Energy and Resources

Minor

The Energy and Resources Group (ERG) is an academic unit within the University of California, Berkeley. Our vision is a future in which the twin goals of human well-being and a healthy environment are mutually and sustainably satisfied. ERG’s mission is to develop and transmit the critical knowledge needed to make such a future possible. We view society and the environment as an inextricably coupled system. ERG research therefore emphasizes (1) science-based knowledge of the environmental consequences of resource use; (2) analytical tools that promote efficiency, conservation, affordability, and equity in energy and resource use patterns; and (3) a deep understanding of the social and institutional contexts in which resource and environmental problems arise, and in which creative and ethical solutions can be sustained. It is this synthesis of basic science, practical problem-solving, and constructive social critique that defines ERG.

The ERG Minor offers undergraduates the opportunity to develop basic knowledge and skills to help them address the complex and interdependent issues associated with the interaction of social, economic, political, technical, and environmental factors. Though it is primarily designed to complement majors in the natural sciences and engineering, students in any major with the appropriate prerequisites may pursue the ERG minor. Based on a six-course set of prerequisites in mathematics and natural sciences, the minor is satisfied by completing five upper division courses, including two core courses and three electives.

The Energy and Resources Group is responsible for monitoring the minor program and will designate one faculty member as the head ERG minor adviser. It is the undergraduate academic adviser who will be charged with certifying completion of the minor. All core faculty members will participate in advising students in the minor, just as they do graduate students.

Declaring the Minor

Students interested in pursuing the ERG minor should submit an Intent to Declare the ERG Minor form the semester in which upper division ERG minor coursework is started. The department maintains a list of students pursuing the minor to keep students informed about any ERG-related opportunities or course offerings that arise. Students completing the ERG minor are also given a special mention during the ERG commencement ceremony in May.

For information on how to submit your intent to pursue the minor, review how the lower division prerequisites may be completed with AP, IB, or A-Level exams, and declare the minor once completed, please visit the ERG website (http://erg.berkeley.edu/academics/program/#undergrad).

Summer Minor

The interdisciplinary summer minor in Sustainability focuses on environmental science, policy, and behavior. Students complete courses in:

- Global and local environmental change
- The science, engineering, economics, and policy of renewable energy
- The economics of degradation and sustainability
- Environmental justice

The new Summer-only Minor or Certificate in Sustainability is open to matriculated UC Berkeley undergraduates, students from other institutions, and the general public. Upon completion, UC Berkeley undergraduates receive a Minor in Sustainability, while other participants receive a Certificate in Sustainability from UC Berkeley.

Students who have a strong interest in an area of study outside their major often decide to complete a minor program. These programs have set requirements and are noted officially on the transcript in the memoranda section, but they are not noted on diplomas.

General Guidelines

1. All courses taken to fulfill the minor requirements below must be taken for graded credit.
2. A minimum grade point average (GPA) of 2.0 is required for courses used to fulfill the minor requirements.
3. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.
4. At least four upper division courses must be taken at Berkeley.

Lower Division Recommended Course Work

Students have or will develop strong foundations in math, physics, chemistry, and biology.

Many of the ERG minor upper division courses require students have completed: MATH 1A-MATH 1B or MATH 16A-MATH 16B; PHYSICS 7A-PHYSICS 7B or PHYSICS 8A-PHYSICS 8B; CHEM 1A or CHEM 4A; and BIOLOGY 1B

Lower division prerequisites for the ERG minor can be satisfied with Advanced Placement, International Baccalaureate and other transfer credit. Please visit the ERG Minor Website (http://erg.berkeley.edu/academics/program/#undergrad) for more information. Please consult with the ERG minor advisor if you have not taken or not yet placed out of the lower division coursework.

Upper Division Requirements

Upper division requirements (five courses):

<table>
<thead>
<tr>
<th>Two core courses:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE,RES C100/102</td>
</tr>
<tr>
<td>PUB POL C184</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Three upper division electives, approved by the ERG faculty (see below):</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least one course must be in the social sciences.</td>
</tr>
<tr>
<td>At least one course must be in the natural sciences or engineering.</td>
</tr>
<tr>
<td>At one of the three upper division electives must be from the ERG department.</td>
</tr>
</tbody>
</table>

Electives

The choice of electives should be made with two goals in mind: exploring the range of approaches available to address energy and resource issues and complementing the student’s major. The latter can be achieved by adding relevant depth in closely related areas or by exploring methods...
and approaches that contrast with the tools and knowledge base employed in the major. Students are encouraged to discuss their program with the ERG minor advisor.

The following courses have been approved, but students should contact the head ERG minor advisor to request approval of alternate courses. At least four upper division courses must be taken at Berkeley.

<table>
<thead>
<tr>
<th>Social science electives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE,RES/ ENVECON/IAS C176</td>
<td>Climate Change Economics</td>
</tr>
<tr>
<td>ENE,RES 175</td>
<td>Water and Development</td>
</tr>
<tr>
<td>ENE,RES 180</td>
<td>Ecological Economics in Historical Context</td>
</tr>
<tr>
<td>ECON/</td>
<td>Natural Resource Economics</td>
</tr>
<tr>
<td>ENVECON C102</td>
<td>Economic Development</td>
</tr>
<tr>
<td>ECON C171/ ENVECON C151</td>
<td>Climate and Energy Policy</td>
</tr>
<tr>
<td>ESPM 102D</td>
<td>Sociology and Political Ecology of Agro-Food Systems</td>
</tr>
<tr>
<td>ESPM 155AC</td>
<td>American Environmental and Cultural History</td>
</tr>
<tr>
<td>ESPM 160AC/ HISTORY 120AC</td>
<td>Environmental Philosophy and Ethics</td>
</tr>
<tr>
<td>ESPM 161</td>
<td>Political Ecology</td>
</tr>
<tr>
<td>ESPM 168</td>
<td>International Environmental Politics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Natural science and engineering electives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE,RES 101</td>
<td>Ecology and Society</td>
</tr>
<tr>
<td>CIV ENG 103</td>
<td>Introduction to Hydrology</td>
</tr>
<tr>
<td>CIV ENG 107</td>
<td>Climate Change Mitigation</td>
</tr>
<tr>
<td>CIV ENG 111</td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td>CIV ENG 114</td>
<td>Environmental Microbiology</td>
</tr>
<tr>
<td>CIV ENG 115</td>
<td>Water Chemistry</td>
</tr>
<tr>
<td>EPS 117</td>
<td>Geomorphology</td>
</tr>
<tr>
<td>ESPM 111</td>
<td>Ecosystem Ecology</td>
</tr>
<tr>
<td>ESPM 112</td>
<td>Microbial Ecology</td>
</tr>
<tr>
<td>ESPM 120</td>
<td>Soil Characteristics</td>
</tr>
<tr>
<td>ESPM/EPS C129</td>
<td>Biometeorology</td>
</tr>
<tr>
<td>ESPM 131</td>
<td>Soil Microbial Ecology</td>
</tr>
<tr>
<td>ESPM 140</td>
<td>General Entomology</td>
</tr>
<tr>
<td>ESPM/ EPS C180/ CIV ENG C106</td>
<td>Air Pollution</td>
</tr>
<tr>
<td>INTEGBI 106A</td>
<td>Physical and Chemical Environment of the Ocean</td>
</tr>
<tr>
<td>INTEGBI 152</td>
<td>Environmental Toxicology</td>
</tr>
<tr>
<td>INTEGBI 153</td>
<td>Ecology</td>
</tr>
<tr>
<td>INTEGBI 157LF</td>
<td>Ecosystems of California</td>
</tr>
</tbody>
</table>

Summer-only Minor and Certificate in Sustainability

Energy & Resources Group new summer minor and certificate program in Sustainability is open to matriculated UC Berkeley undergraduates and summer-only students starting in Summer 2018. Upon completion, UC Berkeley undergraduates receive a Minor in Sustainability; summer-only students receive a Certificate in Sustainability from UC Berkeley. More information can be found by clicking here (https://erg.berkeley.edu/minor-and-certificate-in-sustainability-courses).

CURRICULUM FOR 2018:

The Sustainability minor or certificate focuses on environmental sustainability. Students complete courses in global and local environmental change; fossil fuels; the science, engineering, and economics of renewable energy; biodiversity; the economics of degradation; and sustainable economics, policy, and environmental justice. Scholarship available to eligible students. (http://summer.berkeley.edu/special-programs/summer-minors/#myModal)

15 total units of coursework are required, which can be completed in either one or two summers. UC Berkeley undergraduates may elect to take Energy and Society (ENE,RES C100 Energy and Society or PUB POL C184 Energy and Society) either in the summer or the fall. All other courses will be offered during the summer only and are unique to summer. ERG will offer two Economics courses (The Economics of Climate Change and Ecological Economics) in alternate years.

<table>
<thead>
<tr>
<th>Natural science electives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE,RES C100/ PUB POL C184</td>
<td>Energy and Society</td>
</tr>
<tr>
<td>ENE,RES 170</td>
<td>Environmental Classics</td>
</tr>
<tr>
<td>ENE,RES N176</td>
<td>Economics of Climate Change</td>
</tr>
<tr>
<td>ENE,RES 101</td>
<td>Ecology and Society</td>
</tr>
<tr>
<td>ENE,RES 190</td>
<td>Seminar in Energy and Resources Issues</td>
</tr>
</tbody>
</table>

Energy and Resources

Expand all course descriptions [+]
Collapse all course descriptions [-]

ENE,RES 24 Freshman Seminar 1 Unit

Terms offered: Fall 2015, Spring 2012, Spring 2011

The Freshman Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Freshman Seminars are offered in all campus departments, and topics may vary from department to department and semester to semester. Freshman Seminar: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of seminar per week

Additional Details

Subject/Course Level: Energy and Resources Group/Undergraduate

Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

Freshman Seminar: Read Less [-]
ENE,RES 39A Freshman and Sophomore Seminar: Complex Systems, Information Theory, and Big Data 2 Units
Terms offered: Fall 2016
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.
Freshman and Sophomore Seminar: Complex Systems, Information Theory, and Big Data: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week

Additional Details
Subject/Course Level: Energy and Resources Group/Undergraduate
Grading/Final exam status: Letter grade. Final Exam To be decided by the instructor when the class is offered.
Instructor: John Harte
Freshman and Sophomore Seminar: Complex Systems, Information Theory, and Big Data: Read Less [-]

ENE,RES 98 Directed Group Study for Lower Division Students 1 - 4 Units
Terms offered: Fall 2017, Fall 2016, Spring 2016
Lectures and small group discussions focusing on topics of interest that vary from semester to semester.
Directed Group Study for Lower Division Students: Read More [+]

Rules & Requirements
Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.
Repeat rules: Course may be repeated for credit under special circumstances: Course may be repeated with consent of department.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week

Additional Details
Subject/Course Level: Energy and Resources Group/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Study for Lower Division Students: Read Less [-]

ENE,RES 99 Supervised Independent Studies for Freshmen and Sophomores 1 - 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Supervised research on specific topics related to energy and resources.
Supervised Independent Studies for Freshmen and Sophomores: Read More [+]

Rules & Requirements
Prerequisites: Consent of faculty adviser directing research; lower division standing (3.3 GPA or better)
Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week

Additional Details
Subject/Course Level: Energy and Resources Group/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Supervised Independent Studies for Freshmen and Sophomores: Read Less [-]

ENE,RES C100 Energy and Society 4 Units
Terms offered: Fall 2018, Summer 2018 10 Week Session, Fall 2017
Energy sources, uses, and impacts: an introduction to the technology, politics, economics, and environmental effects of energy in contemporary society. Energy and well-being; energy in international perspective, origins, and character of energy crisis.
Energy and Society: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer:
8 weeks - 6 hours of lecture and 1.5 hours of discussion per week
10 weeks - 6 hours of lecture and 1.5 hours of discussion per week

Additional Details
Subject/Course Level: Energy and Resources Group/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Kammen
Also listed as: PUB POL C184
Energy and Society: Read Less [-]
ENE,RES W100 Energy and Society 4 Units
Terms offered: Summer 2019 8 Week Session
Energy sources, uses, and impacts: an introduction to the technology, politics, economics, and environmental effects of energy in contemporary society. Energy and well-being; energy in international perspective, origins, and character of energy crisis.

Energy and Society: Read More [+]

Hours & Format
Summer: 8 weeks - 6 hours of web-based lecture and 1.5 hours of web-based discussion per week

Online: This is an online course.

Additional Details

Subject/Course Level: Energy and Resources Group/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Kammen

Also listed as: PUB POL W184

Energy and Society: Read Less [-]

ENE,RES 101 Ecology and Society 3 Units
Terms offered: Summer 2019 8 Week Session, Summer 2018 8 Week Session, Summer 2017 8 Week Session
This course introduces students to the many ways in which our lives are intertwined with the ecosystems around us. Topics will include ecological limits to growth, climate change and other threats to biodiversity, the value of ecosystem goods and services, the ecology of disease, ecotoxicology, the evolution of cooperation in ecosystems, industrial ecology, and the epistemology of ecology.

Ecology and Society: Read More [+]

Objectives Outcomes

Course Objectives: Application of basic principles of natural science to the analysis of human influence on environmental conditions and processes at continental to global scale. Topics covered include dimensions of the physical world and of human modifications of it; techniques of estimation and back of the envelope calculation; box models of environmental stocks and flows; equilibrium and feedback; chemical equilibria in the environment; nutrient cycles and their disruptions; acid deposition and its consequences; climate change and its consequences; stratospheric ozone depletion; sources, fate and effects of toxic substances in the global environment; radioactivity and radiation; macroecology; carrying capacity and human population growth; biodiversity and its diminution; epidemics.

Student Learning Outcomes: Students will also have gained insight into the multi-disciplinary nature of environmental science, having used physical, chemical, and biological principles to create and solve analytical models.

Students will be familiar with and able to apply a diverse set of quantitative tools for understanding and analyzing environmental problems.

Rules & Requirements

Prerequisites: One college level course, or high school Advanced Placement, in either physics or biology; introductory calculus

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Summer: 6 weeks - 7.5 hours of lecture per week
8 weeks - 6 hours of lecture per week

Additional Details

Subject/Course Level: Energy and Resources Group/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: TBA

Ecology and Society: Read Less [-]

ENE,RES 102 Quantitative Aspects of Global Environmental Problems 4 Units
Terms offered: Spring 2019, Spring 2018, Spring 2017
Human disruption of biogeochemical and hydrological cycles; causes and consequences of climate change and acid deposition; transport and health impacts of pollutants; loss of species; radioactivity in the environment; and quantitative models to understand these environmental problems.

Quantitative Aspects of Global Environmental Problems: Read More [+]

Objectives Outcomes

Course Objectives: Application of basic principles of natural science to the analysis of human influence on environmental conditions and processes at continental to global scale. Topics covered include dimensions of the physical world and of human modifications of it; techniques of estimation and back of the envelope calculation; box models of environmental stocks and flows; equilibrium and feedback; chemical equilibria in the environment; nutrient cycles and their disruptions; acid deposition and its consequences; climate change and its consequences; stratospheric ozone depletion; sources, fate and effects of toxic substances in the global environment; radioactivity and radiation; macroecology; carrying capacity and human population growth; biodiversity and its diminution; epidemics.

Student Learning Outcomes: Students will also have gained insight into the multi-disciplinary nature of environmental science, having used physical, chemical, and biological principles to create and solve analytical models.

Students will be familiar with and able to apply a diverse set of quantitative tools for understanding and analyzing environmental problems.

Rules & Requirements

Prerequisites: Upper division standing; calculus (Mathematics 1A-1B or 16A-16B); Physics (7A-7B or 8A-8B), Chemistry (1A or 4A), Biology (1B), or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Summer: 8 weeks - 6 hours of lecture and 4 hours of laboratory per week

Additional Details

Subject/Course Level: Energy and Resources Group/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Kueppers

Quantitative Aspects of Global Environmental Problems: Read Less [-]
ENE,RES 170 Environmental Classics 3 Units
Terms offered: Summer 2019 8 Week Session, Summer 2018 Second 6 Week Session, Fall 2011
What is the history and evolution of environmental thinking and writing in the USA? How have certain ‘environmental classics’ shaped the way in which we think about nature, society and progress? Why did these become ‘classics’ and why/how did they influence environmental thought and policy? What is their relevance today? This course includes substantial reading assignments.
Environmental Classics: Read More [+]

Objectives Outcomes

Course Objectives: This course will use a selection of books and papers from the last 6 decades that have had a profound impact on academic and wider public thinking -- primarily in the USA -- about the environment and society to probe these issues. In class, we will situate the key reading in its historical context and discuss its contributions, critiques and consequences. Through these classics the class will explore: the evolution of environmental thought; the connections between environment, perception and policy; and the links between scientific thought and public perception.

Hours & Format
Summer: 8 weeks - 4 hours of seminar per week

Additional Details

Subject/Course Level: Energy and Resources Group/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.
Environmental Classics: Read Less [-]

ENE,RES 171 California Water 3 Units
Terms offered: Summer 2019 8 Week Session
The story of water development in California provides compelling examples of water politics, the social and environmental consequences of redistributing water, and the relationships between water uses, energy, and climate. This course provides the historical, scientific, legal, institutional, and economic background needed to understand the social and ecological challenges of providing water for California’s growing population, agricultural economy, and other uses - all of which are made more complex by climate change.
California Water: Read More [+]

Objectives Outcomes

Course Objectives: Students will grasp the historical, scientific, legal, institutional, and economic background needed to understand the social and ecological challenges of providing water for California’s growing population, agricultural economy, and other uses - all of which are made more complex by climate change.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Summer:
6 weeks - 6 hours of lecture per week
8 weeks - 4 hours of lecture per week

Additional Details

Subject/Course Level: Energy and Resources Group/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.
California Water: Read Less [-]
ENE,RES 175 Water and Development 4 Units
Terms offered: Spring 2016, Spring 2014, Spring 2013
This course introduces students to water policy in developing countries. It is a course motivated by the fact that over one billion people in developing countries have no access to safe drinking water, three billion do not have sanitation facilities, and many millions of small farmers do not have reliable water supplies to ensure a healthy crop. Readings and discussions will cover: the problems of water access and use in developing countries; the potential for technological, social, and economic solutions to these problems; the role of institutions in access to water and sanitation; and the pitfalls of the assumptions behind some of today's popular "solutions."
Water and Development: Read More [+]

Rules & Requirements

Prerequisites: Upper division standing or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Energy and Resources Group/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Instructor: ERG Faculty

Water and Development: Read Less [-]

ENE,RES C176 Climate Change Economics 4 Units
Terms offered: Summer 2019 8 Week Session, Fall 2018, Fall 2017
This course is a self-contained introduction to the economics of climate change. Climate change is caused by a large variety of economic activities, and many of its impacts will have economic consequences. Economists have studied climate change for more than two decades, and economic arguments are often powerful in policy decisions. The course will familiarize students with these arguments and equip them with the tools to participate in discussions of climate change policy through an economic lens.
Climate Change Economics: Read More [+]

Objectives Outcomes

Course Objectives: The course will start with a brief review of the science of climate change, discuss scenarios of economic growth and the greenhouse gas emissions caused by economic activities and investigate various emission reduction opportunities and their economic costs. A significant amount of time will be spent on studying the impacts of climate change, their economic evaluation and how adaptation can lower the costs of climate damages.

We will then study various theoretical frameworks economists have developed that answer the question how estimates about the costs and benefits of climate policy can be combined to find “good” climate policies. We then study three more specialized topics that turn out to be of great importance when analyzing climate change policy: first, how do we compare costs and benefits of generations that live many centuries apart? Second, how do we design climate policy when our projections of both the costs and the benefits of climate policy are highly uncertain? And third, how can equity considerations be accounted for in an economic assessment of climate change policy? The course will close with a look at international cooperation on climate policy and why it has been so difficult to agree on effective treaties that implement climate change policy.

Student Learning Outcomes: Students will also have gained insight into the practical aspects of modeling the economics of climate change by building a simple integrated assessment model in Excel. They will be able to use that model to do simple analysis of climate change policy themselves.
Students will be familiar with the tools economists use to analyze climate change policy. They will have studied empirical estimates of the costs and benefits of climate policy and have an understanding of the analytical issues that drive research on the economics of climate change.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Summer: 8 weeks - 6 hours of lecture and 4 hours of laboratory per week

Additional Details

Subject/Course Level: Energy and Resources Group/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Anthoff

Also listed as: ENVECON C176/IAS C176
Climate Change Economics: Read Less [-]
ENE,RES N176 Economics of Climate Change 3 Units
Terms offered: Summer 2018 8 Week Session
This course is a self-contained introduction to the economics of climate change. Climate change is caused by a large variety of economic activities, and many of its impacts will have economic consequences. Economists have studied climate change for more than two decades, and economic arguments are often powerful in policy decisions. The course will familiarize students with these arguments and equip them with the tools to participate in discussions of climate change policy through an economic lens. NOTE this summer course does NOT satisfy the EEP Major requirements that the 4-unit course ENERES C176/ENVECON C176/IAS C176 that is offered in the regular academic spring/fall terms. Repeating this course under the C176 course number restricted.

Objectives Outcomes
Student Learning Outcomes: Students will be familiar with the tools economists use to analyze climate change policy. They will have studied empirical estimates of the costs and benefits of climate policy and have an understanding of the analytical issues that drive research on the economics of climate change.

Rules & Requirements
Credit Restrictions: Not repeatable under this course number or ENERES C176, ENVECON C176, or IAS C176.

Hours & Format
Summer: 8 weeks - 6 hours of lecture per week

Additional Details
Subject/Course Level: Energy and Resources Group/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: TBA

ENE,RES 180 Ecological Economics in Historical Context 3 Units
Terms offered: Fall 2016
Economists through history have explored economic and environmental interactions, physical limits to growth, what constitutes the good life, and how economic justice can be assured. Yet economists continue to use measures and models that simplify these issues and promote bad outcomes. Ecological economics responds to this tension between the desire for simplicity and the multiple perspectives needed to understand complexity in order to move toward sustainable, fulfilling, and just economies.

Ecological Economics in Historical Context: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Summer: 6 weeks - 7.5 hours of lecture per week
8 weeks - 6 hours of lecture per week

Additional Details
Subject/Course Level: Energy and Resources Group/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.

ENE,RES 190 Seminar in Energy and Resources Issues 3 Units
Terms offered: Spring 2019, Summer 2018 Second 6 Week Session, Spring 2018
Critical, cross disciplinary analysis of specific issues or general problems of how people interact with environmental and resource systems. More than one section may be given each semester on different topics depending on faculty and student interest.

Seminar in Energy and Resources Issues: Read More [+]

Rules & Requirements
Prerequisites: Upper division standing and consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture per week
Summer: 6 weeks - 7.5 hours of lecture per week
8 weeks - 2-6 hours of lecture per week

Additional Details
Subject/Course Level: Energy and Resources Group/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Seminar in Energy and Resources Issues: Read Less [-]
ENE,RES 190C Energy and Environmental Issues 4 Units
Terms offered: Fall 2018
Critical, data-driven analysis of specific issues or general problems of how people interact with environmental and resource systems. This course will teach students to build, estimate and interpret models that describe phenomena in the broad area of energy and environmental decision-making. More than one section may be given each semester on different topics depending on faculty and student interest.

Rules & Requirements

Prerequisites: 1. Foundations of Comp Sci:
COMPSCI C8 or STAT C8 or INFO C8: Foundations of Data Science
2. Computing:
COMPSCI 61A: The Structure and Interpretation of Computer Programs
or
COMPSCI 88: Computational Structures in Data Science
or
MATH 54: Linear Algebra and Differential Equations
or
ELENG 16A: Designing Information Devices and Systems I
or
STAT 89A: Linear Algebra for Data Science

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Energy and Resources Group/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Energy and Environmental Issues: Read Less [-]

ENE,RES 198 Directed Group Studies for Advanced Undergraduates 1 - 4 Units
Terms offered: Spring 2016, Fall 2015, Fall 2014
Group studies of selected topics.

Rules & Requirements

Prerequisites: Upper division standing, plus particular courses to be specified by instructor

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week

Additional Details

Subject/Course Level: Energy and Resources Group/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Directed Group Studies for Advanced Undergraduates: Read Less [-]

ENE,RES 199 Supervised Independent Study and Research 1 - 4 Units
Terms offered: Fall 2018, Fall 2017, Summer 2017 8 Week Session
Individual conferences.

Rules & Requirements

Prerequisites: Enrollment restricted by regulations in General Catalog

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer: 8 weeks - 1.5-15 hours of independent study per week

Additional Details

Subject/Course Level: Energy and Resources Group/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Supervised Independent Study and Research: Read Less [-]