in any term, unless otherwise authorized by the staff adviser or the Undergraduate Dean.

Mission
The mission of the Department of Chemical and Biomolecular Engineering is:

• To educate people for careers of leadership and innovation in chemical engineering and related fields.
• To expand the base of engineering knowledge through original research and by developing technology to serve the needs of society.
• To benefit the public through service to industry, government, and the engineering profession.

Fulfillment of this mission is achieved in part by the Department of Chemical and Biomolecular Engineering’s accredited undergraduate degree program in chemical engineering. The undergraduate curriculum comprises both a technical curriculum and breadth requirements.

The goals of chemical engineering breadth requirements are to teach the arts of writing clearly and persuasively, to develop the skills to read carefully and evaluate evidence effectively, and to instill an awareness of humanity in historical and social contexts. The Berkeley American Cultures requirement affirms the value of diversity in acquiring knowledge.

The technical curriculum in chemical engineering seeks to provide students with a broad education emphasizing an excellent foundation in scientific and engineering fundamentals.

Learning Goals for the Major

1. An ability to apply knowledge of mathematics, science, and engineering.
2. An ability to design and conduct experiments, as well as to analyze and interpret data.
3. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
4. An ability to function on multidisciplinary teams.
5. An ability to identify, formulate, and solve engineering problems.
6. An understanding of professional and ethical responsibility.
7. An ability to communicate effectively.
8. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
9. A recognition of the need for and an ability to engage in life-long learning.
10. A knowledge of contemporary issues.
11. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Chemical Engineering

CHM ENG 24 Freshman Seminars 1 Unit
Terms offered: Spring 2015, Fall 2014, Spring 2014
The Berkeley Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Berkeley Seminars are offered in all campus departments, and topics vary from department to department and semester to semester.

Rules & Requirements

Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week

Additional Details

Subject/Course Level: Chemical & Biomolecular Engineering/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

CHM ENG 40 Introduction to Chemical Engineering Design 2 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Design and analysis of processes involving chemical change. Strategies for design, such as creative thinking and (re)definition of the design goal. Methods for analyzing designs, such as mathematical modeling, empirical analysis by graphics, and dynamic scaling by dimensional analysis. Design choices in light of process efficiency, product quality, economics, safety, and environmental issues.

Introduction to Chemical Engineering Design: Read More [+]

Rules & Requirements

Prerequisites: Math 1B OR Chem 4A

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 1.5 hours of discussion per week

Additional Details

Subject/Course Level: Chemical & Biomolecular Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Introduction to Chemical Engineering Design: Read Less [-]
CHM ENG 84 Sophomore Seminar 1 or 2 Units
Terms offered: Spring 2013, Spring 2012, Spring 2010
Sophomore seminars are small interactive courses offered by faculty members in departments all across the campus. Sophomore seminars offer opportunity for close, regular intellectual contact between faculty members and students in the crucial second year. The topics vary from department to department and semester to semester. Enrollment limited to 15 sophomores.
Sophomore Seminar: Read More [+]

Rules & Requirements
Prerequisites: At discretion of instructor
Repeat rules: Course may be repeated for credit when topic changes. Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring:
5 weeks - 3-6 hours of seminar per week
10 weeks - 1.5-3 hours of seminar per week
15 weeks - 1-2 hours of seminar per week
Summer:
6 weeks - 2.5-5 hours of seminar per week
8 weeks - 2-4 hours of seminar per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

Sophomore Seminar: Read Less [-]

CHM ENG 90 Science and Engineering of Sustainable Energy 3 Units
Terms offered: Spring 2018, Spring 2016, Spring 2015
An introduction is given to the science and technologies of producing electricity and transportation fuels from renewable energy resources (biomass, geothermal, solar, wind, and wave). Students will be introduced to quantitative calculations and comparisons of energy technologies together with the economic and political factors affecting the transition from nonrenewable to sustainable energy resources. Mass and energy balances are used to analyze the conversion of energy resources.
Science and Engineering of Sustainable Energy: Read More [+]

Rules & Requirements
Prerequisites: Chemistry 1A or 4A

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Bell, Segalman
Science and Engineering of Sustainable Energy: Read Less [-]

CHM ENG 98 Directed Group Studies for Lower Division Undergraduates 1 - 3 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
Supervised research on a specific topic.
Directed Group Studies for Lower Division Undergraduates: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of directed group study per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Studies for Lower Division Undergraduates: Read Less [-]
CHM ENG 98W Directed Group Study 1 Unit
Terms offered: Fall 2015
Directed group study consisting of supplementary problem sets, review sessions, and discussions related to chemical engineering. Topics vary with instructor.
Directed Group Study: Read More [+]

Rules & Requirements
Prerequisites: This Chemical Engineering 98W is planned for students who are concurrently enrolled in Chemical Engineering 140
Repeat rules: Course may be repeated for credit when topic changes. Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of independent study per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Directed Group Study: Read Less [-]

CHM ENG 140 Introduction to Chemical Process Analysis 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Material and energy balances applied to chemical process systems. Determination of thermodynamic properties needed for such calculations. Sources of data. Calculation procedures.
Introduction to Chemical Process Analysis: Read More [+]

Rules & Requirements
Prerequisites: Chemistry 4B or 1B with a grade of C- or better; and Physics 7B (may be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Introduction to Chemical Process Analysis: Read Less [-]

CHM ENG 141 Chemical Engineering Thermodynamics 4 Units
Terms offered: Spring 2018, Spring 2016, Spring 2015
Chemical Engineering Thermodynamics: Read More [+]

Rules & Requirements
Prerequisites: 140 with a grade of C- or higher; Engineering 7, which may be taken concurrently

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Chemical Engineering Thermodynamics: Read Less [-]

CHM ENG 142 Chemical Kinetics and Reaction Engineering 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Analysis and prediction of rates of chemical conversion in flow and nonflow processes involving homogeneous and heterogeneous systems.
Chemical Kinetics and Reaction Engineering: Read More [+]

Rules & Requirements
Prerequisites: 141 with a grade of C- or higher; 150B, which may be taken concurrently

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Chemical Kinetics and Reaction Engineering: Read Less [-]
CHM ENG 143 Computational Methods in Chemical Engineering 4 Units
Terms offered: Spring 2016
The purpose of Chemical Engineering Modeling and Computations in Chemical Engineering is to teach students the methodologies used in setting up mathematical models of simple chemical processes and operations, and the numerical techniques used to simulate them. Included are techniques to obtain physical properties of mixtures/solutions using equations of state. This is followed by simple processes such as vapor liquid equilibrium, separation operations such as distillation, heat transfer, and chemical reactions in ideal reactors such as stirred tank and plug flow. Later on, real chemical process equipment and processes are modeled and simulated, using many of the techniques learned earlier. Programming languages such as Matlab and...

Computational Methods in Chemical Engineering: Read More [+]

Objectives Outcomes

Course Objectives: The focus of this course is on developing insights into chemical processes and operations through the use of modeling and computations. This is not a programming course. The instructors will provide introduction to the use of Aspen and the other codes, but the majority of the learning will be through the active use of these programs by the students in solving assigned problems.

Student Learning Outcomes: The course will be consistent with the overall objectives of the Chemical Engineering curriculum as outlined in the ABET guidelines.

Rules & Requirements

Prerequisites: E7 and CHM ENG 140

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Chemical & Biomolecular Engineering/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

CHM ENG 150A Transport Processes 4 Units
Terms offered: Spring 2018, Spring 2016, Spring 2015
Principles of fluid mechanics and heat transfer with application to chemical processes. Laminar and turbulent flow in pipes and around submerged objects. Flow measurement. Heat conduction and convection; heat transfer coefficients.

Transport Processes: Read More [+]

Rules & Requirements

Prerequisites: 140 with a grade of C- or higher; Math 54, which may be taken concurrently

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Chemical & Biomolecular Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Transport Processes: Read Less [-]

CHM ENG 150B Transport and Separation Processes 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Principles of mass transfer with application to chemical processes. Diffusion and convection. Simultaneous heat and mass transfer; mass transfer coefficients. Design of staged and continuous separations processes.

Transport and Separation Processes: Read More [+]

Rules & Requirements

Prerequisites: Chemical and Biomolecular Engineering 141 with a grade of C- or higher; Chemical and Biomolecular Engineering 150A with a grade of C- or higher; Engineering 7

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Summer: 8 weeks - 6 hours of lecture and 2 hours of discussion per week

Additional Details

Subject/Course Level: Chemical & Biomolecular Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Transport and Separation Processes: Read Less [-]
CHM ENG 154 Chemical Engineering Laboratory 4 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
Experiments in physical measurements, fluid mechanics, heat and mass transfer, kinetics, and separation processes. Emphasis on investigation of basic relationships important in engineering. Experimental design, analysis of results, and preparation of engineering reports are stressed.
Chemical Engineering Laboratory: Read More [+]
Rules & Requirements
Prerequisites: Chemical and Biomolecular Engineering 141, 142, and 150B

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 8 hours of laboratory per week
Summer: 8 weeks - 2 hours of lecture and 16 hours of laboratory per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Chemical Engineering Laboratory: Read Less [-]

CHM ENG 160 Chemical Process Design 4 Units
Terms offered: Fall 2018, Summer 2018 8 Week Session, Spring 2018
Design principles of chemical process equipment. Design of integrated chemical processes with emphasis upon economic considerations.
Chemical Process Design: Read More [+]
Rules & Requirements
Prerequisites: Chemical and Biomolecular Engineering 142, 150B, and 154. 154 can be taken concurrently

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week
Summer: 8 weeks - 6 hours of lecture and 6 hours of laboratory per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Chemical Process Design: Read Less [-]

CHM ENG 161S Industrial Chemical Process Design 6 Units
Terms offered: Prior to 2007
Design of chemical processes and equipment, with an emphasis on industry-sponsored and/or industry-tailored processes
Industrial Chemical Process Design: Read More [+]
Objectives Outcomes
Course Objectives: Teach students the strategies used in the design of chemical processes through an authentic industrial project.

Student Learning Outcomes:
• Develop an ability to function on multi-disciplinary teams.
• Develop the ability to design an integrated chemical engineering-based process to meet stated objectives within realistic constraints.
• Establish proficiency in the design process and project management fundamentals.
• Gain an understanding of professional and ethical responsibilities.

Rules & Requirements
Prerequisites: Prerequisites: Chemical and Biomolecular Engineering 142, 150B, and 154

Hours & Format
Summer: 8 weeks - 6 hours of lecture and 6 hours of discussion per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Bryan, Sciamanna
Industrial Chemical Process Design: Read Less [-]

CHM ENG 162 Dynamics and Control of Chemical Processes 4 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
Analysis of the dynamic behavior of chemical processes and methods and theory of their control. Implementation of computer control systems on process simulations.
Dynamics and Control of Chemical Processes: Read More [+]
Rules & Requirements
Prerequisites: Chemical and Biomolecular Engineering 142 and 150B; Mathematics 53 and 54

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of laboratory per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Dynamics and Control of Chemical Processes: Read Less [-]
CHM ENG 170A Biochemical Engineering 3 Units
Terms offered: Fall 2018, Fall 2016, Spring 2016
This course intends to introduce chemical engineers to the basic concepts of biochemical engineering. The course focuses on the use of chemical engineering skills and principles in the analysis and design of biologically-based processes. The main emphasis will be on biochemical kinetics, heat and mass transfer, thermodynamics, and transport phenomena as they apply to enzyme catalysis, microbial growth and metabolism, fermentation and bioreactor design, product recovery and downstream processing. Fundamental topics in biological sciences will be introduced as necessary throughout the course.

Biochemical Engineering: Read More [+]

Rules & Requirements

Prerequisites: Chemical and Biomolecular Engineering 142, 150B, or consent of instructor; Biology 1A

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Clark

Biochemical Engineering: Read Less [-]

CHM ENG 170B Biochemical Engineering 3 Units
Terms offered: Spring 2014, Spring 2013, Spring 2012
The second of a two-semester sequence intended to introduce chemical engineers to the basic concepts of biochemical engineering. The course focuses on the use of chemical engineering skills and principles in the analysis and design of biologically-based processes. The emphasis will be on biochemical kinetics, protein engineering, cell growth and metabolism, bioreactor design, downstream processing, pharmacokinetics, drug delivery, and ethics.

Biochemical Engineering: Read More [+]

Rules & Requirements

Prerequisites: 170A: Chemistry 135 or Molecular and Cell Biology 102, which may be taken concurrently

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Clark

Formerly known as: 170

Biochemical Engineering: Read Less [-]

CHM ENG C170L Biochemical Engineering Laboratory 3 Units
Terms offered: Fall 2018, Spring 2018, Spring 2014, Spring 2013
Laboratory techniques for the cultivation of microorganisms in batch and continuous reactions. Enzymatic conversion processes. Recovery of biological products.

Biochemical Engineering Laboratory: Read More [+]

Rules & Requirements

Prerequisites: Chemical Engineering 170A (may be taken concurrently) or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 7 hours of laboratory and 1 hour of lecture per week

Additional Details

Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Also listed as: CHEM C170L

Biochemical Engineering Laboratory: Read Less [-]
CHM ENG 171 Transport Phenomena 3 Units
Terms offered: Fall 2018, Spring 2011, Spring 2009
Study of momentum, energy, and mass transfer in laminar and turbulent flow.
Transport Phenomena: Read More [+]

Rules & Requirements
Prerequisites: 150B

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Transport Phenomena: Read Less [-]

CHM ENG 176 Principles of Electrochemical Processes 3 Units
Terms offered: Spring 2018, Fall 2016, Fall 2014
Principles and application of electrochemical equilibria, kinetics, and transport processes. Technical electrolysis and electrochemical energy conversion.
Principles of Electrochemical Processes: Read More [+]

Rules & Requirements
Prerequisites: Chemical and Biomolecular Engineering 141, 142, and 150B

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Principles of Electrochemical Processes: Read Less [-]

CHM ENG C178 Polymer Science and Technology 3 Units
Terms offered: Spring 2018, Fall 2016, Spring 2016, Spring 2015
An interdisciplinary course on the synthesis, characterization, and properties of polymer materials. Emphasis on the molecular origin of properties of polymeric materials and technological applications. Topics include single molecule properties, polymer mixtures and solutions, melts, glasses, elastomers, and crystals. Experiments in polymer synthesis, characterization, and physical properties.
Polymer Science and Technology: Read More [+]

Rules & Requirements
Prerequisites: Junior standing

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Segalman
Also listed as: CHEM C178
Polymer Science and Technology: Read Less [-]

CHM ENG 179 Process Technology of Solid-State Materials Devices 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Chemical processing and properties of solid-state materials. Crystal growth and purification. Thin film technology. Application of chemical processing to the manufacture of semiconductors and solid-state devices.
Process Technology of Solid-State Materials Devices: Read More [+]

Rules & Requirements
Prerequisites: Engineering 45; one course in electronic circuits recommended; senior standing

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Process Technology of Solid-State Materials Devices: Read Less [-]
CHM ENG 180 Chemical Engineering Economics 3 Units
Terms offered: Fall 2017, Fall 2016, Fall 2015
Optimal design of chemical processes and unit operations, emphasizing the interactions between technical and economic considerations. Analysis of process risks. Chemical and biomolecular process design in the presence of uncertainties. Interest rate determinants and their effects on chemical process feasibility and choices. Relationships between structure and behavior of firms in the chemical processing industries. Multivariable input-output analyses.
Chemical Engineering Economics: Read More [+]

Rules & Requirements
Prerequisites: Chemical and Biomolecular Engineering 142 and 150B. Consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Chemical Engineering Economics: Read Less [-]

CHM ENG 182 Nanoscience and Engineering Biotechnology 3 Units
Terms offered: Fall 2018
This nanoscale science and biomolecular engineering course will cover emerging topics in applied biotechnology and nanotechnology. Topics include enzyme kinetics, enzyme inhibition, recombinant protein generation, cell culture, genome editing, drug design, nanoparticle-based gene and drug delivery, fluorescence imaging, and sensors. The course will also probe the interface of biology with nanomaterials, and standard microscopic techniques to image biological structures and nanoscale materials.
Nanoscience and Engineering Biotechnology: Read More [+]

Rules & Requirements
Prerequisites: Bio 1A or BioE 11 and Physics 7A

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Landry
Nanoscience and Engineering Biotechnology: Read Less [-]

CHM ENG H193 Senior Honors Thesis 3 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
A senior honors thesis is written in consultation with the student's faculty research advisor. This is a required course for students wishing to graduate with honors in Chemical Engineering.
Senior Honors Thesis: Read More [+]

Rules & Requirements
Prerequisites: Senior standing, approval of faculty research advisor, overall GPA of 3.4 or higher

Hours & Format
Fall and/or spring: 15 weeks - 9 hours of independent study per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Senior Honors Thesis: Read Less [-]

CHM ENG H194 Research for Advanced Undergraduates 2 - 4 Units
Terms offered: Summer 2016 10 Week Session, Spring 2016, Fall 2015
Original research under direction of one of the members of the staff.
Research for Advanced Undergraduates: Read More [+]

Rules & Requirements
Prerequisites: Minimum GPA of 3.4 overall at Berkeley and consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week

Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Research for Advanced Undergraduates: Read Less [-]
CHM ENG 195 Special Topics 2 - 4 Units

Terms offered: Fall 2018, Fall 2017, Spring 2016

Fall 2017’s Special Topic: Nanoscience and Engineering Biotechnology

This nanoscale science and biomolecular engineering course will cover emerging topics in applied biotechnology. Topics include bioanalytical chemistry, recombinant protein generation and purification, cell culture, immunology, nanomaterials in biology, bio-toxicity, and biomolecular sensors. The scope of the course will also probe the interface of biology with nanomaterials, and standard microscopic and spectroscopic techniques to image both biological structures and nanoscale materials.

Rules & Requirements

Prerequisites: Consent of instructor

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 2-4 hours of independent study per week

Additional Details

Subject/Course Level: Chemical & Biomolecular Engineering/
Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Special Topics: Read More [+]

CHM ENG C195A The Berkeley Lectures on Energy: Energy from Biomass 3 Units

Terms offered: Fall 2015, Fall 2014, Fall 2013

After an introduction to the different aspects of our global energy consumption, the course will focus on the role of biomass. The course will illustrate how the global scale of energy guides the biomass research. Emphasis will be placed on the integration of the biological aspects (crop selection, harvesting, storage and distribution, and chemical composition of biomass) with the chemical aspects to convert biomass to energy. The course aims to engage students in state-of-the-art research.

Rules & Requirements

Prerequisites: Chemistry 1B or Chemistry 4B, Mathematics 1B, Biology 1A

Repeat rules: Course may be repeated for credit under special circumstances: Repeatable when topic changes with consent of instructor. Repeatable when topic changes with consent of instructor.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Chemical & Biomolecular Engineering/
Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Bell, Blanch, Clark, Smit, C. Somerville

Also listed as: BIO ENG C181/CHEM C138/PLANTBI C124

The Berkeley Lectures on Energy: Energy from Biomass: Read Less [-]
CHM ENG 196 Special Laboratory Study 2 - 4 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
Special laboratory or computational work under direction of one of the members of the staff.
Special Laboratory Study: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 2-3 hours of independent study per week
Summer:
6 weeks - 5-8 hours of independent study per week
8 weeks - 3.5-6 hours of independent study per week
10 weeks - 3-4.5 hours of independent study per week
Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Special Laboratory Study: Read Less [-]

CHM ENG 197 Field Study in Chemical Engineering 1 - 4 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
Supervised experience in off-campus organizations relevant to specific aspects and applications of chemical engineering. Written report required at the end of the term. Course does not satisfy unit or residence requirements for the bachelor's degree.
Field Study in Chemical Engineering: Read More [+]
Rules & Requirements
Prerequisites: Upper division standing and consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of fieldwork per week
Summer:
6 weeks - 2.5-10 hours of fieldwork per week
8 weeks - 1.5-7.5 hours of fieldwork per week
10 weeks - 1.5-6 hours of fieldwork per week
Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Field Study in Chemical Engineering: Read Less [-]

CHM ENG 198 Directed Group Study for Undergraduates 1 - 3 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
Supervised research on a specific topic. Enrollment is restricted; see Introduction to Courses and Curricula section in the General Catalog.
Directed Group Study for Undergraduates: Read More [+]
Rules & Requirements
Prerequisites: Completion of 60 units of undergraduate study and in good academic standing
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture per week
Summer: 6 weeks - 2.5-7.5 hours of lecture per week
Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Study for Undergraduates: Read Less [-]

CHM ENG 199 Supervised Independent Study and Research 1 - 4 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
Supervised Independent Study and Research: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer:
6 weeks - 2.5-10 hours of independent study per week
8 weeks - 1.5-7.5 hours of independent study per week
10 weeks - 1.5-6 hours of independent study per week
Additional Details
Subject/Course Level: Chemical & Biomolecular Engineering/ Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Supervised Independent Study and Research: Read Less [-]