Energy Engineering

Bachelor of Science (BS)

The Energy Engineering major offered through the Engineering Science Program interweaves the fundamentals of classical and modern physics, chemistry, and mathematics with energy engineering applications. A great strength of the major is its flexibility. The firm base in physics and mathematics is augmented with a selection of engineering course options that prepare the student to tackle the complex energy-related problems faced by society. Because the program emphasizes science and mathematics, students are well-prepared to pursue graduate studies in physics or engineering. Energy engineering is a multidisciplinary field requiring an integration of physical principles with engineering analysis, augmented with the realities of policy and engineering economics. The program incorporates courses from many departments on campus to create a discipline that is rigorously based in science, mathematics, and engineering, while addressing a wide variety of environmental issues.

Admission to the Major

Prospective undergraduates in the College of Engineering must apply for admission to one specific major/degree program. For further information, please see the College of Engineering's website (http://coe.berkeley.edu/students/prospective-students/admissions.html).

Admission to engineering via a Change of College application for current UC Berkeley students is very competitive, as there are few open spaces in engineering for students admitted to other colleges at UC Berkeley. For further information regarding a Change of College to Engineering, please see the college's website (http://coe.berkeley.edu/students/current-undergraduates/change-of-college).

Minor Program

The Energy Engineering minor has arisen as a natural outgrowth of the large amount of energy-related research in the College of Engineering. For a number of years, courses have been developed across the College of Engineering, and the energy engineering minor is designed to coordinate these courses for students who have an interest in systems that are associated with all aspects of energy systems, such as generation, transmission, and consumption. The energy minor, offered through the College of Engineering, is an optional program that encourages coherence in the work students undertake around energy engineering.

For admission to the minor, students must have a minimum overall grade point average (GPA) of 2.0 and have also completed all of the prerequisite courses. For information regarding the prerequisites, please see the Minor Requirements tab on this page.

After completion of the prerequisite courses, students will need to complete and submit a Petition for Admission form (http://engineeringscience.berkeley.edu/wp-content/uploads/2013/09/Energy-Minor-Application-2103-141.pdf) to the undergraduate staff adviser. This must be completed no later than two weeks prior to the end of the semester.

Other Majors offered by the Engineering Science Program

Engineering Physics (http://guide.berkeley.edu/undergraduate/degree-programs/engineering-physics)
Environmental Engineering Science (http://guide.berkeley.edu/undergraduate/degree-programs/environmental-engineering-science)

In addition to the University, campus, and college requirements, students must fulfill the below requirements specific to their major program.

General Guidelines

1. All technical courses taken in satisfaction of major requirements must be taken for a letter grade.
2. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.
3. A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.
4. A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

For a detailed plan of study by year and semester, please see the Plan of Study tab.

Lower Division Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1A</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1B</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 53</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 54</td>
<td>Linear Algebra and Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 7A</td>
<td>Physics for Scientists and Engineers</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 7B</td>
<td>Physics for Scientists and Engineers</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following chemistry options:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A</td>
<td>General Chemistry & 1AL</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 4A</td>
<td>General Chemistry and Quantitative Analysis</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGIN 7</td>
<td>Introduction to Computer Programming for Scientists and Engineers</td>
<td>4</td>
</tr>
<tr>
<td>or COMPSCI 61A</td>
<td>The Structure and Interpretation of Computer Programs</td>
<td>4</td>
</tr>
<tr>
<td>ENGIN 93</td>
<td>Energy Engineering Seminar</td>
<td>1</td>
</tr>
<tr>
<td>MEC ENG 40</td>
<td>Thermodynamics</td>
<td>3-4</td>
</tr>
<tr>
<td>or ENGIN 40</td>
<td>Engineering Thermodynamics</td>
<td></td>
</tr>
</tbody>
</table>

Select two Engineering Prep courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1B</td>
<td>General Chemistry</td>
<td>6-10</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>Chemical Structure and Reactivity</td>
<td></td>
</tr>
<tr>
<td>COMPSCI 61B</td>
<td>Data Structures</td>
<td></td>
</tr>
</tbody>
</table>
COMPSCI C8 Foundations of Data Science (must also take
connector course: course number 88)
CIV ENG 11 Engineered Systems and Sustainability
CIV ENG 70 Engineering Geology
EL ENG 16A Designing Information Devices and Systems I
EL ENG 16B Designing Information Devices and Systems II
MAT SCI 45 Properties of Materials & 45L and Properties of Materials Laboratory
MEC ENG C85 Introduction to Solid Mechanics
MEC ENG 104 Engineering Mechanics II
PHYSICS 7C Physics for Scientists and Engineers

Upper Division Requirements
Due to the interdisciplinary nature of this major, electives may be approved throughout the year.

CIV ENG 100 Elementary Fluid Mechanics 3-4
or MEC ENG 106 Fluid Mechanics
CIV ENG 186 Design of Cyber-Physical Systems 3
EL ENG 134 Fundamentals of Photovoltaic Devices 4
EL ENG 137A Introduction to Electric Power Systems 4
EL ENG 137B Introduction to Electric Power Systems 4
ENE,RES C100 Energy and Society 4
ENGIN 194 Undergraduate Research 3
MEC ENG 109 Heat Transfer 3
Sustainability Course, select one course from the following: 3
CIV ENG 111 Environmental Engineering
CIV ENG 115 Water Chemistry
CY PLAN 119 Planning for Sustainability
ENE,RES 101 Ecology and Society
Economics Course: Choose one from the following 3-4
CIV ENG 156 Infrastructure Planning and Management
ENE,RES 180 Ecological Economics in Historical Context
ENGIN 120 Principles of Engineering Economics
ENVECON 147 Regulation of Energy and the Environment 4
ENVECON C156 Economic Development 4
ENVECON 153 Population, Environment, and Development 4
ENVECON 154 Economics of Poverty and Technology 4
ESP 102D Climate and Energy Policy 4
POLECON 101 Contemporary Theories of Political Economy 4
Math/Statistics/Analysis Course: Choose from list below or choose
CIV ENG 191 or EL ENG 127 3-4
CIV ENG 93 Engineering Data Analysis
COMPSCI 70 Discrete Mathematics and Probability Theory
ENGIN 117 Methods of Engineering Analysis

IND ENG 172 Probability and Risk Analysis for Engineers
MATH 55 Discrete Mathematics
STAT 134 Concepts of Probability

Engineering Electives 6 12
1 ENE,RES C100 satisfies both a major requirement and one of the upper division humanities/social sciences requirements. It must be taken for a letter grade.
2 CIV ENG 111 cannot be used to fulfill more than one requirement.
3 This course satisfies both the sustainability requirement and one of the upper division humanities/social sciences requirements. It must be taken for a letter grade.
4 This course satisfies both the economics requirement and one of the upper division humanities/social sciences requirements. It must be taken for a letter grade.
5 Students interested in data are advised to take
CIV ENG 191, IND ENG 172 or STAT 134 for the Math/Statistics/Analysis requirement.
6 Students are required to take four Engineering Electives of at least 3 units each. Engineering Electives are upper division courses in any engineering department and must be chosen in consultation with a faculty adviser. Engineering Electives cannot include any course taken on a P/NP basis; BIO ENG 100, COMPSCI 195, COMPSCI H195, DES INV courses (except DES INV 190E), ENGIN 125, ENGIN 157AC, ENGIN 180, IND ENG 172, IND ENG 185, IND ENG 186, IND ENG 190
series, IND ENG 191, IND ENG 192, IND ENG 195, MEC ENG 190K, MEC ENG 196K, MEC ENG 199K.
Students interested in data, distribution, generation or materials are advised to choose from the following courses as their Engineering Electives:

Data: COMPSCI 180 series courses, STAT 133, STAT 135 (exception approved for these two Statistics courses)
Distribution: COMPSCI 61B (exception approved for this lower division course), EL ENG 105, EL ENG 113, EL ENG 117, EL ENG 120, EL ENG C128, MEC ENG 130
Generation: BIO ENG C181, MEC ENG 130, MEC ENG 140, MEC ENG 146, NUC ENG 70, NUC ENG 71
Materials: MAT SCI 103, MAT SCI 111, MAT SCI 113, MAT SCI 125, MAT SCI 136

Minor programs are areas of concentration requiring fewer courses than an undergraduate major. These programs are optional, but can provide depth and breadth to a UC Berkeley education. The College of Engineering does not offer additional time to complete a minor, but it is usually possible to finish within the allotted time with careful course planning. Students are encouraged to meet with their ESS adviser to discuss the feasibility of completing a minor program.

All the engineering departments offer minors. Students may also consider pursuing a minor in another School or College.

General Guidelines
1. All courses taken to fulfill the minor requirements must be taken for graded credit.
2. A minimum overall grade point average (GPA) of 3.0 and a minimum GPA of 3.0 in the prerequisite courses is required for acceptance into the minor program.
3. A minimum grade point average (GPA) of 2.0 is required for courses used to fulfill the minor requirements.
4. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.

5. Completion of the minor program cannot delay a student’s graduation.

Lower Division Prerequisites

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1A</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1B</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 53</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 54</td>
<td>Linear Algebra and Differential Equations</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>& 1AL</td>
<td>General Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 4A</td>
<td>General Chemistry and Quantitative Analysis</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 7A</td>
<td>Physics for Scientists and Engineers</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 7B</td>
<td>Physics for Scientists and Engineers</td>
<td>4</td>
</tr>
<tr>
<td>ENGIN 7</td>
<td>Introduction to Computer Programming for Scientists and Engineers</td>
<td>4</td>
</tr>
</tbody>
</table>

Upper Division Minor Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC ENG 40</td>
<td>Thermodynamics (or approved equivalent)</td>
<td>3</td>
</tr>
<tr>
<td>or ENGIN 115</td>
<td>Engineering Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>EL ENG 137A</td>
<td>Introduction to Electric Power Systems</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE,RES C10</td>
<td>Energy and Society</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 111</td>
<td>Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 106</td>
<td>Air Pollution</td>
<td></td>
</tr>
</tbody>
</table>

Select two of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 140</td>
<td>Energy and Environment</td>
<td></td>
</tr>
<tr>
<td>CY PLAN 119</td>
<td>Planning for Sustainability</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 107</td>
<td>Climate Change Mitigation</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 111</td>
<td>Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 113N</td>
<td>Course Not Available</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 115</td>
<td>Water Chemistry</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 156</td>
<td>Infrastructure Planning and Management</td>
<td></td>
</tr>
<tr>
<td>EL ENG 134</td>
<td>Fundamentals of Photovoltaic Devices</td>
<td></td>
</tr>
<tr>
<td>EL ENG 137B</td>
<td>Introduction to Electric Power Systems</td>
<td></td>
</tr>
<tr>
<td>ENE,RES C10</td>
<td>Energy and Society</td>
<td></td>
</tr>
<tr>
<td>ENE,RES 101</td>
<td>Ecology and Society</td>
<td></td>
</tr>
<tr>
<td>ENE,RES C18</td>
<td>Course Not Available</td>
<td></td>
</tr>
<tr>
<td>ENGIN 120</td>
<td>Principles of Engineering Economics</td>
<td></td>
</tr>
<tr>
<td>ENGIN 194</td>
<td>Undergraduate Research</td>
<td></td>
</tr>
<tr>
<td>ENVECON 147</td>
<td>Regulation of Energy and the Environment</td>
<td></td>
</tr>
<tr>
<td>ENVECON 1C1</td>
<td>Economic Development</td>
<td></td>
</tr>
<tr>
<td>ENVECON 153</td>
<td>Population, Environment, and Development</td>
<td></td>
</tr>
<tr>
<td>ENVECON 154</td>
<td>Economics of Poverty and Technology</td>
<td></td>
</tr>
<tr>
<td>ESPM 102D</td>
<td>Climate and Energy Policy</td>
<td></td>
</tr>
<tr>
<td>GEOG 142</td>
<td>Climate Dynamics</td>
<td></td>
</tr>
<tr>
<td>IND ENG 172</td>
<td>Probability and Risk Analysis for Engineers</td>
<td></td>
</tr>
<tr>
<td>or STAT 134</td>
<td>Concepts of Probability</td>
<td></td>
</tr>
<tr>
<td>MAT SCI 136</td>
<td>Materials in Energy Technologies</td>
<td></td>
</tr>
</tbody>
</table>

Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions:

1. Completion of the requirements of one engineering major program (http://engineering.berkeley.edu/academics/undergraduate-programs) study.
2. A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
3. The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
4. All technical courses (math, science, and engineering), required of the major or not, must be taken on a letter graded basis (unless they are only offered P/NP).
5. Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed a maximum of four semesters to complete their degree requirements. (Note: junior transfers admitted missing three or more courses from the lower division curriculum are allowed five semesters.) Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters.
6. Adhere to all college policies and procedures (http://engineering.berkeley.edu/academics/undergraduate-guide) as they complete degree requirements.
7. Complete the lower division program before enrolling in upper division engineering courses.

Humanities and Social Science (H/SS) Requirement

To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement (http://engineering.berkeley.edu/student-services/degree-requirements/humanities-and-social-sciences), which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two reading and composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. Follow these guidelines to fulfill this requirement:

1. Complete a minimum of six courses from the approved Humanities/ Social Sciences (H/SS) lists (http://coe.berkeley.edu/hssreq).
2. Courses must be a minimum of 3 semester units (or 4 quarter units).
3. Two of the six courses must fulfill the college's Reading and Composition (R&C) requirement. These courses must be taken for a letter grade (C- or better required) and must be completed by no later than the end of the sophomore year (fourth semester of enrollment). The first half of R&C, the "A" course, must be completed by the end of the freshman year; the second half of R&C, the "B" course, must be completed by no later than the end of the sophomore year. View a detailed list of courses (http://ls-advice.berkeley.edu/requirement/rccourses.html) that fulfill Reading and Composition requirements,
or use the College of Letters and Sciences search engine (http://ls-breadth.berkeley.edu) to view R&C courses offered in a given semester.

4. The four additional courses must be chosen within College of Engineering guidelines from the H/SS lists (see below). These courses may be taken on a Pass/Not Passed basis (P/NP).

5. Two of the six courses must be upper division (courses numbered 100-196).

6. One of the six courses must satisfy the campus American Cultures requirement. For detailed lists of courses that fulfill American Cultures requirements, visit the American Cultures (http://guide.berkeley.edu/undergraduate/colleges-schools/engineering/american-cultures-requirement) site.

7. A maximum of two exams (Advanced Placement, International Baccalaureate, or A-Level) may be used toward completion of the H/SS requirement. View the list of exams (http://engineering.berkeley.edu/academics/undergraduate-guide/exams) that can be applied toward H/SS requirements.

8. Courses may fulfill multiple categories. For example, if you complete CY PLAN 118AC (http://guide.berkeley.edu/search/?P=CYP%20PLAN%20118AC) that would satisfy the American Cultures requirement and one upper division H/SS requirement.

9. No courses offered by any engineering department other than BIO ENG 100 (http://guide.berkeley.edu/search/?P=BIO%20ENG%20100), COMPSCI C79 (http://guide.berkeley.edu/search/?P=COMPSCI%20C79), ENGIN 125 (http://guide.berkeley.edu/search/?P=ENGIN%20125), ENGIN 157AC (http://guide.berkeley.edu/search/?P=ENGIN%20157AC), MEC ENG 191K (http://guide.berkeley.edu/search/?P=MEC%20ENG%20191K), and MEC ENG 191AC may be used to complete H/SS requirements.

10. Foreign language courses may be used to complete H/SS requirements. View the list of language options (http://ls-breadth.berkeley.edu) to view R&C courses offered in a given semester.

11. Courses numbered 97, 98, 99, or above 196 may not be used to complete any H/SS requirement.

12. The College of Engineering uses modified versions of five of the College of Letters and Science (L&S) breadth requirements lists to provide options to our students for completing the H/SS requirement. No courses on the L&S Biological Sciences or Physical Sciences breadth lists may be used to complete H/SS requirements. Within the guidelines above, choose courses from any of the lists below.

- Arts and Literature (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/breadth-requirement-arts-literature)
- Foreign Language (http://ls-advise.berkeley.edu/requirement/fl.html)
- Historical Studies (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/breadth-requirement-historical-studies)
- International Studies (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/breadth-requirement-international-studies)
- Philosophy and Values (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/breadth-requirement-philosophy-values)
- Social and Behavioral Studies (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/breadth-requirement-social-behavioral-sciences)

Class Schedule Requirements

- Minimum units per semester: 12.0.
- Maximum units per semester: 20.5.
- Minimum technical courses: College of Engineering undergraduates must enroll each semester in no fewer than two technical courses (of a minimum of 3 units each) required of the major program of study in which the student is officially declared. (Note: for most majors, normal progress will require enrolling in 3-4 technical courses each semester).
- All technical courses (math, science, engineering), required of the major or not, must be taken on a letter-graded basis (unless only offered as P/NP).
- A student’s proposed schedule must be approved by a faculty adviser (on approval from the dean or a designated staff adviser) each semester prior to enrolling in courses.

Minimum Academic (Grade) Requirements

- A minimum overall and semester grade point average of 2.00 (C average) is required of engineering undergraduates. A student will be subject to dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00.
- Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester. A student will be subject to dismissal from the University if their upper division technical grade point average falls below 2.00.
- A minimum overall grade point average of 2.00, and a minimum 2.00 grade point average in upper division technical course work required for the major is needed to earn a Bachelor of Science in Engineering.

Unit Requirements

To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:

- Completion of the requirements of one engineering major program (http://engineering.berkeley.edu/academics/undergraduate-programs) of study.
- A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed towards the 120 units; a maximum of four is allowed in a given semester.
- A minimum of 4 units of physical education from any school attended will count towards the 120 units.
- Students may receive unit credit for courses graded P (including P/NP units taken through EAP) up to a limit of one-third of the total units taken and passed on the Berkeley campus at the time of graduation.

Normal Progress

Students in the College of Engineering must enroll in a full-time program and make normal progress each semester toward the bachelor's degree. The continued enrollment of students who fail to achieve minimum academic progress shall be subject to the approval of the dean. (Note: students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons
deemed appropriate by the dean may petition for an exception to normal
progress rules.)

University of California Requirements

Entry Level Writing ([http://guide.berkeley.edu/undergraduate/colleges-
schools/natural-resources/entry-level-writing-requirement](http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/entry-level-writing-requirement))

All students who will enter the University of California as freshmen must
demonstrate their command of the English language by fulfilling the
Entry Level Writing Requirement. Fulfillment of this requirement is also a
prerequisite to enrollment in all reading and composition courses at UC
Berkeley.

American History and American Institutions ([http://guide.berkeley.edu/
undergraduate/colleges-schools/natural-resources/american-history-
institutions-requirement](http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/american-history-institutions-requirement))

The American History and Institutions requirements are based on the
principle that a U.S. resident graduated from an American university
should have an understanding of the history and governmental
institutions of the United States.

Campus Requirement

American Cultures ([http://guide.berkeley.edu/undergraduate/colleges-
schools/natural-resources/american-cultures-requirement](http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/american-cultures-requirement))

American Cultures (AC) is the one requirement that all undergraduate
students at UC Berkeley need to take and pass in order to graduate. The
requirement offers an exciting intellectual environment centered on the
study of race, ethnicity and culture in the United States. AC courses offer
students opportunities to be part of research-led, highly accomplished
teaching environments, grappling with the complexity of American
Culture.

For more detailed information regarding the courses listed below (e.g.,
elective information, GPA requirements, etc.), please see the College
Requirements and Major Requirements tabs.

Fall	**Units**	**Spring**	**Units**
CHEM 4A or 1A and 1AL ¹ | 4 | MATH 1B | 4
MATH 1A | 4 | PHYSICS 7A | 4
ENGIN 93 | 1 | ENGIN 7 or COMPS CI 61A | 4

Reading and Composition Course from List A | 4 | Reading and Composition Course from List A | 4

Free Elective | 3

| **Total Units:** 16 |

Fall	**Units**	**Spring**	**Units**
MATH 53 | 4 | MATH 54 | 4
PHYSICS 7B | 4 | MEC ENG 40 or ENGIN 40 | 3-4

Engineering Prep course 1² | 3-6 | CIV ENG 100 or MEC ENG 106 | 3-4

ENE,RES C100 ³ | 4 | Engineering Prep course ² | 3-4

Free Elective | 1

| **Total Units:** 16-19 |

¹ CHEM 4A is intended for students majoring in chemistry or a closely-
related field.

² See Major Requirements tab for approved courses.

³ ENE,RES C100 satisfies both a major requirement and one of the
upper division humanities/social sciences requirements. It must be
taken for a letter grade.