Electrical Engineering and Computer Sciences/Nuclear Engineering Joint Major

Bachelor of Science (BS)

The joint major programs are designed for students who wish to undertake study in two areas of engineering in order to qualify for employment in either field or for positions in which competence in two fields is required. These curricula include the core courses in each of the major fields. While they require slightly increased course loads, they can be completed in four years.

The electrical engineering and computer sciences (EECS)/nuclear engineering (NE) joint major combines the traditional electrical engineering (EE) program with one in the nuclear sciences. Nuclear engineering shares with electrical engineering a concern for electrical power generation, automatic control, computer science, and plasmas.

Admission to the Joint Major

Admission directly to a joint major is closed to freshmen and junior transfer applicants. Students interested in a joint program may apply to change majors during specific times during their academic programs. Please see the College of Engineering joint majors website (http://engineering.berkeley.edu/academics/majors-minors/joint-majors/) for complete details.

In addition to the University, campus, and college requirements, students must fulfill the requirements below, specific to their major program.

General Guidelines

1. All technical courses taken in satisfaction of major requirements must be taken for a letter grade.

2. No more than one upper division course may be used simultaneously to fulfill requirements for a student’s major and minor programs.

3. A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.

4. A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

For a detailed plan of study by year and semester, please see the Plan of Study tab.

Lower Division Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1A</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1B</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 53</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 54</td>
<td>Linear Algebra and Differential Equations</td>
<td>4</td>
</tr>
</tbody>
</table>

Upper Division Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A & 1AL</td>
<td>General Chemistry and General Chemistry Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>or CHEM 4A</td>
<td>General Chemistry and Quantitative Analysis</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 7A & PHYSICS 7B & PHYSICS 7C</td>
<td>Physics for Scientists and Engineers and Physics for Scientists and Engineers</td>
<td>12-13</td>
</tr>
<tr>
<td>or PHYSICS 5A & 5B</td>
<td>Introductory Mechanics and Relativity & Introductory Electromagnetism, Waves, and SBOptics</td>
<td></td>
</tr>
<tr>
<td>& PHYSICS 5C</td>
<td>and Introduction to Experimental Physics I & Physics 5C</td>
<td></td>
</tr>
<tr>
<td>& PHYSICS 5C</td>
<td>and Introductory Thermodynamics and Quantum Mechanics</td>
<td></td>
</tr>
<tr>
<td>ENGIN 40</td>
<td>Engineering Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>MAT SCI 45</td>
<td>Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MAT SCI 45L</td>
<td>Properties of Materials Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EECS 16A</td>
<td>Designing Information Devices and Systems I</td>
<td>4</td>
</tr>
<tr>
<td>EECS 16B</td>
<td>Designing Information Devices and Systems II</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 61A</td>
<td>The Structure and Interpretation of Computer Programs</td>
<td>4</td>
</tr>
<tr>
<td>or ENGIN 7</td>
<td>Introduction to Computer Programming for Scientists and Engineers</td>
<td></td>
</tr>
<tr>
<td>COMPSCI 61B</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>or COMPSCI 61BL</td>
<td>Structures and Programming Methodology</td>
<td></td>
</tr>
</tbody>
</table>

1 CHEM 4A is intended for students majoring in chemistry or a closely-related field.

Ethics Requirement

NUC ENG 150 Introduction to Nuclear Reactor Theory | 4

NUC ENG 170A Nuclear Design: Design in Nuclear Power Technology and Instrumentation | 3

EL ENG 105 Microelectronic Devices and Circuits | 4

EL ENG 117 Electromagnetic Fields and Waves | 4

EL ENG 120 Signals and Systems | 4

STAT 134 Concepts of Probability | 4

or EECS 126 Probability and Random Processes | 4

Ethics Requirement

NUC ENG upper division Technical Electives: Select 9 units in consultation with faculty advisor (see below). | 3-4

EECS upper division Technical Electives: Select 8 units in consultation with faculty advisor (see below). | 8

1 Students must take one course with ethics content. This may be fulfilled within the Humanities/Social Sciences requirement by taking one of the following courses: ANTHRO 156B, BIO ENG 100, ENGIN 125, ENGIN 157AC, ENGIN 185, ESPM 161, ESPM 162, GEOG 31, IAS 157AC, ISF 100E, L&S 160B, PHILOS 2, PHILOS 104, PHILOS 107, and SOCIOL 116.
Nuclear Engineering Technical Electives

Students must complete at least 9 units of upper division nuclear engineering courses from the following groups. The groups are presented to aid undergraduate students in focusing their choices on specific professional goals; however, the electives selected need not be from any single group. Courses listed from other departments in these groups may be taken to provide further depth but may not be used toward the 9 units.

Beam and Accelerator Applications
- NUC ENG 155 Introduction to Numerical Simulations in Radiation Transport 3
- NUC ENG 180 Introduction to Controlled Fusion 3
- PHYSICS 110A Electromagnetism and Optics 4
- PHYSICS 110B Electromagnetism and Optics 4
- PHYSICS 129 Particle Physics 4
- PHYSICS 139 Special Relativity and General Relativity 3
- PHYSICS 142 Introduction to Plasma Physics 4

Bionuclear Engineering
- BIO ENG C165 Medical Imaging Signals and Systems 4
- EL ENG 120 Signals and Systems 4
- NUC ENG 107 Introduction to Imaging 3
- NUC ENG 162 Radiation Biophysics and Dosimetry 3

Fission Power Engineering
- MEC ENG 106 Fluid Mechanics 3-4 or CHM ENG 150A Transport Processes
- MEC ENG 109 Heat Transfer 3-4 or CHM ENG 150A Transport Processes
- NUC ENG 120 Nuclear Materials 4
- NUC ENG 124 Radioactive Waste Management 3
- NUC ENG 155 Introduction to Numerical Simulations in Radiation Transport 3
- NUC ENG 161 Nuclear Power Engineering 4
- NUC ENG 167 Risk-Informed Design for Advanced Nuclear Systems 3
- NUC ENG 175 Methods of Risk Analysis 3

Fusion Power Engineering
- NUC ENG 120 Nuclear Materials 4
- NUC ENG 155 Introduction to Numerical Simulations in Radiation Transport 3
- NUC ENG 180 Introduction to Controlled Fusion 3
- PHYSICS 110A Electromagnetism and Optics 4
- PHYSICS 110B Electromagnetism and Optics 4
- PHYSICS 142 Introduction to Plasma Physics 4

Homeland Security and Nonproliferation
- CHEM 143 Nuclear Chemistry 2
- NUC ENG 107 Introduction to Imaging 3
- NUC ENG 130 Analytical Methods for Non-proliferation 3
- NUC ENG 155 Introduction to Numerical Simulations in Radiation Transport 3
- NUC ENG 175 Methods of Risk Analysis 3
- PHYSICS 110A Electromagnetism and Optics 4
- PHYSICS 110B Electromagnetism and Optics 4
- PHYSICS 111A Instrumentation Laboratory 4
- PHYSICS 111B Advanced Experimentation Laboratory 1-3

Materials in Nuclear Technology
- MAT SCI 102 Bonding, Crystallography, and Crystal Defects 3
- MAT SCI 104 Materials Characterization 3
- MAT SCI 112 Corrosion (Chemical Properties) 3
- MAT SCI 113 Mechanical Behavior of Engineering Materials 3
- NUC ENG 120 Nuclear Materials 4
- NUC ENG 124 Radioactive Waste Management 3
- NUC ENG 155 Introduction to Numerical Simulations in Radiation Transport 3
- NUC ENG 161 Nuclear Power Engineering 4

Nuclear Fuel Cycles and Waste Management
- CHM ENG 150A Transport Processes 4
- CHM ENG 150B Transport and Separation Processes 4
- ENGIN 120 Principles of Engineering Economics 3
- MAT SCI 112 Corrosion (Chemical Properties) 3
- NUC ENG 120 Nuclear Materials 4
- NUC ENG 124 Radioactive Waste Management 3
- NUC ENG 155 Introduction to Numerical Simulations in Radiation Transport 3
- NUC ENG 161 Nuclear Power Engineering 4
- NUC ENG 175 Methods of Risk Analysis 3

Radiation and Health Physics
- NUC ENG 120 Nuclear Materials 4
- NUC ENG 155 Introduction to Numerical Simulations in Radiation Transport 3
- NUC ENG 162 Radiation Biophysics and Dosimetry 3
- NUC ENG 180 Introduction to Controlled Fusion 3

Risk, Safety and Systems Analysis
- CIV ENG 193 Engineering Risk Analysis 3
- CHM ENG 150A Transport Processes 4
- ENGIN 120 Principles of Engineering Economics 3
- IND ENG 166 Decision Analytics 3
- NUC ENG 120 Nuclear Materials 4
- NUC ENG 124 Radioactive Waste Management 3
- NUC ENG 155 Introduction to Numerical Simulations in Radiation Transport 3
- NUC ENG 161 Nuclear Power Engineering 4
- NUC ENG 167 Risk-Informed Design for Advanced Nuclear Systems 3
- NUC ENG 175 Methods of Risk Analysis 3

Electrical Engineering Technical Electives

Students must complete at least 8 units of upper division electrical engineering courses from the following lists:

Electromagnetics and Plasmas
- EL ENG 118 Introduction to Optical Engineering 4
- EL ENG 239 Partially Ionized Plasmas 3

Electronics
- EL ENG 130 Integrated-Circuit Devices 4
- EL ENG 140 Linear Integrated Circuits 4
- EL ENG 143 Microfabrication Technology 4
This program is geared toward students who would like to pursue an education beyond the BS/BA, allowing them to achieve greater breadth and/or depth of knowledge, and who would like to try their hand at research as well. It is not intended for students who have definitely decided to pursue a PhD immediately following graduation. Those students are advised to apply for a PhD program at Berkeley or elsewhere during their senior year. Students who have been accepted into the five-year BA/MS or BS/MS are free to change their minds later and apply to enter the PhD program or apply to a PhD program at another university. Note that admission for Fifth Year MS applicants to the Berkeley PhD program is competitive with our other PhD applicants.

The program is focused on interdisciplinary training at a graduate level, with at least 8 units of course work outside EECS required. Students will emerge as leaders in their technical and professional fields.

- Focus on interdisciplinary study and more experience in aligned technical fields such as physics, materials science, statistics, biology, etc., and/or professional disciplines such as management of technology, business, law and public policy.
- With admission to the Fifth Year MS program, students must begin their graduate degree in the semester immediately following the conferment of the bachelor’s degree.
- One additional year (two semesters) only is permitted beyond the bachelor’s degree.
- Available only to Berkeley EECS and L&S CS undergraduates.
- Participants in program may serve as graduate student instructors with approval from their faculty research adviser and the 5th Year MS Committee.
- Participants in program are self-funded.

For further information regarding this program, please see the EECS department’s website (http://www.eecs.berkeley.edu/FiveYearMS/)

Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions:

1. Completion of the requirements of one engineering major program (https://engineering.berkeley.edu/students/undergraduate-guide/degree-requirements-major-programs/) of study
2. A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
3. The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.

4. All technical courses (math, science, and engineering) that can fulfill requirements for the student’s major must be taken on a letter graded basis (unless they are only offered P/NP).
5. Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed five semesters to complete their degree requirements. Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters.
6. Adhere to all college policies and procedures (http://engineering.berkeley.edu/academics/undergraduate-guide/) as they complete degree requirements.
7. Complete the lower division program before enrolling in upper division engineering courses.

Humanities and Social Sciences (H/SS) Requirement
To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement (http://engineering.berkeley.edu/student-services/degree-requirements/humanities-and-social-sciences/), which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two Reading and Composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. See the humanities and social sciences (https://engineering.berkeley.edu/students/undergraduate-guide/degree-requirements/humanities-and-social-sciences/) section of our website for details.

Class Schedule Requirements

- Minimum units per semester: 12.0
- Maximum units per semester: 20.5
- Minimum technical courses: College of Engineering undergraduates must include at least two letter graded technical courses (of at least 3 units each) in their semester program. Every semester students are expected to make satisfactory progress in their declared major. Satisfactory progress is determined by the student’s Engineering Student Services Advisor. (Note: For most majors, normal progress (https://engineering.berkeley.edu/academics/undergraduate-guide/policies-procedures/scholarship-progress/#ac12282) will require enrolling in 3-4 technical courses each semester). Students who are not in compliance with this policy by the end of the fifth week of the semester are subject to a registration block that will delay enrollment for the following semester.
- All technical courses (math, science, engineering) that satisfy requirements for the major must be taken on a letter-graded basis (unless only offered as P/NP).

Minimum Academic (Grade) Requirements

- Minimum overall and semester grade point averages of 2.00 (C average) are required of engineering undergraduates. Students will be subject to dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00.
- Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester.
• A minimum overall grade point average of 2.00 and a minimum 2.00 grade point average in upper division technical course work required for the major are required to earn a Bachelor of Science in the College of Engineering.

Unit Requirements
To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:

• Completion of the requirements of one engineering major program (https://engineering.berkeley.edu/students/undergraduate-guide/degree-requirements-major-programs/) of study.
• A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed to count towards the B.S. degree, and no more than 4 units in any single term can be counted.
• A maximum of 4 units of physical education from any school attended will count towards the 120 units.
• Passed (P) grades may account for no more than one third of the total units completed at UC Berkeley, Fall Program for Freshmen (FFP), UC Education Abroad Program (UCEAP), or UC Berkeley Washington Program (UCDC) toward the 120 overall minimum unit requirement. Transfer credit is not factored into the limit. This includes transfer units from outside of the UC system, other UC campuses, credit-bearing exams, as well as UC Berkeley Extension XB units.

Normal Progress
Students in the College of Engineering must enroll in a full-time program and make normal progress (https://engineering.berkeley.edu/students/undergraduate-guide/policies-procedures/scholarship-progress/#ac12282) each semester toward the bachelor's degree. The continued enrollment of students who fail to achieve minimum academic progress shall be subject to the approval of the dean. (Note: Students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.)

University of California Requirements
Entry Level Writing (https://www.ucop.edu/elwr/)

All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing Requirement. Satisfaction of this requirement is also a prerequisite to enrollment in all Reading and Composition courses at UC Berkeley.

American History and American Institutions (http://guide.berkeley.edu/undergraduate/education/#universityrequirementstext)

The American History and American Institutions requirements are based on the principle that a U.S. resident who has graduated from an American university should have an understanding of the history and governmental institutions of the United States.

Campus Requirement
American Cultures (http://guide.berkeley.edu/undergraduate/education/#campusrequirementstext)

The American Cultures requirement is a Berkeley campus requirement, one that all undergraduate students at Berkeley need to pass in order to graduate. You satisfy the requirement by passing, with a grade not lower than C- or P, an American Cultures course. You may take an American Cultures course any time during your undergraduate career at Berkeley. The requirement was instituted in 1991 to introduce students to the diverse cultures of the United States through a comparative framework. Courses are offered in more than fifty departments in many different disciplines at both the lower and upper division level.

The American Cultures requirement and courses constitute an approach that responds directly to the problem encountered in numerous disciplines of how better to present the diversity of American experience to the diversity of American students whom we now educate.

Faculty members from many departments teach American Cultures courses, but all courses have a common framework. The courses focus on themes or issues in United States history, society, or culture; address theoretical or analytical issues relevant to understanding race, culture, and ethnicity in American society; take substantial account of groups drawn from at least three of the following: African Americans, indigenous peoples of the United States, Asian Americans, Chicano/ Latino Americans, and European Americans; and are integrative and comparative in that students study each group in the larger context of American society, history, or culture.

This is not an ethnic studies requirement, nor a Third World cultures requirement, nor an adjusted Western civilization requirement. These courses focus upon how the diversity of America's constituent cultural traditions have shaped and continue to shape American identity and experience.

Visit the Class Schedule (http://classes.berkeley.edu) or the American Cultures website (http://americancultures.berkeley.edu/) for the specific American Cultures courses offered each semester. For a complete list of approved American Cultures courses at UC Berkeley and California Community Colleges, please see the American Cultures Subcommittee's website (https://academic-senate.berkeley.edu/committees/amcult/). See your academic adviser if you have questions about your responsibility to satisfy the American Cultures breadth requirement.

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the Major Requirements tab.
Electrical Engineering and Computer Sciences

MISSION
1. Preparing graduates to pursue postgraduate education in electrical engineering, computer science, or related fields.
2. Preparing graduates for success in technical careers related to electrical and computer engineering, or computer science and engineering.
3. Preparing graduates to become leaders in fields related to electrical and computer engineering or computer science and engineering.

LEARNING GOALS

EE
1. An ability to apply knowledge of mathematics, science, and engineering.
2. An ability to configure, apply test conditions, and evaluate outcomes of experimental systems.
3. An ability to design systems, components, or processes that conform to given specifications and cost constraints.
4. An ability to work cooperatively, respectfully, creatively, and responsibly as a member of a team.
5. An ability to identify, formulate, and solve engineering problems.
6. An understanding of the norms of expected behavior in engineering practice and their underlying ethical foundations.
7. An ability to communicate effectively by oral, written, and graphical means.
8. An awareness of global and societal concerns and their importance in developing engineering solutions.
9. An ability to independently acquire and apply required information, and an appreciation of the associated process of life-long learning.
10. A knowledge of contemporary issues.
11. An in-depth ability to use a combination of software, instrumentation, and experimental techniques practiced in circuits, physical electronics, communication, networks and systems, hardware, programming, and computer science theory.

CS
1. An ability to apply knowledge of computing and mathematics appropriate to the program’s student outcomes and to the discipline.
2. An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution.
3. An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.
4. An ability to function effectively on teams to accomplish a common goal.
5. An understanding of professional, ethical, legal, security and social issues and responsibilities.
6. An ability to communicate effectively with a range of audiences.
7. An ability to analyze the local and global impact of computing on individuals, organizations, and society.
8. Recognition of the need for and an ability to engage in continuing professional development.
9. An ability to use current techniques, skills, and tools necessary for computing practice.

1 Students may choose to take the Physics 7 series or the Physics 5 series. Students who fulfill Physics 7A with an AP exam score, transfer work, or at Berkeley may complete the physics requirement by taking either Physics 7B and 7C, or Physics 5B/5BL and 5C/5CL. Students who take Physics 5A must take Physics 5B/5BL and 5C/5CL to complete the physics requirement. Completion of Physics 5A and Physics 7B and Physics 7C will not fulfill the physics requirement.

2 Students must take one course with ethics content. This may be fulfilled within the Humanities/Social Sciences requirement by taking one of the following courses: ANTHRO 156B, BIO ENG 100, ENGIN 125, ENGIN 157AC, ENGIN 185, ESPM 161, ESPM 162, GEOG 31, IAS 157AC, ISF 100E, ISF 100E, L & S 160B, PHILOS 2, PHILOS 104, PHILOS 107, and SOCIOL 116.

3 See Major Requirements tab for list of technical elective courses.

4 The Humanities/Social Sciences (H/SS) requirement includes two approved Reading & Composition (R&C) courses and four additional approved courses, with which a number of specific conditions must be satisfied. R&C courses must be taken for a letter grade (C- or better required). The first half (R&C Part A) must be completed by the end of the freshman year; the second half (R&C Part B) must be completed by no later than the end of the sophomore year. The remaining courses may be taken at any time during the program. See engineering.berkeley.edu/hss (https://engineering.berkeley.edu/academics/undergraduate-guide/degree-requirements/humanities-and-social-sciences/) for complete details and a list of approved courses.
Nuclear Engineering

MISSION
The mission of the Department of Nuclear Engineering is to maintain and strengthen the University of California’s only center of excellence in nuclear engineering education and research and to serve California and the nation by improving and applying nuclear science and technology. The mission of the undergraduate degree program in Nuclear Engineering is to prepare our students to begin a lifetime of technical achievement and professional leadership in academia, government, the national laboratories, and industry.

LEARNING GOALS
The foundation of the UC Berkeley Nuclear Engineering (NE) program is a set of five key objectives for educating undergraduate students. The NE program continuously reviews these objectives internally to ensure that they meet the current needs of the students, and each spring the Program Advisory Committee meets to review the program and recommend changes to better serve students. The NE Program Advisory Committee was established in 1988 and is composed of senior leaders from industry, the national laboratories, and academia.

Nuclear engineering at UC Berkeley prepares undergraduate students for employment or advanced studies with four primary constituencies: industry, the national laboratories, state and federal agencies, and academia (graduate research programs). Graduate research programs are the dominant constituency. From 2000 to 2005, sixty-eight percent of graduating NE seniors indicated plans to attend graduate school in their senior exit surveys. To meet the needs of these constituencies, the objectives of the NE undergraduate program are to produce graduates who as practicing engineers and researchers do the following:

1. Apply solid knowledge of the fundamental mathematics and natural (both physical and biological) sciences that provide the foundation for engineering applications.
2. Demonstrate an understanding of nuclear processes, and the application of general natural science and engineering principles to the analysis and design of nuclear and related systems of current and/or future importance to society.
3. Exhibit strong, independent learning, analytical and problem-solving skills, with special emphasis on design, communication, and an ability to work in teams.
4. Demonstrate an understanding of the broad social, ethical, safety, and environmental context within which nuclear engineering is practiced.

Select a subject to view courses
- Electrical Engineering and Computer Sciences (p. 6)
- Nuclear Engineering (p. 18)

Electrical Engineering and Computer Sciences
Expand all course descriptions [+]Collapse all course descriptions [-]
EL ENG 39 Freshman/Sophomore Seminar 2 - 4 Units
Terms offered: Fall 2021, Fall 2019, Fall 2018
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.
Freshman/Sophomore Seminar: Read More [+]

Rules & Requirements

Prerequisites: Priority given to freshmen and sophomores
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format

Fall and/or spring: 15 weeks - 2-4 hours of seminar per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.
Freshman/Sophomore Seminar: Read Less [-]

EL ENG 42 Introduction to Digital Electronics 3 Units
Terms offered: Fall 2013, Summer 2013 8 Week Session, Spring 2013
This course serves as an introduction to the principles of electrical engineering, starting from the basic concepts of voltage and current and circuit elements of resistors, capacitors, and inductors. Circuit analysis is taught using Kirchhoff's voltage and current laws with Thevenin and Norton equivalents. Operational amplifiers with feedback are introduced as basic building blocks for amplification and filtering. Semiconductor devices including diodes and MOSFETS and their IV characteristics are covered. Applications of diodes for rectification, and design of MOSFETs in common source amplifiers are taught. Digital logic gates and design using CMOS as well as simple flip-flops are introduced. Speed and scaling issues for CMOS are considered. The course includes as motivating examples designs of high level applications including logic circuits, amplifiers, power supplies, and communication links.

Introduction to Digital Electronics: Read More [+]

Rules & Requirements

Prerequisites: Mathematics 1B
Credit Restrictions: Students will receive no credit for 42 after taking 40 or 100.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 8 weeks - 6 hours of lecture and 2 hours of discussion per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.
Introduction to Digital Electronics: Read Less [-]
EL ENG 49 Electronics for the Internet of Things 4 Units
Terms offered: Spring 2020, Spring 2019, Fall 2018
Electronics has become pervasive in our lives as a powerful technology with applications in a wide range of fields including healthcare, environmental monitoring, robotics, or entertainment. This course teaches how to build electronic circuits that interact with the environment through sensors and actuators and how to communicate wirelessly with the internet to cooperate with other devices and with humans. In the laboratory students design and build representative samples such as solar harvesters, robots, that exchange information with or are controlled from the cloud.
Electronics for the Internet of Things: Read More [+]

Objectives & Outcomes

Course Objectives: Electronics has become a powerful and ubiquitous technology supporting solutions to a wide range of applications in fields ranging from science, engineering, healthcare, environmental monitoring, transportation, to entertainment. The objective of this course is to teach students majoring in these and related subjects how to use electronic devices to solve problems in their areas of expertise.

Student Learning Outcomes: Deploy electronic sensors and interface them to microcontrollers through digital and analog channels as well as common protocols (I2C, SPI), Design, build and test electronic devices leveraging these concepts, Interact with the internet and cloud services using protocols such as http, MQTT, Blynk, Interface DC motors, steppers and servos to microcontrollers, Represent information with voltage, current, power, and energy and how to measure these quantities with laboratory equipment, To use and program low-cost and low-power microcontrollers for sensing, actuation, and information processing, and find and use program libraries supporting these tasks, Understand and make basic low-pass and high-pass filters, Wheatstone bridge etc.
Use electronics to sense and actuate physical parameters such as temperature, humidity, sound, light, and motion,

Rules & Requirements

Prerequisites: ENGIN 7, COMPSCI 10, or equivalent background in computer programming (including COMPSCI 61A or COMPSCI C8 / INFO C8 / STAT C8), MATH 1A or equivalent background in Calculus

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 2 hours of discussion, and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Boser

Electronics for the Internet of Things: Read Less [-]

EL ENG 84 Sophomore Seminar 1 or 2 Units
Terms offered: Fall 2021, Spring 2021, Fall 2020
Sophomore seminars are small interactive courses offered by faculty members in departments all across the campus. Sophomore seminars offer opportunity for close, regular intellectual contact between faculty members and students in the crucial second year. The topics vary from department to department and semester to semester. Enrollment limited to 15 sophomores.
Sophomore Seminar: Read More [+]

Rules & Requirements

Prerequisites: At discretion of instructor
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format

Fall and/or spring:
5 weeks - 3-6 hours of seminar per week
10 weeks - 1.5-3 hours of seminar per week
15 weeks - 1-2 hours of seminar per week

Summer:
6 weeks - 2.5-5 hours of seminar per week
8 weeks - 1.5-3.5 hours of seminar per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

Sophomore Seminar: Read Less [-]

EL ENG 97 Field Study 1 - 4 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
Students take part in organized individual field sponsored programs with off-campus companies or tutoring/mentoring relevant to specific aspects and applications of computer science on or off campus. Note Summer CPT or OPT students: written report required. Course does not count toward major requirements, but will be counted in the cumulative units toward graduation.
Field Study: Read More [+]

Rules & Requirements

Prerequisites: Consent of instructor (see department adviser)
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-4 hours of fieldwork per week

Summer:
6 weeks - 2.5-10 hours of fieldwork per week
8 weeks - 2-7.5 hours of fieldwork per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Field Study: Read Less [-]
EL ENG 98 Directed Group Study for Undergraduates 1 - 4 Units
Terms offered: Fall 2021, Fall 2020, Fall 2016
Group study of selected topics in electrical engineering, usually relating to new developments.
Directed Group Study for Undergraduates: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Study for Undergraduates: Read Less [-]

EL ENG 99 Individual Study and Research for Undergraduates 1 - 4 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
Supervised independent study and research for students with fewer than 60 units completed.
Individual Study and Research for Undergraduates: Read More [+]
Rules & Requirements
Prerequisites: Freshman or sophomore standing and consent of instructor. Minimum GPA of 3.4 required
Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Individual Study and Research for Undergraduates: Read Less [-]

EL ENG 105 Microelectronic Devices and Circuits 4 Units
Terms offered: Fall 2021, Spring 2021, Fall 2020
This course covers the fundamental circuit and device concepts needed to understand analog integrated circuits. After an overview of the basic properties of semiconductors, the p-n junction and MOS capacitors are described and the MOSFET is modeled as a large-signal device. Two port small-signal amplifiers and their realization using single stage and multistage CMOS building blocks are discussed. Sinusoidal steady-state signals are introduced and the techniques of phasor analysis are developed, including impedance and the magnitude and phase response of linear circuits. The frequency responses of single and multi-stage amplifiers are analyzed. Differential amplifiers are introduced.
Microelectronic Devices and Circuits: Read More [+]
Rules & Requirements
Prerequisites: EECS 16A and EECS 16B
Credit Restrictions: Students will receive no credit for EL ENG 105 after completing EL ENG 240A, or EL ENG 140.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Microelectronic Devices and Circuits: Read Less [-]
EL ENG C106A Introduction to Robotics 4 Units
Terms offered: Fall 2017, Fall 2016, Fall 2015
An introduction to the kinematics, dynamics, and control of robot manipulators, robotic vision, and sensing. The course covers forward and inverse kinematics of serial chain manipulators, the manipulator Jacobian, force relations, dynamics, and control. It presents elementary principles on proximity, tactile, and force sensing, vision sensors, camera calibration, stereo construction, and motion detection. The course concludes with current applications of robotics in active perception, medical robotics, and other areas.

Introduction to Robotics: Read More [+]

Rules & Requirements

Prerequisites: EL ENG 120 or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Bajcsy
Formerly known as: Electrical Engineering C125/Bioengineering C125
Also listed as: BIO ENG C125

Introduction to Robotics: Read Less [-]

EL ENG C106B Robotic Manipulation and Interaction 4 Units
Terms offered: Spring 2017, Spring 2016
This course is a sequel to Electrical Engineering C106A/Bioengineering C125, which covers kinematics, dynamics and control of a single robot. This course will cover dynamics and control of groups of robotic manipulators coordinating with each other and interacting with the environment. Concepts will include an introduction to grasping and the constrained manipulation, contacts and force control for interaction with the environment. We will also cover active perception guided manipulation, as well as the manipulation of non-rigid objects. Throughout, we will emphasize design and human-robot interactions, and applications to applications in manufacturing, service robotics, tele-surgery, and locomotion.

Robotic Manipulation and Interaction: Read More [+]

Rules & Requirements

Prerequisites: EECS C106A / BIO ENG C125 or consent of the instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructors: Bajcsy, Sastry
Also listed as: BIO ENG C125B

Robotic Manipulation and Interaction: Read Less [-]

EL ENG 113 Power Electronics 4 Units
Terms offered: Fall 2021, Fall 2020, Fall 2019
Power conversion circuits and techniques. Characterization and design of magnetic devices including transformers, reactors, and electromagnetic machinery. Characteristics of bipolar and MOS power semiconductor devices. Applications to motor control, switching power supplies, lighting, power systems, and other areas as appropriate.

Power Electronics: Read More [+]

Rules & Requirements

Prerequisites: EL ENG 105 or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Power Electronics: Read Less [-]
EL ENG 117 Electromagnetic Fields and Waves 4 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019
Review of static electric and magnetic fields and applications; Maxwell's equations; transmission lines; propagation and reflection of plane waves; introduction to guided waves, microwave networks, and radiation and antennas. Minilabs on statics, transmission lines, and waves. Explanation of cellphone antennas, WiFi communication, and other wireless technologies.
Electromagnetic Fields and Waves: Read More [+]
Rules & Requirements
Prerequisites: EECS 16B, MATH 53, and MATH 54; PHYSICS 7B or equivalent that covers AC circuits and electromagnetics up to Maxwell's equations

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 2 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Yablonovitch

Electromagnetic Fields and Waves: Read Less [-]

EL ENG 118 Introduction to Optical Engineering 4 Units
Terms offered: Fall 2021, Fall 2020, Fall 2019
Introduction to Optical Engineering: Read More [+]
Rules & Requirements
Prerequisites: MATH 53; EECS 16A and EECS 16B, or MATH 54

Credit Restrictions: Students will receive no credit for Electrical Engineering 118 after taking Electrical Engineering 218A. A deficient grade in Electrical Engineering 119 may be removed by taking Electrical Engineering 118.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of recitation per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Waller, Kante

Introduction to Optical Engineering: Read Less [-]

EL ENG 120 Signals and Systems 4 Units
Terms offered: Fall 2021, Spring 2021, Fall 2020
Signals and Systems: Read More [+]
Rules & Requirements
Prerequisites: EECS 16A and EECS 16B

Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture and 1 hour of recitation per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Introduction to Digital Communication Systems: Read Less [-]

EL ENG 121 Introduction to Digital Communication Systems 4 Units
Terms offered: Spring 2016, Fall 2014, Fall 2013
Introduction to the basic principles of the design and analysis of modern digital communication systems. Topics include source coding, channel coding, baseband and passband modulation techniques, receiver design, and channel equalization. Applications to design of digital telephone modems, compact disks, and digital wireless communication systems. Concepts illustrated by a sequence of MATLAB exercises.
Introduction to Digital Communication Systems: Read More [+]
Rules & Requirements
Prerequisites: EECS 16A, EECS 16B, and COMPSCI 70

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Introduction to Digital Communication Systems: Read Less [-]
EL ENG 122 Introduction to Communication Networks 4 Units
Terms offered: Spring 2020, Spring 2019, Spring 2018
This course focuses on the fundamentals of the wired and wireless communication networks. The course covers both the architectural principles for making these networks scalable and robust, as well as the key techniques essential for analyzing and designing them. The topics include graph theory, Markov chains, queuing, optimization techniques, the physical and link layers, switching, transport, cellular networks and Wi-Fi.

Introduction to Communication Networks: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 70

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Introduction to Communication Networks: Read Less [-]

EL ENG 123 Digital Signal Processing 4 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019

Digital Signal Processing: Read More [+]

Rules & Requirements

Prerequisites: EL ENG 120

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 1 hour of laboratory per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Digital Signal Processing: Read Less [-]

EL ENG 126 Probability and Random Processes 4 Units
Terms offered: Spring 2017, Fall 2016, Spring 2016
This course covers the fundamentals of probability and random processes useful in fields such as networks, communication, signal processing, and control. Sample space, events, probability law. Conditional probability, Independence. Random variables. Distribution, density functions. Random vectors. Law of large numbers. Central limit theorem. Estimation and detection. Markov chains.

Probability and Random Processes: Read More [+]

Rules & Requirements

Prerequisites: EECS 16A and EECS 16B

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Probability and Random Processes: Read Less [-]

EL ENG C128 Feedback Control Systems 4 Units
Terms offered: Fall 2021, Spring 2021, Fall 2020, Spring 2020
Analysis and synthesis of linear feedback control systems in transform and time domains. Control system design by root locus, frequency response, and state space methods. Applications to electro-mechanical and mechatronics systems.

Feedback Control Systems: Read More [+]

Rules & Requirements

Prerequisites: EECS 16A or MEC ENG 100; MEC ENG 132 or EL ENG 120

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Also listed as: MEC ENG C134

Feedback Control Systems: Read Less [-]
EL ENG 130 Integrated-Circuit Devices 4 Units
Terms offered: Fall 2021, Spring 2021, Fall 2020
Overview of electronic properties of semiconductor. Metal-semiconductor contacts, pn junctions, bipolar transistors, and MOS field-effect transistors. Properties that are significant to device operation for integrated circuits. Silicon device fabrication technology.

Prerequisites: EECS 16A and EECS 16B
Credit Restrictions: Students will receive no credit for El Eng 130 after taking El Eng 230A.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Integrated-Circuit Devices: Read Less [-]

EL ENG 134 Fundamentals of Photovoltaic Devices 4 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019
This course is designed to give an introduction to, and overview of, the fundamentals of photovoltaic devices. Students will learn how solar cells work, understand the concepts and models of solar cell device physics, and formulate and solve relevant physical problems related to photovoltaic devices. Monocrystalline, thin film and third generation solar cells will be discussed and analyzed. Light management and economic considerations in a solar cell system will also be covered.

Prerequisites: EECS 16A and EECS 16B

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Instructor: Arias

Fundamentals of Photovoltaic Devices: Read Less [-]

EL ENG 137A Introduction to Electric Power Systems 4 Units
Terms offered: Fall 2021, Fall 2020, Fall 2019
Overview of conventional electric power conversion and delivery, emphasizing a systemic understanding of the electric grid with primary focus at the transmission level, aimed toward recognizing needs and opportunities for technological innovation. Topics include aspects of a.c. system design, electric generators, components of transmission and distribution systems, power flow analysis, system planning and operation, performance measures, and limitations of legacy technologies.

Prerequisites: Physics 7B; EECS 16A and EECS 16B, or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Instructor: von Meier

Introduction to Electric Power Systems: Read Less [-]
EL ENG 140 Linear Integrated Circuits 4 Units
Terms offered: Fall 2021, Fall 2020, Spring 2020
Single and multiple stage transistor amplifiers. Operational amplifiers. Feedback amplifiers, 2-port formulation, source, load, and feedback network loading. Frequency response of cascaded amplifiers, gain-bandwidth exchange, compensation, dominant pole techniques, root locus. Supply and temperature independent biasing and references. Selected applications of analog circuits such as analog-to-digital converters, switched capacitor filters, and comparators. Hardware laboratory and design project.

Rules & Requirements
Prerequisites: EL ENG 105
Credit Restrictions: Students will receive no credit for El Eng 140 after taking El Eng 240A.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Alon, Sanders

EL ENG 142 Integrated Circuits for Communications 4 Units
Terms offered: Spring 2021, Fall 2019, Fall 2018
Analysis and design of electronic circuits for communication systems, with an emphasis on integrated circuits for wireless communication systems. Analysis of noise and distortion in amplifiers with application to radio receiver design. Power amplifier design with application to wireless radio transmitters. Radio-frequency mixers, oscillators, phase-locked loops, modulators, and demodulators.

Rules & Requirements
Prerequisites: EECS 16A, EECS 16B, and EL ENG 105
Credit Restrictions: Students will receive no credit for El Eng 142 after taking El Eng 242A.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Alon, Sanders

EL ENG 143 Microfabrication Technology 4 Units
Terms offered: Fall 2021, Spring 2021, Fall 2020
Integrated circuit device fabrication and surface micromachining technology. Thermal oxidation, ion implantation, impurity diffusion, film deposition, epitaxy, lithography, etching, contacts and interconnections, and process integration issues. Device design and mask layout, relation between physical structure and electrical/mechanical performance. MOS transistors and poly-Si surface microstructures will be fabricated in the laboratory and evaluated.

Rules & Requirements
Prerequisites: PHYSICS 7B

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

EL ENG 144 Fundamental Algorithms for Systems Modeling, Analysis, and Optimization 4 Units
Terms offered: Fall 2015, Fall 2014, Fall 2013
The modeling, analysis, and optimization of complex systems requires a range of algorithms and design software. This course reviews the fundamental techniques underlying the design methodology for complex systems, using integrated circuit design as example. Topics include design flows, discrete and continuous models and algorithms, and strategies for implementing algorithms efficiently and correctly in software. Laboratory assignments and a class project will expose students to state-of-the-art tools.

Rules & Requirements
Prerequisites: EECS 16A and COMPSIC 70, or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Keutzer, Lee, Roychowdhury, Seshia

Fundamental Algorithms for Systems Modeling, Analysis, and Optimization: Read Less [-]
EL ENG C145B Medical Imaging Signals and Systems 4 Units
Terms offered: Fall 2021, Fall 2020, Fall 2019
Biomedical imaging is a clinically important application of engineering, applied mathematics, physics, and medicine. In this course, we apply linear systems theory and basic physics to analyze X-ray imaging, computerized tomography, nuclear medicine, and MRI. We cover the basic physics and instrumentation that characterizes medical image as an ideal perfect-resolution image blurred by an impulse response. This material could prepare the student for a career in designing new medical imaging systems that reliably detect small tumors or infarcts.

Medical Imaging Signals and Systems: Read More [+]

Rules & Requirements
Prerequisites: Prerequisites are introductory level skills in Python/ Matlab; and either EECS 16A, EECS 16B, and EL ENG 120; or MATH 54, BIO ENG 105, and BIO ENG 101

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Conolly
Also listed as: BIO ENG C165

Medical Imaging Signals and Systems: Read Less [-]

EL ENG C145L Introductory Electronic Transducers Laboratory 3 Units
Terms offered: Fall 2014, Fall 2013, Fall 2012
Laboratory exercises exploring a variety of electronic transducers for measuring physical quantities such as temperature, force, displacement, sound, light, ionic potential; the use of circuits for low-level differential amplification and analog signal processing; and the use of microcomputers for digital sampling and display. Lectures cover principles explored in the laboratory exercises; construction, response and signal to noise of electronic transducers and actuators; and design of circuits for sensing and controlling physical quantities.

Introductory Electronic Transducers Laboratory: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Derenzo
Also listed as: BIO ENG C145L

Introductory Electronic Transducers Laboratory: Read Less [-]

EL ENG C145M Introductory Microcomputer Interfacing Laboratory 3 Units
Terms offered: Spring 2013, Spring 2012, Spring 2011
Laboratory exercises constructing basic interfacing circuits and writing 20-100 line C programs for data acquisition, storage, analysis, display, and control. Use of the IBM PC with microprogrammable digital counter/timer, parallel I/O port. Circuit components include anti-aliasing filters, the S/H amplifier, A/D and D/A converters. Exercises include effects of aliasing in periodic sampling, fast Fourier transforms of basic waveforms, the use of the Hanning filter for leakage reduction, Fourier analysis of the human voice, digital filters, and control using Fourier deconvolution. Lectures cover principles explored in the lab exercises and design of microcomputer-based systems for data acquisitions, analysis and control.

Introductory Microcomputer Interfacing Laboratory: Read More [+]

Rules & Requirements
Prerequisites: EE 16A & 16B

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Derenzo
Also listed as: BIO ENG C145M

Introductory Microcomputer Interfacing Laboratory: Read Less [-]
EL ENG C145O Laboratory in the Mechanics of Organisms 3 Units

Introduction to laboratory and field study of the biomechanics of animals and plants using fundamental biomechanical techniques and equipment. Course has a series of rotations involving students in experiments demonstrating how solid and fluid mechanics can be used to discover the way in which diverse organisms move and interact with their physical environment. The laboratories emphasize sampling methodology, experimental design, and statistical interpretation of results. Latter third of course devoted to independent research projects. Written reports and class presentation of project results are required.

Rules & Requirements

Prerequisites: INTEGBI 135 or consent of instructor. For Electrical Engineering and Computer Sciences students: EL ENG 105, EL ENG 120 or COMPSCI 184

Credit Restrictions: Students will receive no credit for C135L after taking 135L.

Hours & Format

Fall and/or spring: 15 weeks - 6 hours of laboratory, 1 hour of discussion, and 1 hour of fieldwork per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: Integrative Biology 135L

Also listed as: BIO ENG C136L/INTEGBI C135L

Laboratory in the Mechanics of Organisms: Read More [+]

EL ENG 146L Application Specific Integrated Circuits Laboratory 2 Units

Terms offered: Spring 2015

This is a lab course that covers the design of modern Application-Specific Integrated Circuits (ASICs). The labs lay the foundation of modern digital design by first setting-up the scripting and hardware description language base for specification of digital systems and interactions with tool flows. Software testing of digital designs is covered leading into a set of labs that cover the design flow. Digital synthesis, floorplanning, placement and routing are covered, as well as tools to evaluate design timing and power. Chip-level assembly is covered, instantiation of custom IP blocks: I/O pads, memories, PLLs, etc. The labs culminate with a project design – implementation of a 3-stage RISC-V processor with register file and caches.

Objectives & Outcomes

Course Objectives: This course is a one-time offering to supplement the CS150 course offered in the Fall 2014, with a lab and project section that cover the Application-Specific Integrated Circuit Design. The CS150 lectures in the Fall 2014 already covered the necessary lecture material, so students who took the CS150 lab in the Fall of 2014 will have a chance to expand their skills into the area of Application-Specific Integrated Circuit design. Hence the pre-requisite for this course is that a student has taken the CS150 course in the Fall 2014.

Rules & Requirements

Prerequisites: EECS 16B; EL ENG 105 recommended

Credit Restrictions: Students will receive no credit for Electrical Engineering 146L after taking Fall 2014 version of Electrical Engineering 141/241A.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of laboratory and 1 hour of discussion per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Instructor: Stojanovic

Application Specific Integrated Circuits Laboratory: Read Less [-]
EL ENG 147 Introduction to Microelectromechanical Systems (MEMS) 3 Units
Terms offered: Fall 2021, Fall 2020, Fall 2019
This course will teach fundamentals of micromachining and microfabrication techniques, including planar thin-film process technologies, photolithographic techniques, deposition and etching techniques, and the other technologies that are central to MEMS fabrication. It will pay special attention to teaching of fundamentals necessary for the design and analysis of devices and systems in mechanical, electrical, fluidic, and thermal energy/signal domains, and will teach basic techniques for multi-domain analysis. Fundamentals of sensing and transduction mechanisms including capacitive and piezoresistive techniques, and design and analysis of micromachined miniature sensors and actuators using these techniques will be covered. Introduction to Microelectromechanical Systems (MEMS): Read More [+]

Rules & Requirements
Prerequisites: EECS 16A and EECS 16B
Credit Restrictions: Students will receive no credit for El Eng 147 after taking El Eng 247A.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Maharbiz, Nguyen, Pister
Introduction to Microelectromechanical Systems (MEMS): Read Less [-]

EL ENG 192 Mechatronic Design Laboratory 4 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019
Design project course, focusing on application of theoretical principles in electrical engineering to control of a small-scale system, such as a mobile robot. Small teams of students will design and construct a mechatronic system incorporating sensors, actuators, and intelligence. Mechatronic Design Laboratory: Read More [+]

Rules & Requirements
Prerequisites: EECS 16A, EECS 16B, COMPSCI 61A, COMPSCI 61B, COMPSCI 61C, and EL ENG 120

Hours & Format
Fall and/or spring: 15 weeks - 1.5 hours of lecture and 10 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Fearing
Mechatronic Design Laboratory: Read Less [-]

EL ENG 194 Special Topics 1 - 4 Units
Terms offered: Spring 2021, Spring 2020, Fall 2018
Topics will vary semester to semester. See the Electrical Engineering announcements.
Special Topics: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Special Topics: Read Less [-]

EL ENG H196A Senior Honors Thesis Research 1 - 4 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
Thesis work under the supervision of a faculty member. A minimum of four units must be taken; the units may be distributed between one and two semesters in any way. To obtain credit a satisfactory thesis must be submitted at the end of the two semesters to the Electrical and Engineering and Computer Science Department archive. Students who complete four units and a thesis in one semester receive a letter grade at the end of H196A. Students who do not, receive an IP in H196A and must enroll in H196B.
Senior Honors Thesis Research: Read More [+]

Rules & Requirements
Prerequisites: Open only to students in the Electrical Engineering and Computer Science honors program

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. This is part one of a year long series course. A provisional grade of IP (in progress) will be applied and later replaced with the final grade after completing part two of the series. Final exam required.
Senior Honors Thesis Research: Read Less [-]
EL ENG H196B Senior Honors Thesis Research 1 - 4 Units
Terms offered: Spring 2016, Spring 2015, Spring 2014
Thesis work under the supervision of a faculty member. A minimum of four units must be taken; the units may be distributed between one and two semesters in any way. To obtain credit a satisfactory thesis must be submitted at the end of the two semesters to the Electrical and Engineering and Computer Science Department archive. Students who complete four units and a thesis in one semester receive a letter grade at the end of H196A. Students who do not, receive an IP in H196A and must enroll in H196B.
Rules & Requirements
Prerequisites: Open only to students in the Electrical Engineering and Computer Science honors program

EL ENG 198 Directed Group Study for Advanced Undergraduates 1 - 4 Units
Terms offered: Fall 2021, Spring 2021, Fall 2020
Group study of selected topics in electrical engineering, usually relating to new developments.
Rules & Requirements
Prerequisites: 2.0 GPA or better; 60 units completed

EL ENG 197 Field Study 1 - 4 Units
Terms offered: Fall 2021, Spring 2018, Spring 2016
Students take part in organized individual field sponsored programs with off-campus companies or tutoring/mentoring relevant to specific aspects and applications of computer science on or off campus. Note Summer CPT or OPT students: written report required. Course does not count toward major requirements, but will be counted in the cumulative units toward graduation.

EL ENG 199 Supervised Independent Study 1 - 4 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
Supervised independent study. Enrollment restrictions apply.

Nuclear Engineering
Expand all course descriptions [+]
Collapse all course descriptions [-]
NUC ENG 24 Freshman Seminars 1 Unit
Terms offered: Fall 2021, Spring 2021, Fall 2020
The Berkeley Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Berkeley Seminars are offered in all campus departments, and topics vary from department to department and semester to semester.
Freshman Seminars: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week

Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

Freshman Seminars: Read Less [-]

NUC ENG 100 Introduction to Nuclear Energy and Technology 3 Units
Terms offered: Fall 2021, Fall 2020, Fall 1999
The class provides students with an overview of the contemporary nuclear energy technology with emphasis on nuclear fission as an energy source. Starting with the basic physics of the nuclear fission process, the class includes discussions on reactor control, thermal hydraulics, fuel production, and spent fuel management for various types of reactors in use around the world as well as analysis of safety and other nuclear-related issues. This class is intended for sophomore NE students, but is also open to transfer students and students from other majors.
Introduction to Nuclear Energy and Technology: Read More [+]

Rules & Requirements
Prerequisites: PHYSICS 7A, PHYSICS 7B, and MATH 53

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Fratoni
Introduction to Nuclear Energy and Technology: Read Less [-]

NUC ENG 101 Nuclear Reactions and Radiation 4 Units
Terms offered: Spring 2021, Spring 2020, Fall 2018
Energetics and kinetics of nuclear reactions and radioactive decay, fission, fusion, and reactions of low-energy neutrons; properties of the fission products and the actinides; nuclear models and transition probabilities; interaction of radiation with matter.

Nuclear Reactions and Radiation: Read More [+]

Rules & Requirements
Prerequisites: PHYSICS 7C and NUC ENG 100

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Bernstein, L.
Nuclear Reactions and Radiation: Read Less [-]

NUC ENG 102 Nuclear Reactions and Radiation Laboratory 3 Units
Terms offered: Spring 2016, Spring 2015, Spring 2013
Laboratory course in nuclear physics. Experiments will allow students to directly observe phenomena discussed in Nuclear Engineering 101. These experiments will give students exposure to (1) electronics, (2) alpha, beta, gamma radiation detectors, (3) radioactive sources, and (4) experimental methods relevant for all aspects of nuclear science. Experiments include: Rutherford scattering, x-ray fluorescence, muon lifetime, gamma-gamma angular correlations, Mossbauer effect, and radon measurements.

Nuclear Reactions and Radiation Laboratory: Read More [+]

Rules & Requirements
Prerequisites: NUC ENG 101

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture, 1 hour of discussion, and 4 hours of laboratory per week

Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Norman
Nuclear Reactions and Radiation Laboratory: Read Less [-]
NUC ENG 104 Radiation Detection and Nuclear Instrumentation Laboratory 4 Units
Terms offered: Fall 2021, Fall 2020, Spring 2019
Basic science of radiation measurement, nuclear instrumentation, neutronics, radiation dosimetry. The lectures emphasize the principles of radiation detection. The weekly laboratory applies a variety of radiation detection systems to the practical measurements of interest for nuclear power, nuclear and non-nuclear science, and environmental applications. Students present goals and approaches of the experiments being performed.
Radiation Detection and Nuclear Instrumentation Laboratory: Read More [+]
Rules & Requirements
Prerequisites: NUC ENG 101 or consent of instructor; NUC ENG 150 recommended
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 4 hours of laboratory per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Vetter
Formerly known as: 104A
Radiation Detection and Nuclear Instrumentation Laboratory: Read Less [-]

NUC ENG 107 Introduction to Imaging 3 Units
Terms offered: Fall 2020, Fall 2018, Fall 2016
Introduction to medical imaging physics and systems, including x-ray computed tomography (CT), nuclear magnetic resonance (NMR), positron emission tomography (PET), and SPECT; basic principles of tomography and an introduction to unfolding methods; resolution effects of counting statistics, inherent system resolution and human factors.
Introduction to Imaging: Read More [+]
Rules & Requirements
Prerequisites: NUC ENG 101 and NUC ENG 104
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Vetter
Introduction to Imaging: Read Less [-]

NUC ENG 120 Nuclear Materials 4 Units
Terms offered: Fall 2021, Fall 2020, Fall 2019
Effects of irradiation on the atomic and mechanical properties of materials in nuclear reactors. Fission product swelling and release; neutron damage to structural alloys; fabrication and properties of uranium dioxide fuel.
Nuclear Materials: Read More [+]
Rules & Requirements
Prerequisites: MAT SCI 45 and one of the following: ENGIN 40, MEC ENG 40, or CHM ENG 141
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Wirth
Nuclear Materials: Read Less [-]

NUC ENG 124 Radioactive Waste Management 3 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019
Components and material flowsheets for nuclear fuel cycle, waste characteristics, sources of radioactive wastes, compositions, radioactivity and heat generation; waste treatment technologies; waste disposal technologies; safety assessment of waste disposal.
Radioactive Waste Management: Read More [+]
Rules & Requirements
Prerequisites: NUC ENG 100
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Ahn
Radioactive Waste Management: Read Less [-]
NUC ENG 130 Analytical Methods for Non-proliferation 3 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019
Use of nuclear measurement techniques to detect clandestine movement and/or possession of nuclear materials by third parties. Nuclear detection, forensics, signatures, and active and passive interrogation methodologies will be explored. Techniques currently deployed for arms control and treaty verification will be discussed. Emphasis will be placed on common elements of detection technology from the viewpoint of resolution of threat signatures from false positives due to naturally occurring radioactive material. Topics include passive and active neutron signals, gamma ray detection, fission neutron multiplicity, and U and Pu isotopic identification and age determination.

Rules & Requirements
Prerequisites: NUC ENG 101 (or similar background in nuclear physics), or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Morse

Analytical Methods for Non-proliferation: Read More [+]

NUC ENG C146 Radiochemical Methods in Nuclear Technology and Forensics 3 Units
Terms offered: Spring 2021
Experimental illustrations of the interrelation between chemical and nuclear science and technology and nuclear forensics; radioactive decay and counting techniques; nuclear spectroscopy; fundamental radiochemical techniques; radiochemical separations techniques; tracers; activation analysis; forensic applications of radiochemistry; fusion, fission and nuclear reactors.

Objectives & Outcomes
Course Objectives: Familiarize students with principles of nuclear and radiochemistry and its many important applications in our daily lives; provide hands-on training.

Student Learning Outcomes: A solid understanding of nuclear and radiochemistry; proficiency in safe handling of radioactive materials in the laboratory, and appreciation for the wide application of radiochemical techniques in chemistry, nuclear technology, and nuclear forensics.

Rules & Requirements
Prerequisites: CHEM 4B or CHEM 15; and CHEM 143 is recommended
Credit Restrictions: Students will receive no credit for CHEM 146 after completing CHEM 144, or CHEM C144.

Hours & Format
Fall and/or spring: 15 weeks - 1.5 hours of lecture and 4.5 hours of laboratory per week

Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: Chemistry 146
Also listed as: CHEM C146

Radiochemical Methods in Nuclear Technology and Forensics: Read Less [-]
NUC ENG 150 Introduction to Nuclear Reactor Theory 4 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019
Neutron interactions, nuclear fission, and chain reacting systematics in thermal and fast nuclear reactors. Diffusion and slowing down of neutrons. Criticality calculations. Nuclear reactor dynamics and reactivity feedback. Production of radionuclides in nuclear reactors.

Introduction to Nuclear Reactor Theory: Read More [+]

Rules & Requirements

Prerequisites: MATH 53, MATH 54, and NUC ENG 100

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Nuclear Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Greenspan, Vujic

Introduction to Nuclear Reactor Theory: Read Less [-]

NUC ENG 155 Introduction to Numerical Simulations in Radiation Transport 3 Units
Terms offered: Spring 2021, Fall 2019, Spring 2019
Computational methods used to analyze radiation transport described by various differential, integral, and integro-differential equations. Numerical methods include finite difference, finite elements, discrete ordinates, and Monte Carlo. Examples from neutron and photon transport; numerical solutions of neutron/photon diffusion and transport equations. Monte Carlo simulations of photon and neutron transport. An overview of optimization techniques for solving the resulting discrete equations on vector and parallel computer systems.

Introduction to Numerical Simulations in Radiation Transport: Read More [+]

Rules & Requirements

Prerequisites: MATH 53, MATH 54, and ENGIN 7

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Nuclear Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Vujic, Wirth

Introduction to Numerical Simulations in Radiation Transport: Read Less [-]

NUC ENG 156 Nuclear Criticality Safety 3 Units
Terms offered: Fall 2021, Fall 2020, Fall 2019
This course provides an introduction to the field of nuclear criticality safety. Topics include: a review of basic concepts related to criticality (fission, cross sections, multiplication factor, etc.); criticality safety accidents; standards applicable to criticality safety; hand calculations and Monte Carlo methods used in criticality safety analysis; criticality safety evaluation documents.

Nuclear Criticality Safety: Read More [+]

Objectives & Outcomes

Course Objectives: The objective of this course is to acquaint Nuclear Engineering students with the concepts and practice of nuclear criticality safety, and to help prepare them for a future career in this field.

Student Learning Outcomes: At the end of this course, students should be able to:

- Explain and define criticality safety factors for operations.
- Discuss previous criticality accidents and their causal factors, including parameters involved in solution and metal critical accidents.
- Identify and discuss the application of several common hand calculation methods.
- Describe the importance of validation of computer codes and how it is accomplished.
- Discuss ANSI/ANS criticality safety regulations.
- Describe DOE regulations and practices in the nuclear criticality safety field.
- Complete a Criticality Safety Evaluation.

Rules & Requirements

Prerequisites: NUC ENG 150 or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Nuclear Engineering/Undergraduate

Grading/Final exam status: Letter grade. Alternate method of final assessment during regularly scheduled final exam group (e.g., presentation, final project, etc.).

Instructor: Fratoni

Nuclear Criticality Safety: Read Less [-]
NUC ENG 161 Nuclear Power Engineering 4 Units

Terms offered: Fall 2021, Fall 2020, Fall 2019
Energy conversion in nuclear power systems; design of fission reactors; thermal and structural analysis of reactor core and plant components; thermal-hydraulic analysis of accidents in nuclear power plants; safety evaluation and engineered safety systems.

NUC ENG 167 Risk-Informed Design for Advanced Nuclear Systems 3 Units

Terms offered: Fall 2021, Fall 2019, Fall 2017
Project-based class for design and licensing of nuclear facilities, including advanced reactors. Elements of a project proposal. Regulatory framework and use of deterministic and probabilistic licensing criteria. Siting criteria. External and internal events. Identification and analysis of design basis and beyond design basis events. Communication with regulators and stakeholders. Ability to work in and contribute to a design team.

Objectives & Outcomes

Course Objectives: * Introduce students to the methods and models for event identification, accident analysis, and risk assessment and management for internally and externally initiated events.
* Introduce students to the regulatory requirements for design, construction and operation of nuclear facilities licensed by the U.S. Nuclear Regulatory Commission.
* Introduce students to the safety principles and methods used to design, construct and operate a safe nuclear facility, for a specific site and application.
* Provide a basic understanding of similarities and differences in regulation of nuclear facilities versus other technologies (biotech, commercial aviation, commercial space launch, civil infrastructure).
* Provide a basic understanding the risk-informed design process and an opportunity to experience contributing in a focused area to a design project.
* Provide students with experiential knowledge in developing schedules, allocating work responsibilities, and working in teams.
* Provide students with experiential knowledge in the preparation and evaluation a Safety Analysis Report for meeting USNRC regulatory requirements, including response to Requests for Additional Information (RAIs).

Student Learning Outcomes: * Develop a broad understanding of safety principles and methods used in design, construction and licensing of nuclear facilities.
* Develop a broad understanding of the U.S. Nuclear Regulatory Commission’s regulatory requirements for nuclear facilities.
* Have awareness of key similarities and differences in regulation of nuclear facilities versus other technologies (biotech, commercial aviation, commercial space launch, civil infrastructure).
* Have awareness of the major topics covered in a Safety Analysis Report (SAR) and experience in developing and writing at least one element of a SAR.
* Have developed experience and skills in communication with the business community, the public, and regulators.
* Have developed experience and skills in establishing a project schedule, allocating work responsibilities, and working in teams.
* Have understanding of application of event identification, event frequency and consequence analysis, risk assessment and management for internally and externally initiated events in the design process.

Rules & Requirements

Prerequisites: Completion of at least two upper division engineering courses providing relevant skills. Choose from the following:
CHM ENG 150A, CHM ENG 180, CIV ENG 111, CIV ENG 120, CIV ENG 152, CIV ENG 166, CIV ENG 175, ENGIN 120, IND ENG 166, IND ENG 172, MEC ENG 106, MEC ENG 109, MEC ENG C134 / EL ENG C128, MEC ENG 146, NUC ENG 120, NUC ENG 124, NUC ENG 150, and NUC ENG 161

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week
NUC ENG 170A Nuclear Design: Design in Nuclear Power Technology and Instrumentation 3 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019
Design of various fission and fusion power systems and other physically based applications. Each semester a topic will be chosen by the class as a whole. In addition to technology, the design should address issues relating to economics, the environment, and risk assessment.
Nuclear Design: Design in Nuclear Power Technology and Instrumentation: Read More [+]
Rules & Requirements
Prerequisites: Senior standing or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: 170
Nuclear Design: Design in Nuclear Power Technology and Instrumentation: Read Less [-]

NUC ENG 170B Nuclear Design: Design in Bionuclear, Nuclear Medicine, and Radiation Therapy 3 Units
Terms offered: Spring 2010, Spring 2009, Spring 2008
A systems approach to the development of procedures for nuclear medicine and radiation therapy. Each semester a specific procedure will be studied and will entail the development of the biological and physiological basis for a procedure, the chemical and biochemical characteristics of appropriate drugs, dosimetric requirements and limitations, the production and distribution of radionuclides and/or radiation fields to be applied, and the characteristics of the instrumentation to be used.
Nuclear Design: Design in Bionuclear, Nuclear Medicine, and Radiation Therapy: Read More [+]
Rules & Requirements
Prerequisites: Senior standing
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: 167
Nuclear Design: Design in Bionuclear, Nuclear Medicine, and Radiation Therapy: Read Less [-]

NUC ENG 175 Methods of Risk Analysis 3 Units
Terms offered: Fall 2020, Fall 2018, Fall 2013
Methodological approaches for the quantification of technological risk and risk based decision making. Probabilistic safety assessment, human health risks, environmental and ecological risk analysis.
Methods of Risk Analysis: Read More [+]
Rules & Requirements
Prerequisites: Upper division standing
Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Kastenberg
Methods of Risk Analysis: Read Less [-]

NUC ENG 180 Introduction to Controlled Fusion 3 Units
Terms offered: Fall 2021, Fall 2020, Fall 2019
Introduction to energy production by controlled thermonuclear reactions. Nuclear fusion reactions, energy balances for fusion systems, survey of plasma physics; neutral beam injection; RF heating methods; vacuum systems; tritium handling.
Introduction to Controlled Fusion: Read More [+]
Rules & Requirements
Prerequisites: PHYSICS 7C
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Morse
Introduction to Controlled Fusion: Read Less [-]
NUC ENG H194 Honors Undergraduate Research 1 - 4 Units
Terms offered: Fall 2021, Summer 2021 10 Week Session, Spring 2021
Supervised research. Students who have completed three or more upper division courses may pursue original research under the direction of one of the members of the staff. A final report or presentation is required. A maximum of three units of H194 may be used to fulfill a technical elective requirement in the Nuclear Engineering general program or joint major programs.
Honors Undergraduate Research: Read More [+]
Rules & Requirements
Prerequisites: Upper division technical GPA of 3.3, consent of instructor and faculty advisor
Repeat rules: Course may be repeated for credit up to a total of 8 units.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer: 10 weeks - 1.5-6 hours of independent study per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Honors Undergraduate Research: Read Less [-]

NUC ENG 198 Group Study for Advanced Undergraduates 1 - 4 Units
Terms offered: Fall 2021, Spring 2021, Fall 2020
Group studies of selected topics.
Group Study for Advanced Undergraduates: Read More [+]
Rules & Requirements
Prerequisites: Upper division standing
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Group Study for Advanced Undergraduates: Read Less [-]

NUC ENG 199 Supervised Independent Study 1 - 4 Units
Terms offered: Fall 2021, Spring 2021, Fall 2020
Supervised independent study. Enrollment restrictions apply: see the Introduction to Courses and Curricula section of this catalog.
Supervised Independent Study: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor and major adviser
Credit Restrictions: Course may be repeated for credit for a maximum of 4 units per semester.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Supervised Independent Study: Read Less [-]

NUC ENG S199 Supervised Independent Study 1 - 4 Units
Terms offered: Prior to 2007
Supervised independent study. Please see section of the for description and prerequisites.
Supervised Independent Study: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor and major adviser
Credit Restrictions: Course may be repeated for credit for a maximum of 4 units per semester.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Summer: 8 weeks - 0 hours of independent study per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Supervised Independent Study: Read Less [-]
NUC ENG 200M Introduction to Nuclear Engineering 3 Units
Terms offered: Fall 2021, Fall 2020, Fall 2019
Overview of the elements of nuclear technology in use today for the production of energy and other radiation applications. Emphasis is on nuclear fission as an energy source, with a study of the basic physics of the nuclear fission process followed by detailed discussions of issues related to the control, radioactivity management, thermal energy management, fuel production, and spent fuel management. A discussion of the various reactor types in use around the world will include analysis of safety and nuclear proliferation issues surrounding the various technologies. Case studies of some reactor accidents and other nuclear-related incidents will be included.

Introduction to Nuclear Engineering: Read More

Objectives & Outcomes

Course Objectives: (1) To give students an understanding of the basic concepts of nuclear energy and other radiation applications, together with an overview of related aspects such as proliferation and waste management. (2) To provide students an overview of the elements of nuclear technology in use today for the production of energy and to set those elements in the broader contest of nuclear technology.

Student Learning Outcomes: At the end of the course, students should be able to:
- understand basic theoretical concepts of nuclear physics, reactor physics, and energy removal
- describe radiation damage mechanisms in materials and biological tissue, estimate radiation dose, understand radiation shielding
- understand the concepts of chain reaction, neutron balance, criticality, reactivity, and reactivity control
- describe the main nuclear power reactor designs and identify their major components
- describe core components and understand their function
- calculate cost of electricity based on simple economic principles
- understand the difference between PWR and BWR in terms of core design, steam cycle, and operation
- understand the concept of design-basis accidents, their causes, and their consequences
- identify the main steps and related facilities of fuel cycle
- understand the fundamental aspects of used fuel reprocessing and disposal

Rules & Requirements

Prerequisites: PHYSICS 7A, PHYSICS 7B, and MATH 54
Credit Restrictions: This course is restricted to students enrolled in the Master of Engineering degree program.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Fratoni

Introduction to Nuclear Engineering: Read Less

NUC ENG 201 Nuclear Reactions and Interactions of Radiation with Matter 4 Units
Terms offered: Spring 2020, Spring 2018, Spring 2016
Interaction of gamma rays, neutrons, and charged particles with matter; nuclear structure and radioactive decay; cross sections and energetics of nuclear reactions; nuclear fission and the fission products; fission and fusion reactions as energy sources.

Nuclear Reactions and Interactions of Radiation with Matter: Read More

Rules & Requirements

Prerequisites: NUC ENG 101

Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture per week

Additional Details

Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Norman

Nuclear Reactions and Interactions of Radiation with Matter: Read Less

NUC ENG 204 Advanced Concepts in Radiation Detection and Measurements 3 Units
Terms offered: Fall 2018, Fall 2015, Fall 2013
Advanced concepts in the detection of ionizing radiation relevant for basic and applied sciences, nuclear non-proliferation, and homeland security. Concepts of signal generation and processing with advantages and drawbacks of a range of detection technologies. Laboratory comprises experiments to compare conventional analog and advanced digital signal processing, information generation and processing, position-sensitive detection, tracking, and imaging modalities.

Advanced Concepts in Radiation Detection and Measurements: Read More

Rules & Requirements

Prerequisites: Graduate standing, NUC ENG 104 or similar course, or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 4 hours of laboratory per week

Additional Details

Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Vetter

Advanced Concepts in Radiation Detection and Measurements: Read Less
NUC ENG 207 Physical Principles of CT, PET, and SPECT Imaging 4 Units

Terms offered: Fall 2021

This course is designed to build the basic knowledge base to understand the physical principles of x-ray computed tomography (CT), positron emission tomography (PET), and single photon emission computed tomography (SPECT), radiologic imaging modalities using ionizing radiation. Using examples of CT, PET, and SPECT used in everyday disease management, this course will introduce theoretical foundations and practical applications for comprehensive understanding of these important noninvasive imaging techniques.

Objectives & Outcomes

Course Objectives: The objective of this course is to understand physical principles of how biomedical imaging systems utilizing ionizing radiation (i.e., x-ray and gamma-ray) work.

Student Learning Outcomes: The students will have good understanding of physical principles of CT, PET, and SPECT imaging, and how these ionizing radiation imaging modalities are used in medicine and biomedical research.

Hours & Format

Fall and/or spring: 15 weeks - 4 hours of lecture per week

Additional Details

Subject/Course Level: Nuclear Engineering/Graduate

Grading: Letter grade.

Instructor: Youngho

Physical Principles of CT, PET, and SPECT Imaging: Read Less [-]

NUC ENG 210M Nuclear Reactions and Radiation 4 Units

Terms offered: Spring 2021, Spring 2020, Fall 2018

Energetics and kinetics of nuclear reactions and radioactive decay, fission, fusion, and reactions of low-energy neutrons; properties of the fission products and the actinides; nuclear models and transition probabilities; interaction of radiation with matter.

Objectives & Outcomes

Course Objectives: Provide the students with a solid understanding of the fundamentals of those aspect of low-energy nuclear physics that are most important to applications in such areas as nuclear engineering, nuclear and radiochemistry, geosciences, biotechnology, etc.

Student Learning Outcomes:
- Calculate estimates of nuclear masses and energetics based on empirical data and nuclear models.
- Calculate estimates of the lifetimes of nuclear states that are unstable to alpha-, beta- and gamma decay and internal conversion based on the theory of simple nuclear models.
- Calculate the consequences of radioactive growth and decay and nuclear reactions.
- Calculate the energies of fission fragments and understand the charge and mass distributions of the fission products, and prompt neutron and gamma rays from fission.
- Calculate the kinematics of the interaction of photons with matter and apply stopping power to determine the energy loss rate and ranges of charged particles in matter.
- Use nuclear models to predict low-energy level structure and level energies.
- Use nuclear models to predict the spins and parities of low-lying levels and estimate their consequences with respect to radioactive decay.
- Use nuclear models to understand the properties of neutron capture and the Breit-Wigner single level formula to calculate cross sections at resonance and thermal energies.

Rules & Requirements

Prerequisites: PHYSICS 7C or consent of instructor

Credit Restrictions: This course is restricted to students enrolled in the Master of Engineering degree program.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Nuclear Engineering/Graduate

Grading: Letter grade.

Instructor: Bernstein

Nuclear Reactions and Radiation: Read Less [-]
NUC ENG 215M Introduction to Nuclear Reactor Theory 4 Units
Terms offered: Spring 2021, Spring 2020
Introduction to Nuclear Reactor Theory: Read More [+]
Rules & Requirements
Prerequisites: NUC ENG 101; MATH 53; and MATH 54
Credit Restrictions: This course is restricted to students enrolled in the Master of Engineering degree program.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructors: Vujic, Fratoni, Slaybaugh
Introduction to Nuclear Reactor Theory: Read Less [-]

NUC ENG 220M Nuclear Materials 4 Units
Terms offered: Fall 2021, Fall 2020, Fall 2019
Effects of irradiation on the atomic and mechanical properties of materials in nuclear reactors. Fission product swelling and release; neutron damage to structural alloys; fabrication and properties of uranium dioxide fuel.
Nuclear Materials: Read More [+]
Objectives & Outcomes
Course Objectives: Develop an understanding of failure mechanism in materials and their impact in nuclear technology.

- Explain quantitatively the production of damage, in materials.
- Give an understanding of the behavior of fission products in ceramic fuel, how they are formed, how they migrate, and how they affect properties of the fuel.
- Review those aspects of fundamental solid state physics that are pertinent to understanding the effects of radiation on crystalline solids. Show how radiation, particularly by fast neutrons, affects the mechanical properties of fuel, cladding, and structural materials in a reactor core.

Student Learning Outcomes: Analyze the processes of fission gas release and swelling of reactor fuel.
Deal with point defects in solids; how they are produced at thermal equilibrium and by neutron irradiation; how they agglomerate to form voids in metals or grow gas bubbles in the fuel. Kinchin-Pease model. Know the principal effects of radiation on metals: dislocation loops, voids, precipitates, and helium bubbles. Solve diffusion problems beginning from Fick's law; understand how the diffusion coefficient is related to the mobility of atoms in the crystalline lattice.
Understand how the grain structure influences properties such as creep rate and fission product release (ceramic UO2).
Understand the concept and quantitative properties of dislocations, and how irradiation-produced point defects influences their motion and hence material properties.
Rules & Requirements
Prerequisites: Introductory course on properties of materials (MAT SCI 45); and upper division course in thermodynamics (ENGIN 40 or CHM ENG 141)
Credit Restrictions: This course is restricted to students enrolled in the Master of Engineering degree program.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Hosemann
Nuclear Materials: Read Less [-]
NUC ENG 221 Corrosion in Nuclear Power Systems 3 Units

Terms offered: Spring 2018, Spring 2016, Spring 2014
Structural metals in nuclear power plants; properties and fabrication of Zircaloy; aqueous corrosion of reactor components; structural integrity of reactor components under combined mechanical loading, neutron irradiation, and chemical environment.
Corrosion in Nuclear Power Systems: Read More [+]

Rules & Requirements

Prerequisites: NUC ENG 120. MAT SCI 112 recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Wirth

Corrosion in Nuclear Power Systems: Read Less [-]

NUC ENG 224 Safety Assessment for Geological Disposal of Radioactive Wastes 3 Units

Terms offered: Spring 2014, Spring 2013, Spring 2012
Multi-barrier concept; groundwater hydrology, mathematical modeling of mass transport in heterogeneous media, source term for far-field model; near-field chemical environment, radionuclide release from waste solids, modeling of radionuclide transport in the near field, effect of temperature on repository performance, effect of water flow, effect of geochemical conditions, effect of engineered barrier alteration; overall performance assessment, performance index, uncertainty associated with assessment, regulation and standards.
Safety Assessment for Geological Disposal of Radioactive Wastes: Read More [+]

Rules & Requirements

Prerequisites: NUC ENG 124 or an upper division course in differential equations

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Ahn

Safety Assessment for Geological Disposal of Radioactive Wastes: Read Less [-]

NUC ENG 225 The Nuclear Fuel Cycle 3 Units

Terms offered: Spring 2015, Spring 2013, Spring 2011
This course is intended for graduate students interested in acquiring a foundation in nuclear fuel cycle with topics ranging from nuclear-fuel reprocessing to waste treatment and final disposal. The emphasis is on the relationship between nuclear-power utilization and its environmental impacts. The goal is for graduate engineering students to gain sufficient understanding in how nuclear-power utilization affects the environment, so that they are better prepared to design an advanced system that would result in minimized environmental impact. The lectures will consist of two parts. The first half includes mathematical models for individual processes in a fuel cycle, such as nuclear fuel reprocessing, waste solidification, repository performance, and nuclear transmutation in a nuclear reactor. In the second half, these individual models are integrated, which enables students to evaluate environmental impact of a fuel cycle.
The Nuclear Fuel Cycle: Read More [+]

Rules & Requirements

Prerequisites: Graduate standing or consent of instructor; 124 and 150 are recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Ahn

The Nuclear Fuel Cycle: Read Less [-]
NUC ENG C226 Modeling and Simulation of Advanced Manufacturing Processes 3 Units

Terms offered: Spring 2021, Spring 2020, Spring 2019

This course provides the student with a modern introduction to the basic industrial practices, modeling techniques, theoretical background, and computational methods to treat classical and cutting edge manufacturing processes in a coherent and self-consistent manner.

Modeling and Simulation of Advanced Manufacturing Processes: Read More [+]

Objectives & Outcomes

Course Objectives: An introduction to modeling and simulation of modern manufacturing processes.

Rules & Requirements

Prerequisites: An undergraduate course in strength of materials or 122

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Nuclear Engineering/Graduate

Grading: Letter grade.

Instructor: Zohdi

Also listed as: MAT SCI C286/MEC ENG C201

Modeling and Simulation of Advanced Manufacturing Processes: Read Less [-]

NUC ENG 230 Analytical Methods for Non-Proliferation 3 Units

Terms offered: Spring 2021, Spring 2020, Spring 2019

Use of nuclear measurement techniques to detect clandestine movement and/or possession of nuclear materials by third parties. Nuclear detection, forensics, signatures, and active and passive interrogation methodologies will be explored. Techniques currently deployed for arms control and treaty verification will be discussed. Emphasis will be placed on common elements of detection technology from the viewpoint of resolution of threat signatures from false positives due to naturally occurring radioactive material. Topics include passive and active neutron signals, gamma ray detection, fission neutron multiplicity, and U and Puisotopic identification and age determination.

Analytical Methods for Non-Proliferation: Read More [+]

Rules & Requirements

Prerequisites: NUC ENG 101, PHYSICS 7C, or equivalent course in nuclear physics

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Nuclear Engineering/Graduate

Grading: Letter grade.

Instructor: Morse

Analytical Methods for Non-Proliferation: Read Less [-]
NUC ENG C231 Medical Imaging Signals and Systems 4 Units
Terms offered: Fall 2021, Fall 2020, Fall 2019
Biomedical imaging is a clinically important application of engineering, applied mathematics, physics, and medicine. In this course, we apply linear systems theory and basic physics to analyze X-ray imaging, computerized tomography, nuclear medicine, and MRI. We cover the basic physics and instrumentation that characterizes medical image as an ideal perfect-resolution image blurred by an impulse response. This material could prepare the student for a career in designing new medical imaging systems that reliably detect small tumors or infarcts.
Medical Imaging Signals and Systems: Read More [+]
Objectives & Outcomes
Course Objectives: •
understand how 2D impulse response or 2D spatial frequency transfer function (or Modulation Transfer Function) allow one to quantify the spatial resolution of an imaging system.
• understand 2D sampling requirements to avoid aliasing
• understand 2D filtered backprojection reconstruction from projections based on the projection-slice theorem of Fourier Transforms
• understand the concept of image reconstruction as solving a mathematical inverse problem.
• understand the limitations of poorly conditioned inverse problems and noise amplification
• understand how diffraction can limit resolution--but not for the imaging systems in this class
• understand the hardware components of an X-ray imaging scanner
• understand the physics and hardware limits to spatial resolution of an X-ray imaging system
• understand tradeoffs between depth, contrast, and dose for X-ray sources
• understand resolution limits for CT scanners
• understand how to reconstruct a 2D CT image from projection data using the filtered backprojection algorithm
• understand the hardware and physics of Nuclear Medicine scanners
• understand how PET and SPECT images are created using filtered backprojection
• understand resolution limits of nuclear medicine scanners
• understand MRI hardware components, resolution limits and image reconstruction via a 2D FFT
• understand how to construct a medical imaging scanner that will achieve a desired spatial resolution specification.
Student Learning Outcomes: •
students will be tested for their understanding of the key concepts above
• undergraduate students will apply to graduate programs and be admitted
• students will apply this knowledge to their research at Berkeley, UCSF, LBNL or elsewhere

NUC ENG C235 Principles of Magnetic Resonance Imaging 4 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019, Spring 2017
Fundamentals of MRI including signal-to-noise ratio, resolution, and contrast as dictated by physics, pulse sequences, and instrumentation. Image reconstruction via 2D FFT methods. Fast imaging reconstruction via convolution-back projection and gridding methods and FFTs.
Hardware for modern MRI scanners including main field, gradient fields, RF coils, and shim supplies. Software for MRI including imaging methods such as 2D FT, RARE, SSFP, spiral and echo planar imaging methods.
Principles of Magnetic Resonance Imaging: Read More [+]
Objectives & Outcomes
Course Objectives: Graduate level understanding of physics, hardware, and systems engineering description of image formation, and image reconstruction in MRI. Experience in Imaging with different MR Imaging systems. This course should enable students to begin graduate level research at Berkeley (Neuroscience labs, EECS and Bioengineering), LBNL or at UCSF (Radiology and Bioengineering) at an advanced level and make research-level contribution
Rules & Requirements
Prerequisites: EL ENG 120 or BIO ENG C165/EL ENG C145B or consent of instructor
Credit Restrictions: Students will receive no credit for Bioengineering C265/El Engineering C225E after taking El Engineering 265.
Repeat rules: Course may be repeated for credit under special circumstances: Students can only receive credit for 1 of the 2 versions of the class, BioEc265 or EE c225e, not both
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructors: Conolly, Vandsburger
Also listed as: BIO ENG C265/EL ENG C225E
Principles of Magnetic Resonance Imaging: Read Less [-]
NUC ENG 250 Nuclear Reactor Theory 4 Units
Terms offered: Fall 2020, Fall 2017, Fall 2015
Fission characteristics; neutron chain reactions, neutron transport and
diffusion theory; reactor kinetics; multigroup methods, fast and thermal
spectrum calculations, inhomogeneous reactor design, effects of poisons
and fuel depletion.
Nuclear Reactor Theory: Read More [+]
Rules & Requirements
Prerequisites: NUC ENG 101 and NUC ENG 150; ENGIN 117
recommended
Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture per week
Summer: 6 weeks - 10 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Greenspan
Nuclear Reactor Theory: Read Less [-]

NUC ENG 255 Numerical Simulation in
Radiation Transport 3 Units
Terms offered: Spring 2021, Fall 2019, Fall 2018
Computational methods used to analyze nuclear reactor systems
described by various differential, integral, and integro-differential
equations. Numerical methods include finite difference, finite elements,
discrete ordinates, and Monte Carlo. Examples from neutron and
photon transport, heat transfer, and thermal hydraulics. An overview of
optimization techniques for solving the resulting discrete equations on
vector and parallel computer systems.
Numerical Simulation in Radiation Transport: Read More [+]
Rules & Requirements
Prerequisites: NUC ENG 150
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Vujic
Numerical Simulation in Radiation Transport: Read Less [-]

NUC ENG 256M Nuclear Criticality Safety 3
Units
Terms offered: Fall 2021, Fall 2020, Fall 2019
This course provides an introduction to the field of nuclear criticality
safety. Topics include: a review of basic concepts related to criticality
(fission, cross sections, multiplication factor, etc.); criticality safety
accidents; standards applicable to criticality safety; hand calculations and
Monte Carlo methods used in criticality safety analysis; criticality safety
evaluation documents.
Nuclear Criticality Safety: Read More [+]
Objectives & Outcomes
Course Objectives: The objective of this course is to acquaint Nuclear
Engineering students with the concepts and practice of nuclear criticality
safety, and to help prepare them for a future career in this field.
Student Learning Outcomes: At the end of this course, students should
be able to:
Explain and define criticality safety factors for operations.
Discuss previous criticality accidents and their causal factors, including
parameters involved in solution and metal critical accidents.
Identify and discuss the application of several common hand calculation
methods.
Describe the importance of validation of computer codes and how it is
accomplished.
Discuss ANSI/ANS criticality safety regulations.
Describe DOE regulations and practices in the nuclear criticality safety
field.
Complete a Criticality Safety Evaluation
Rules & Requirements
Prerequisites: NUC ENG 150 or instructor consent
Credit Restrictions: This course is restricted to students enrolled in the
Master of Engineering degree program.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Fratoni
Nuclear Criticality Safety: Read Less [-]
NUC ENG 260 Thermal Aspects of Nuclear Reactors 4 Units

Terms offered: Fall 2016, Fall 2014, Fall 2012
Fluid dynamics and heat transfer; thermal and hydraulic analysis of nuclear reactors; two-phase flow and boiling; compressible flow; stress analysis; energy conversion methods.
Thermal Aspects of Nuclear Reactors: Read More [+]

Rules & Requirements
Prerequisites: MEC ENG 106 and MEC ENG 109; or CHM ENG 150B

Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture per week

Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Berger

Thermal Aspects of Nuclear Reactors: Read Less [-]

NUC ENG 261M Nuclear Power Engineering 4 Units

Terms offered: Fall 2021, Fall 2020, Fall 2019
The class covers a wide range of topics applicable to nuclear power plant engineering. Energy conversion in nuclear power systems; design of fission reactors; thermal and structural analysis of reactor core and plant components; thermal-hydraulic analysis of accidents in nuclear power plants; safety evaluation and engineered safety systems. The instructor has 30 years’ experience in the commercial power industry.
Nuclear Power Engineering: Read More [+]

Rules & Requirements
Prerequisites: Course(s) in fluid mechanics and heat transfer; junior-level course in thermodynamics. Must be enrolled in the Master of Engineering degree program

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Berger

Nuclear Power Engineering: Read Less [-]

NUC ENG 262 Radiobiology 3 Units

Terms offered: Spring 2021, Spring 2020, Spring 2019
Radiobiology is concerned with the action of ionizing radiation on biological tissues and living organisms. It combines two disciplines: radiation physics and biology. Radiobiology combines our understanding of ionizing radiation and molecular biology, and is a required knowledge for health physicists, radiation biologists and medical physicists. This course will provide such knowledge for a diverse group of students with need in either disciplines. This course represents one of the requisites for the Joint UC Berkeley-UC San Francisco Medical Physics Certificate Program.
Radiobiology: Read More [+]

Objectives & Outcomes

Course Objectives: A group project will be expected from students and computer models will be turned in at the end of the semester, either focusing on cancer risk tools, epidemiologic analysis, radiation cancer models or cancer treatment by radiation. The project should give students strong foundation to tackle more advanced risk models or dynamic cancer models.

By the end of the class, students should:
- Be proficient in the main mechanisms describing the interaction of ionizing radiation with tissue;
- Be able to know the existing gaps in this field and where more research is needed;
- Understand how radiation affects DNA and leads to gene mutation;
- Understand how cancer rises from various radiation damage in the tissue (targeted and non-targeted effects);
- Able to write computer model for radiation risk assessment;
- Able to write computer model for cancer formation;
- Understand the main methods to treat cancer with radiation;
- Can differentiate tissue effect between low and high LET;
- Understand the various risk issues dealing with radiation: occupational (medical, nuclear worker, astronauts ...), vs population (accident, terrorism ...);
- Be able to read scientific articles in the radiation biology field;

Rules & Requirements
Prerequisites: Students are expected to have completed a course in basic radiobiology, radiation protection, and dosimetry (NE162 or equivalent). In addition, a class in radiation detection and instrumentation (e.g. NE194 or equivalent) and an introductory programming (Engineering 7 or equivalent) are recommended but not required. Prerequisites do not need to have been completed in the same semester as this course.

Student Learning Outcomes: By the end of the class, students should:
- Be able to know the existing gaps in this field and where more research is needed;
- Understand how radiation affects DNA and leads to gene mutation;
- Understand how cancer rises from various radiation damage in the tissue (targeted and non-targeted effects);
- Able to write computer model for radiation risk assessment;
- Able to write computer model for cancer formation;
- Understand the main methods to treat cancer with radiation;
- Can differentiate tissue effect between low and high LET;
- Understand the various risk issues dealing with radiation: occupational (medical, nuclear worker, astronauts ...), vs population (accident, terrorism ...);
- Be able to read scientific articles in the radiation biology field;

Rules & Requirements
Prerequisites: Students are expected to have completed a course in basic radiobiology, radiation protection, and dosimetry (NE162 or equivalent). In addition, a class in radiation detection and instrumentation (e.g. NE194 or equivalent) and an introductory programming (Engineering 7 or equivalent) are recommended but not required. Prerequisites do not need to have been completed in the same semester as this course.

Student Learning Outcomes: By the end of the class, students should:
- Be able to know the existing gaps in this field and where more research is needed;
- Understand how radiation affects DNA and leads to gene mutation;
- Understand how cancer rises from various radiation damage in the tissue (targeted and non-targeted effects);
- Able to write computer model for radiation risk assessment;
- Able to write computer model for cancer formation;
- Understand the main methods to treat cancer with radiation;
- Can differentiate tissue effect between low and high LET;
- Understand the various risk issues dealing with radiation: occupational (medical, nuclear worker, astronauts ...), vs population (accident, terrorism ...);
- Be able to read scientific articles in the radiation biology field;

Rules & Requirements
Prerequisites: Students are expected to have completed a course in basic radiobiology, radiation protection, and dosimetry (NE162 or equivalent). In addition, a class in radiation detection and instrumentation (e.g. NE194 or equivalent) and an introductory programming (Engineering 7 or equivalent) are recommended but not required. Prerequisites do not need to have been completed in the same semester as this course.

Student Learning Outcomes: By the end of the class, students should:
- Be able to know the existing gaps in this field and where more research is needed;
- Understand how radiation affects DNA and leads to gene mutation;
- Understand how cancer rises from various radiation damage in the tissue (targeted and non-targeted effects);
- Able to write computer model for radiation risk assessment;
- Able to write computer model for cancer formation;
- Understand the main methods to treat cancer with radiation;
- Can differentiate tissue effect between low and high LET;
- Understand the various risk issues dealing with radiation: occupational (medical, nuclear worker, astronauts ...), vs population (accident, terrorism ...);
- Be able to read scientific articles in the radiation biology field;

Rules & Requirements
Prerequisites: Students are expected to have completed a course in basic radiobiology, radiation protection, and dosimetry (NE162 or equivalent). In addition, a class in radiation detection and instrumentation (e.g. NE194 or equivalent) and an introductory programming (Engineering 7 or equivalent) are recommended but not required. Prerequisites do not need to have been completed in the same semester as this course.

Student Learning Outcomes: By the end of the class, students should:
- Be able to know the existing gaps in this field and where more research is needed;
- Understand how radiation affects DNA and leads to gene mutation;
- Understand how cancer rises from various radiation damage in the tissue (targeted and non-targeted effects);
- Able to write computer model for radiation risk assessment;
- Able to write computer model for cancer formation;
- Understand the main methods to treat cancer with radiation;
- Can differentiate tissue effect between low and high LET;
- Understand the various risk issues dealing with radiation: occupational (medical, nuclear worker, astronauts ...), vs population (accident, terrorism ...);
- Be able to read scientific articles in the radiation biology field;
NUC ENG 265 Design Analysis of Nuclear Reactors 3 Units
Terms offered: Fall 2016, Fall 2015, Fall 2013
Principles and techniques of economic analysis to determine capital and operating costs; fuel management and fuel cycle optimization; thermal limits on reactor performance, thermal converters, and fast breeders; control and transient problems; reactor safety and licensing; release of radioactivity from reactors and fuel processing plants.
Rules & Requirements
Prerequisites: NUC ENG 150 and NUC ENG 161
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Greenspan

NUC ENG 270 Advanced Nuclear Reactors 3 Units
Terms offered: Fall 2021, Spring 2019
The scope of this class is to provide students with a broad overview of Gen IV and beyond reactor systems, advanced fuel cycles, and new trends in reactor design (e.g., small modular, load following, etc.).
Objectives & Outcomes
Course Objectives: The main objective of this course is to provide students with an understanding of how advanced nuclear reactors work, their mission, their benefits, and the challenges that remain to be addressed.
This class is intended for all graduate students (PhD, MS, and MEng) at any stage in their academic career.
Student Learning Outcomes: By the end of this course students are expected to be able:
– to identify the main advanced reactor concepts and recognize their main features;
– to discuss the benefits and challenges associated with each concept;
– to understand the difference between fuel cycle options and associated characteristics such as resource utilization, waste generation, non-proliferation and safeguards;
– to recognize the contribution and limitation of advanced reactors towards various applications (i.e., load-following, hydrogen generation, etc.).
Rules & Requirements
Prerequisites: Students will benefit the most from this class if they have basic knowledge of light water reactor design, reactor physics, and reactor thermal-hydraulics (these topics are covered in NUC ENG 150 and NUC ENG 161). Students are expected to be familiar with the following topics (mostly related to LWR): main reactor components and function; reactor layout; auxiliary systems; criticality, reactivity and reactivity feedbacks; and heat transfer, fluid flow
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Fratoni

NUC ENG 267 Risk-Informed Design for Advanced Nuclear Systems 3 Units
Terms offered: Fall 2021, Fall 2019, Fall 2017
Project-based class for design and licensing of nuclear facilities, including advanced reactors. Elements of a project proposal. Regulatory framework and use of deterministic and probabilistic licensing criteria. Siting criteria. External and internal events. Identification and analysis of design basis and beyond design basis events. Communication with regulators and stakeholders. Ability to work in and contribute to a design team.
Objectives & Outcomes
Course Objectives: The main objective of this course is to provide students with an understanding of how advanced nuclear reactors work, their mission, their benefits, and the challenges that remain to be addressed.
This class is intended for all graduate students (PhD, MS, and MEng) at any stage in their academic career.
Student Learning Outcomes: By the end of this course students are expected to be able:
– to identify the main advanced reactor concepts and recognize their main features;
– to discuss the benefits and challenges associated with each concept;
– to understand the difference between fuel cycle options and associated characteristics such as resource utilization, waste generation, non-proliferation and safeguards;
– to recognize the contribution and limitation of advanced reactors towards various applications (i.e., load-following, hydrogen generation, etc.).
Rules & Requirements
Prerequisites: Completion of at least two upperdivision engineering courses providing relevant skills: CHM ENG 150A, CHM ENG 180, CIV ENG 111, CIV ENG 120, CIV ENG 152, CIV ENG 166, CIV ENG 175, ENGIN 120, IND ENG 166, IND ENG 172, MEC ENG 106, MEC ENG 109, MEC ENG C128, MEC ENG 146, NUC ENG 120, NUC ENG 124, NUC ENG 150, or NUC ENG 161
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Peterson
Risk-Informed Design for Advanced Nuclear Systems: Read Less [-]
NUC ENG 275 Principles and Methods of Risk Analysis 4 Units
Terms offered: Fall 2020, Fall 2018, Fall 2013
Principles and methodological approaches for the quantification of technological risk and risk-based decision making.
Principles and Methods of Risk Analysis: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor. CIV ENG 193 and IND ENG 166 recommended

Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture per week

Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Kastenberg

Principles and Methods of Risk Analysis: Read Less [-]

NUC ENG 280 Fusion Reactor Engineering 3 Units
Terms offered: Spring 2021, Spring 2019, Spring 2017
Engineering and design of fusion systems. Introduction to controlled thermonuclear fusion as an energy economy, from the standpoint of the physics and technology involved. Case studies of fusion reactor design. Engineering principles of support technology for fusion systems.
Fusion Reactor Engineering: Read More [+]

Rules & Requirements
Prerequisites: NUC ENG 120 and NUC ENG 180

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Morse

Fusion Reactor Engineering: Read Less [-]

NUC ENG 281 Fully Ionized Plasmas 3 Units
Terms offered: Spring 2020, Spring 2018, Spring 2016
Fully Ionized Plasmas: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: Morse

Formerly known as: Electrical Engineering 239B

Fully Ionized Plasmas: Read Less [-]

NUC ENG C282 Charged Particle Sources and Beam Technology 3 Units
Terms offered: Spring 2020, Spring 2018, Fall 2015, Fall 2013, Fall 2011
Topics in this course will include the latest technology of various types of ion and electron sources, extraction and formation of charge particle beams, computer simulation of beam propagation, diagnostics of ion sources and beams, and the applications of beams in fusion, synchrotron light source, neutron generation, microelectronics, lithography, and medical therapy. This is a general accelerator technology and engineering course that will be of interest to graduate students in physics, electrical engineering, and nuclear engineering.
Charged Particle Sources and Beam Technology: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructors: Leung, Steier

Also listed as: ENGIN C282

Charged Particle Sources and Beam Technology: Read Less [-]
NUC ENG C285 Nuclear Security: The Nexus Between Policy and Technology 4 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019
The course will review the origins and evolution of nuclear energy, how it has been applied for both peaceful and military purposes, and the current and prospective challenges it presents. The purpose of the course is to educate students on the policy roots and technological foundations of nuclear energy and nuclear weapons so they are positioned to make original contributions to the field in their scholarly and professional careers.
Nuclear Security: The Nexus Between Policy and Technology: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructors: Nacht, Prussin
Also listed as: PUB POL C285
Nuclear Security: The Nexus Between Policy and Technology: Read Less [-]

NUC ENG 290A Special Topics in Applied Nuclear Physics 3 Units
Terms offered: Fall 2017, Spring 2016, Fall 2014
Special topics in applied nuclear physics. Topics may include applied nuclear reactions and instrumentation, bionuclear and radiological physics, and subsurface nuclear technology, among other possibilities. Course content may vary from semester to semester depending upon the instructor.
Special Topics in Applied Nuclear Physics: Read More [+]

Rules & Requirements
Prerequisites: Graduate standing or consent of instructor
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Instructor: van Bibber
Special Topics in Applied Nuclear Physics: Read Less [-]

NUC ENG 290B Special Topics in Nuclear Materials and Chemistry 3 Units
Terms offered: Fall 2020, Spring 2016, Spring 2015
Special topics in nuclear materials and chemistry. Topics may include advanced nuclear materials and corrosion. Course content may vary from semester to semester depending upon the instructor.
Special Topics in Nuclear Materials and Chemistry: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Special Topics in Nuclear Materials and Chemistry: Read Less [-]

NUC ENG 290C Special Topics in Nuclear Energy 3 Units
Terms offered: Summer 2002 10 Week Session
Special topics in nuclear energy. Topics may include fission reactor analysis and engineering, nuclear thermal hydraulics, and risk, safety and large-scale systems analysis. Course content may vary from semester to semester depending on the instructor.
Special Topics in Nuclear Energy: Read More [+]

Rules & Requirements
Prerequisites: Graduate standing or consent of instructor
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Special Topics in Nuclear Energy: Read Less [-]
NUC ENG 290D Special Topics in Nuclear Non-Proliferation 3 Units
Terms offered: Spring 2021, Fall 2014, Summer 2005 10 Week Session
Special topics in nuclear non-proliferation. Topics may include homeland security and nuclear policy, and nuclear fuel cycle and waste management. Course content may vary from semester to semester depending on the instructor.
Rules & Requirements
Prerequisites: Graduate standing or consent of instructor
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.

Special Topics in Nuclear Non-Proliferation: Read More [+]

NUC ENG 290E Special Topics in Environmental Aspects of Nuclear Energy 1 - 3 Units
Terms offered: Fall 2021, Spring 2019, Fall 2015
Special topics in environmental aspects of nuclear energy. Lectures on special topics of interest in environmental impacts of nuclear power utilizations, including severe accidents. The course content may vary from semester to semester, and will be announced at the beginning of each semester.
Special Topics in Environmental Aspects of Nuclear Energy: Read More [+]
Rules & Requirements
Prerequisites: Graduate standing or consent of instructor
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Special Topics in Environmental Aspects of Nuclear Energy: Read Less [-]

NUC ENG 290F Special Topics in Fusion and Plasma Physics 3 Units
Terms offered: Summer 2007 10 Week Session, Summer 2007 3 Week Session
Special topics in fusion and plasma physics. Topics may include laser, particle beam and plasma technologies, fusion science and technology, and accelerators. Course content may vary from semester to semester depending upon the instructor.
Rules & Requirements
Prerequisites: Graduate standing or consent of instructor
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Letter grade.
Special Topics in Fusion and Plasma Physics: Read Less [-]

NUC ENG 295 Nuclear Engineering Colloquium 0.0 Units
Terms offered: Fall 2021, Spring 2021, Fall 2020
Presentations on current topics of interest in nuclear technology by experts from government, industry and universities. Open to the campus community.
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of colloquium per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Instructor: van Bibber
Nuclear Engineering Colloquium: Read Less [-]
NUC ENG 298 Group Research Seminars 1
Unit
Terms offered: Fall 2021, Spring 2021, Fall 2020
Seminars in current research topics in nuclear engineering: Section 1 - Fusion; Section 2 - Nuclear Waste Management; Section 3 - Nuclear Thermal Hydraulics; Section 4 - Nuclear Chemistry; Section 6 - Nuclear Materials; Section 7 - Fusion reaction design; Section 8 - Nuclear Instrumentation.
Group Research Seminars: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1.5 hours of seminar per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Group Research Seminars: Read Less [-]

NUC ENG 299 Individual Research 1 - 12 Units
Terms offered: Fall 2021, Spring 2021, Fall 2020
Investigation of advanced nuclear engineering problems.
Individual Research: Read More [+]
Rules & Requirements
Prerequisites: Graduate standing
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Individual Research: Read Less [-]

NUC ENG N299 Individual Research 1 - 6 Units
Terms offered: Summer 2021 3 Week Session, Summer 2021 8 Week Session, Summer 2020 8 Week Session
Investigation of advanced nuclear engineering problems.
Individual Research: Read More [+]
Rules & Requirements
Prerequisites: Graduate standing
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Summer: 8 weeks - 1-6 hours of independent study per week
Additional Details
Subject/Course Level: Nuclear Engineering/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Individual Research: Read Less [-]

NUC ENG 375 Teaching Techniques in Nuclear Engineering 1 - 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
This course is designed to acquaint new teaching assistants with the nature of graduate student instruction in courses in the department of Nuclear Engineering. Discussion, practice, and review of issues relevant to the teaching of nuclear engineering. Effective teaching methods will be introduced by experienced GSIs and faculty.
Teaching Techniques in Nuclear Engineering: Read More [+]
Rules & Requirements
Prerequisites: Graduate standing or ASE status
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture and 1-3 hours of discussion per week
Additional Details
Subject/Course Level: Nuclear Engineering/Professional course for teachers or prospective teachers
Grading: Offered for satisfactory/unsatisfactory grade only.
Formerly known as: Nuclear Engineering 301
Teaching Techniques in Nuclear Engineering: Read Less [-]
NUC ENG 602 Individual Study for Doctoral Students 1 - 8 Units
Terms offered: Fall 2017, Spring 2017, Fall 2016
Individual study in consultation with the major field adviser, intended to provide an opportunity for qualified students to prepare themselves for the various examinations required of candidates for the Ph.D.

Rules & Requirements

Prerequisites: For candidates for doctoral degree

Credit Restrictions: Course does not satisfy unit or residence requirements for doctoral degree.

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 0 hours of independent study per week

Additional Details

Subject/Course Level: Nuclear Engineering/Graduate examination preparation

Grading: Offered for satisfactory/unsatisfactory grade only.

Individual Study for Doctoral Students: Read Less [-]