Environmental Engineering Science

Bachelor of Science (BS)
The environmental engineering science (EES) major is an interdisciplinary program pairing engineering fundamentals with courses in the environmental and natural sciences. The EES curriculum provides a broader foundation in the sciences, allowing students to take classes in a variety of departments both inside and outside of the College of Engineering. At the same time, it allows students to focus their studies on environmental issues more than is possible in other engineering programs. EES provides a solid interdisciplinary foundation that is necessary for creating real-world solutions to global environmental challenges, such as providing a robust supply of safe drinking water, and meeting societal demands for energy without causing air pollution or interfering with the Earth’s climate systems.

Admission to the Major
Prospective undergraduates of the College of Engineering must apply for admission to one specific major/degree program. For further information, please see the College of Engineering’s website (http://coe.berkeley.edu/students/prospective-students/admissions.html).

Admission to engineering via a Change of College application for current UC Berkeley students is very competitive as there are few spaces open in engineering each year to students admitted to other colleges at UC Berkeley. For further information regarding a Change of College to Engineering, please see the College’s website (http://coe.berkeley.edu/students/current-undergraduates/change-of-college).

Minor Program
A minor in environmental engineering is available through the Department of Civil and Environmental Engineering.

Other Majors offered by the Engineering Science Program
Energy Engineering (http://guide.berkeley.edu/undergraduate/degree-programs/energy-engineering) (Major and Minor)
Engineering Mathematics and Statistics (http://guide.berkeley.edu/undergraduate/degree-programs/engineering-math-statistics) (Major only)
Engineering Physics (http://guide.berkeley.edu/undergraduate/degree-programs/engineering-physics) (Major only)

In addition to the University, campus, and college requirements, students must fulfill the below requirements specific to their major program.

General Guidelines
1. All technical courses taken in satisfaction of major requirements must be taken for a letter grade.
2. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.
3. A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.
4. A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

For a detailed plan of study by year and semester, please see the Plan of Study tab.

Lower Division Major Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1A</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1B</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 53</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 54</td>
<td>Linear Algebra and Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1A</td>
<td>General Chemistry & General Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 7A</td>
<td>Physics for Scientists and Engineers</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 7B</td>
<td>Physics for Scientists and Engineers</td>
<td>4</td>
</tr>
<tr>
<td>ENGIN 7</td>
<td>Introduction to Computer Programming for Scientists and Engineers</td>
<td>4</td>
</tr>
<tr>
<td>CIV ENG 11</td>
<td>Engineered Systems and Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG C30/MEC ENG C85</td>
<td>Introduction to Solid Mechanics</td>
<td>3</td>
</tr>
</tbody>
</table>

Basic science electives, select three from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGY 1A & 1AL</td>
<td>General Biology Lecture & General Biology Laboratory</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>General Chemistry [4]</td>
</tr>
<tr>
<td>CHEM 3A & 3AL</td>
<td>Chemical Structure and Reactivity and Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>CHEM 3B & 3BL</td>
<td>Chemical Structure and Reactivity and Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>EPS 50</td>
<td>General Chemistry and Quantitative Analysis [4]</td>
</tr>
<tr>
<td>PHYSICS 7C</td>
<td>Physics for Scientists and Engineers [4]</td>
</tr>
</tbody>
</table>

1. CHEM 4A and CHEM 4B are intended for students majoring in chemistry or a closely-related field.
2. Approved scores on Biology AP, IB, or A-Level exams can satisfy two of the three basic science electives.
3. Junior transfer admits are exempt from completing CIV ENG 11.

Upper Division Major Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 100</td>
<td>Elementary Fluid Mechanics</td>
<td>3-4</td>
</tr>
<tr>
<td>CIV ENG 103</td>
<td>Introduction to Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 40</td>
<td>Thermodynamics</td>
<td>3-4</td>
</tr>
<tr>
<td>CIV ENG 111</td>
<td>Environmental Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Math/computing elective, select one course from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGIN 117</td>
<td>Methods of Engineering Analysis [3]</td>
<td>3-4</td>
</tr>
</tbody>
</table>
Approved Cluster Courses

Air Pollution and Climate Change

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 140</td>
<td>Energy and Environment</td>
<td>4</td>
</tr>
<tr>
<td>CIV ENG C106</td>
<td>Air Pollution</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 107</td>
<td>Climate Change Mitigation</td>
<td>3</td>
</tr>
<tr>
<td>EL ENG 134</td>
<td>Fundamentals of Photovoltaic Devices</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 137A</td>
<td>Introduction to Electric Power Systems</td>
<td>4</td>
</tr>
<tr>
<td>EL ENG 137B</td>
<td>Introduction to Electric Power Systems</td>
<td>4</td>
</tr>
<tr>
<td>ENGIN 150</td>
<td>Basic Modeling and Simulation Tools for Industrial Research Applications</td>
<td>3</td>
</tr>
<tr>
<td>EPS C183</td>
<td>Carbon Cycle Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAT SCI 136</td>
<td>Materials in Energy Technologies</td>
<td>4</td>
</tr>
<tr>
<td>MEC ENG 109</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 140</td>
<td>Combustion Processes</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 146</td>
<td>Energy Conversion Principles</td>
<td>3</td>
</tr>
<tr>
<td>NUC ENG 161</td>
<td>Nuclear Power Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

Biotechnology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM ENG 140</td>
<td>Introduction to Chemical Process Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 142</td>
<td>Chemical Kinetics and Reaction Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 150B</td>
<td>Transport and Separation Processes</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 170A</td>
<td>Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHM ENG C170L</td>
<td>Biochemical Engineering Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI C112</td>
<td>General Microbiology</td>
<td>6</td>
</tr>
<tr>
<td>& C112L</td>
<td>and General Microbiology Laboratory</td>
<td></td>
</tr>
<tr>
<td>MCELLBI C116</td>
<td>Microbial Diversity</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI 120</td>
<td>Biology of Algae</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 120L</td>
<td>Laboratory for Biology of Algae</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 122</td>
<td>Bioenergy</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 180</td>
<td>Environmental Plant Biology</td>
<td>2</td>
</tr>
</tbody>
</table>

Ecosystems and Ecological Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 150</td>
<td>Basic Modeling and Simulation Tools for Industrial Research Applications</td>
<td>3</td>
</tr>
<tr>
<td>ESPM C103</td>
<td>Principles of Conservation Biology</td>
<td>4</td>
</tr>
<tr>
<td>ESPM C104</td>
<td>Modeling and Management of Biological Resources</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 111</td>
<td>Ecosystem Ecology</td>
<td>4</td>
</tr>
<tr>
<td>ESPM C133</td>
<td>Water Resources and the Environment</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 174</td>
<td>Design and Analysis of Ecological Research</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 151</td>
<td>Plant Physiological Ecology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 151L</td>
<td>Plant Physiological Ecology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 153</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 154</td>
<td>Plant Ecology</td>
<td>3</td>
</tr>
</tbody>
</table>

Environmental Fluid Mechanics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 103</td>
<td>Introduction to Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 105</td>
<td>Water and Wind - Design for a Variable Environment</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 173</td>
<td>Groundwater and Seepage</td>
<td>3</td>
</tr>
<tr>
<td>ENGIN 150</td>
<td>Basic Modeling and Simulation Tools for Industrial Research Applications</td>
<td>3</td>
</tr>
<tr>
<td>EPS 117</td>
<td>Geomorphology</td>
<td>4</td>
</tr>
<tr>
<td>EPS C129</td>
<td>Biometeorology</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 165</td>
<td>Ocean-Environment Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 167</td>
<td>Microscale Fluid Mechanics</td>
<td>3</td>
</tr>
</tbody>
</table>

Geoenengineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 171</td>
<td>Rock Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 173</td>
<td>Groundwater and Seepage</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 175</td>
<td>Geotechnical and Geoenvironment Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG C178</td>
<td>Applied Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 281</td>
<td>Engineering Geology</td>
<td>3</td>
</tr>
<tr>
<td>ENGIN 150</td>
<td>Basic Modeling and Simulation Tools for Industrial Research Applications</td>
<td>3</td>
</tr>
<tr>
<td>EPS 117</td>
<td>Geomorphology</td>
<td>4</td>
</tr>
</tbody>
</table>

Water Quality

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
</table>

1 The 12 units of cluster courses are in addition to the engineering and science courses used to fulfill other requirements for the major. While the courses are organized by topic, students may take any combination of courses from any of the lists.
Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions:

1. Completion of the requirements of one engineering major program (http://engineering.berkeley.edu/academics/undergraduate-programs) study.
2. A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
3. The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
4. All technical courses (math, science and engineering) that can fulfill requirements for the student's major must be taken on a letter graded basis (unless they are only offered P/NP).
5. Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed a maximum of four semesters to complete their degree requirements. (Note: junior transfers admitted missing three or more courses from the lower division curriculum are allowed five semesters.) Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters.
6. Adhere to all college policies and procedures (http://engineering.berkeley.edu/academics/undergraduate-guide) as they complete degree requirements.
7. Complete the lower division program before enrolling in upper division engineering courses.

Humanities and Social Sciences (H/SS) Requirement

To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement (http://engineering.berkeley.edu/student-services/degree-requirements/humanities-and-social-sciences), which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two reading and composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. Follow these guidelines to fulfill this requirement:

1. Complete a minimum of six courses from the approved Humanities/Social Sciences (H/SS) lists (http://engineering.berkeley.edu/hssreq).
2. Courses must be a minimum of 3 semester units (or 4 quarter units).
3. Two of the six courses must fulfill the College's Reading and Composition (R&C) requirement. These courses must be taken for a letter grade (C- or better required). The first half (R&C Part A) must be completed by the end of the freshman year; the second half (R&C Part B) must be completed by no later than the end of the sophomore year. Please see the Reading and Composition Requirement (http://engineering.berkeley.edu/academics/undergraduate-programs/reading-composition-requirement) page for a complete list of R&Cs available and a list of exams that can be applied toward the R&C Part A requirement. Students can also use the Class Schedule (https://classes.berkeley.edu) to view R&C courses offered in a given semester. Note: Only R&C Part A can be fulfilled with an AP, IB, or A-Level exam score. Test scores do not fulfill R&C Part B for College of Engineering students.
4. The four additional courses must be chosen from the five areas listed in #13 below. These four courses may be taken on a pass/no pass basis.
5. Special topics courses of 3 semester units or more will be reviewed on a case-by-case basis.
6. Two of the six courses must be upper division (courses numbered 100-196).
7. One of the six courses must satisfy the campus American Cultures (http://guide.berkeley.edu/undergraduate/colleges-schools/engineering/american-cultures-requirement) (AC) requirement. Note that any American Cultures course of 3 units or more may be used to meet H/SS requirement.
8. A maximum of two exams (Advanced Placement, International Baccalaureate, or A-Level) may be used toward completion of the H/SS requirement. View the list of exams (http://engineering.berkeley.edu/academics/undergraduate-guide/exams) that can be applied toward H/SS requirements.
9. No courses offered by any engineering department other than BIO ENG 100, COMPSCI C79, ENGIN 125, ENGIN 157AC, ENGIN 185, and MEC ENG 191K may be used to complete H/SS requirements.
10. Language courses may be used to complete H/SS requirements.
11. Courses may fulfill multiple categories. For example, CY PLAN 118AC satisfies both the American Cultures requirement and one upper division H/SS requirement.
12. Courses numbered 97, 98, 99, or above 196 may not be used to complete any H/SS requirement.
13. The College of Engineering uses modified versions of five of the College of Letters and Science (L&S) breadth requirements lists to provide options to our students for completing the H/SS requirement. The five areas are:

- Arts and Literature
- Historical Studies
- International Studies
- Philosophy and Values
- Social and Behavioral Sciences

Within the guidelines above, choose courses from any of the Breadth areas listed above. (Please note that you cannot use courses on the Biological Science or Physical Science Breadth list to complete the H/SS requirement.) To find course options, go to the Class Schedule (http://classes.berkeley.edu), (http://classes.berkeley.edu/search/class) select the term of interest, and use the Breadth Requirements (https://ls.berkeley.edu/sites/default/files/breadth_search_annotation_in_guide.png) filter.
Class Schedule Requirements

- Minimum units per semester: 12.0
- Maximum units per semester: 20.5
- Minimum technical courses: College of Engineering undergraduates must enroll each semester in no fewer than two technical courses (of a minimum of 3 units each, with the exception of Engineering 25, 26 and 27) required of the major program of study in which the student is officially declared. (Note: For most majors, normal progress (https://engineering.berkeley.edu/academics/undergraduate-guide/policies-procedures/scholarship-progress/#ac12282) will require enrolling in 3-4 technical courses each semester). Students who are not in compliance with this policy by the end of the fifth week of the semester are subject to a registration block that will delay enrollment for the following semester.
- All technical courses (math, science, engineering) that satisfy requirements for the major must be taken on a letter-graded basis (unless only offered as P/NP).

Minimum Academic (Grade) Requirements

- A minimum overall and semester grade point average of 2.00 (C average) is required of engineering undergraduates. Students will be subject to dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00.
- Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester.
- A minimum overall grade point average of 2.00, and a minimum 2.00 grade point average in upper division technical course work required for the major is needed to earn a Bachelor of Science in Engineering. Normal Progress

Students in the College of Engineering must enroll in a full-time program and make normal progress (https://engineering.berkeley.edu/academics/undergraduate-guide/policies-procedures/scholarship-progress/#ac12283) each semester toward the bachelor’s degree. The continued enrollment of students who fail to achieve minimum academic progress shall be subject to the approval of the dean. (Note: Students with official accommodations established by the Disabled Students’ Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.)

University of California Requirements

Entry Level Writing (https://www.ucop.edu/elwr)

All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing Requirement. Satisfaction of this requirement is also a prerequisite to enrollment in all Reading and Composition courses at UC Berkeley.

American History and American Institutions (http://guide.berkeley.edu/undergraduate/education/#universityrequirementstext)

The American History and Institutions requirements are based on the principle that a U.S. resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.

Campus Requirement

American Cultures (http://guide.berkeley.edu/undergraduate/education/#campusrequirementstext)

The American Cultures requirement is a Berkeley campus requirement, one that all undergraduate students at Berkeley need to pass in order to graduate. You satisfy the requirement by passing, with a grade not lower than C- or P, an American Cultures course. You may take an American Cultures course any time during your undergraduate career at Berkeley. The requirement was instituted in 1991 to introduce students to the diverse cultures of the United States through a comparative framework. Courses are offered in more than fifty departments in many different disciplines at both the lower and upper division level.

The American Cultures requirement and courses constitute an approach that responds directly to the problem encountered in numerous disciplines of how better to present the diversity of American experience to the diversity of American students whom we now educate.

Faculty members from many departments teach American Cultures courses, but all courses have a common framework. The courses focus on themes or issues in United States history, society, or culture; address theoretical or analytical issues relevant to understanding race, culture, and ethnicity in American society; take substantial account of groups drawn from at least three of the following: African Americans, indigenous peoples of the United States, Asian Americans, Chicano/ Latino Americans, and European Americans; and are integrative and comparative in that students study each group in the larger context of American society, history, or culture.

This is not an ethnic studies requirement, nor a Third World cultures requirement, nor an adjusted Western civilization requirement. These courses focus upon how the diversity of America’s constituent cultural traditions have shaped and continue to shape American identity and experience.

Visit the Class Schedule (http://classes.berkeley.edu) or the American Cultures website (http://americancultures.berkeley.edu) for the specific American Cultures courses offered each semester. For a complete list of approved American Cultures courses at UC Berkeley and California Community Colleges, please see the American Cultures Subcommittee’s
website (https://academic-senate.berkeley.edu/committees/amcult). See your academic adviser if you have questions about your responsibility to satisfy the American Cultures breadth requirement.

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the College Requirements and Major Requirements tabs.

<table>
<thead>
<tr>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 4A or 1A and 1AL &</td>
<td>4 MATH 1B</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 1A</td>
<td>4 PHYSICS 7A</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Reading & Composition Part A Course</td>
<td>4 CIV ENG 11</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities/Social Sciences course</td>
<td>3-4 ENGIN 7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 53</td>
<td>4 MATH 54</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 7B</td>
<td>4 CIV ENG C30</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>First Basic Science Elective</td>
<td>4-5 Second and Third Basic Science Electives</td>
<td>8-10</td>
<td></td>
</tr>
<tr>
<td>Reading & Composition Part B Course</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIV ENG 100, MEC ENG 106, or CHM ENG 150A</td>
<td>3-4 MEC ENG 40, ENGIN 40, or CHM ENG 141</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 103 or 115</td>
<td>3 Math/Computing Elective^</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 111</td>
<td>3 Cluster courses^</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities/Social Sciences course</td>
<td>3-4 Humanities/Social Sciences course^</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster course^</td>
<td>3 Cluster course^</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Advanced Science Sequence course^</td>
<td>4-5 Advanced Science Sequence course^</td>
<td>4-5</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td>8 Humanities/Social Sciences course^</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Units: 120-132

1 CHEM 4A is intended for students majoring in chemistry or a closely-related field.
ENGIN 1 Engineering Your Life: Skills for Leadership, Discovery and Service 1 Unit

Terms offered: Spring 2020

This course provides the framework for engineering an empowered life through leadership, discovery and service. The class focuses on development of self, emotional intelligence, strategic thinking, problem solving, teamwork, diversity, and service learning. Skills include developing self-awareness; understanding our unique strengths; debunking the imposter syndrome; creating plans of action and setting goals; giving and receiving assessments; interpreting body language; managing time and life-balance; and creating mission statements.

Teamwork skills include methods for inspiring others; variations in leadership styles and team dynamics; rhythm of action for projects and teams; difficult conversations and conflict resolution; mechanisms. Engineering Your Life: Skills for Leadership, Discovery and Service: Read More [+]

Objectives & Outcomes

Course Objectives: This course offers the requisite framework for engineering an empowered life. The course provides students with requisite skills for authentic leadership, self-discovery and societal service. These attributes are in alignment with the mission of the College of Engineering and the Berkeley campus.

Student Learning Outcomes: Students will learn how to assess personal strengths, implement plans of action and develop mission statements. Students will learn how to optimize their knowledge with assessment of learning styles along with key communication tools necessary for conflict resolution and inspiration of others (teamwork). Through a series of active exercises and self-reflection activities the students will learn requisite skills for self-discovery and the creation of a personal leadership plan.

Rules & Requirements

Prerequisites: Designed for engineering freshmen, the class is open to all students in the College of Engineering or by permission of instructor

ENGIN 7 Introduction to Computer Programming for Scientists and Engineers 4 Units

Terms offered: Fall 2020, Summer 2020 10 Week Session, Spring 2020

Elements of procedural and object-oriented programming. Induction, iteration, and recursion. Real functions and floating-point computations for engineering analysis. Introduction to data structures. Representative examples are drawn from mathematics, science, and engineering. The course uses the MATLAB programming language. Sponsoring departments: Civil and Environmental Engineering and Mechanical Engineering.

Introduction to Computer Programming for Scientists and Engineers: Read More [+]

Rules & Requirements

Prerequisites: MATH 1B (may be taken concurrently)

Credit Restrictions: Students will receive no credit for Engineering 7 after completing Engineering W7. A deficient grade in Engineering W7 may be repeated by taking Engineering 7.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture, 1 hour of discussion, and 4 hours of laboratory per week

Summer: 10 weeks - 3 hours of lecture, 1.5 hours of discussion, and 6 hours of laboratory per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: 77

Introduction to Computer Programming for Scientists and Engineers: Read Less [-]
ENGIN W7 Introduction to Computer Programming for Scientists and Engineers 4 Units

Terms offered: Summer 2016 10 Week Session, Summer 2015 10 Week Session, Summer 2014 10 Week Session

Elements of procedural and object-oriented programming. Induction, iteration, and recursion. Real functions and floating-point computations for engineering analysis. Introduction to data structures. Representative examples are drawn from mathematics, science, and engineering. The course uses the MATLAB programming language.

Introduction to Computer Programming for Scientists and Engineers: Read More [+]

Rules & Requirements

Prerequisites: MATH 1B (may be taken concurrently)

Credit Restrictions: Students will receive no credit for Engineering W7 after completing Engineering 7 or 77. A deficient grade in Engineering 7 or 77 may be removed by taking Engineering W7.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of web-based lecture, 4 hours of laboratory, and 1 hour of web-based discussion per week

Summer: 10 weeks - 6 hours of web-based lecture, 0 hours of laboratory, and 7.5 hours of web-based discussion per week

Online: This is an online course.

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Papadopoulos

Introduction to Computer Programming for Scientists and Engineers: Read Less [-]

ENGIN 11 A Hands-on Introduction to Radiation Detection: Getting to know our Radioactive World 3 Units

Terms offered: Fall 2020, Fall 2019, Spring 2007

Introduction to basic concepts in radiation detection and radioactivity, electrical circuits, and data analytics. Lectures provide the theoretical foundation of the work being performed in the accompanying laboratory. The course will contain three sections: introduction to how radiation interacts with matter and radiation detection technologies; development of the tools (mathematical and computational) needed for analyzing various types of radiation and environmental data; and building of a basic radiation sensor system.

A Hands-on Introduction to Radiation Detection: Getting to know our Radioactive World: Read More [+]

Objectives & Outcomes

Course Objectives: The course is suitable for Nuclear Engineering students, other Engineering majors, and any students interested in gaining a general understanding of radiation detection. The focus of this course will be on the application of the nuclear science, radiation detection, and data analysis concepts covered to the building of a multi-sensor radiation detection system, following a template for the required data acquisition software and circuit integration. Fieldwork related to a chosen research topic will be carried out in small groups, with group oral presentations and final reports. Students will be introduced to research opportunities on campus and at nearby lab facilities through tours of lab spaces throughout the department and field trips to LBNL and LLNL.

Students will be introduced to core concepts in nuclear science, statistical analysis, and computation, while being given practical experience applying those concepts to radiation detection and data analysis. The objective of this course is to provide Freshman and Sophomore students with an introduction to the fundamentals of nuclear radiation and radiation detection through a hands-on approach.

Student Learning Outcomes: Be able to outline and carry out a research project, prepare written and oral presentations of that work, and demonstrate how the sensors they built work.

By the end of this course, students should be able to:

Identify types of radioactivity, radiation detection methods and sources of environmental radiation,

Create simple circuit designs making use of standard circuitry components, demonstrate basic soldering skills, and demonstrate a familiarity with printed circuit board design tools,

Make use of software tools including the Python programming language, version control with git, and shell environments,

Perform statistical analysis of large data sets and quantify statistical and systematic uncertainties in experimental data.

Rules & Requirements

Credit Restrictions: Students will receive no credit for ENGIN 11 after completing ENGIN 11. A deficient grade in ENGIN 11 may be removed by taking ENGIN 11.

Hours & Format

Fall and/or spring: 15 weeks - 1.5 hours of lecture and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.
ENGIN 24 Freshman Seminar 1 Unit
Terms offered: Spring 2012, Fall 2011, Fall 2008
The Berkeley Seminar Program is designed to provide students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Berkeley Seminars are offered in all college departments, and topics vary from department to department and semester to semester.
Freshman Seminar: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

Freshman Seminar: Read Less [-]

ENGIN 25 Visualization for Design 2 Units
Terms offered: Fall 2020, Spring 2020, Fall 2019
Development of 3-dimensional visualization skills for engineering design. Sketching as a tool for design communication. Presentation of 3-dimensional geometry with 2-dimensional engineering drawings. This course will introduce the use of 2-dimensional CAD on computer workstations as a major graphical analysis and design tool. A group design project is required. Teamwork and effective communication are emphasized.
Visualization for Design: Read More [+]

Objectives & Outcomes
Course Objectives: Improve 3-dimensional visualization skills; enable a student to create and understand engineering drawings; introduce 2-dimensional computer-aided geometry modeling as a visualization, design, and analysis tool; enhance critical thinking and design skills; emphasize communication skills, both written and oral; develop teamwork skills; offer experience in hands-on engineering projects; develop early abilities in identifying, formulating, and solving engineering problems; introduce students to the societal context of engineering practice.

Student Learning Outcomes: Upon completion of the course, students shall be able to communicate 3-dimensional geometry effectively using sketches; operate 2-dimensional CAD software with a high degree of skill and confidence; understand and create engineering drawings; visualize 3-dimensional geometry from a series of 2-dimensional drawings.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 2 hours of laboratory per week

Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Instructors: Lieu, McMains

Visualization for Design: Read Less [-]
ENGIN 26 Three-Dimensional Modeling for Design 2 Units

Terms offered: Fall 2020, Spring 2020, Fall 2019
Three-dimensional modeling for engineering design. This course will emphasize the use of CAD on computer workstations as a major graphical analysis and design tool. Students develop design skills, and practice applying these skills. A group design project is required. Hands-on creativity, teamwork, and effective communication are emphasized.

Three-Dimensional Modeling for Design: Read More [+]

Objectives & Outcomes

Course Objectives: Introduce computer-based solid, parametric, and assembly modeling as a tool for engineering design; enhance critical thinking and design skills; emphasize communication skills, both written and oral; develop teamwork skills; offer experience in hands-on, creative engineering projects; reinforce the societal context of engineering practice; develop early abilities in identifying, formulating, and solving engineering problems.

Student Learning Outcomes: Upon completion of the course, students shall be able to operate 3-dimensional solid modeling software tools with a high degree of skill and confidence; specify dimensions for parts and assemblies such that they can be fabricated, and fit such that they function with the desired result; produce rapid-prototype models of parts and assemblies to demonstrate their desired functionality; understand the design of systems, components, and processes to meet desired needs within realistic constraints.

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of lecture and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Lieu, McMains, Youssefi

Three-Dimensional Modeling for Design: Read Less [-]

ENGIN 27 Introduction to Manufacturing and Tolerancing 2 Units

Terms offered: Fall 2020, Summer 2020 10 Week Session, Spring 2020
Geometric dimensioning and tolerancing (GD&T), tolerance analysis for fabrication, fundamentals of manufacturing processes (metal cutting, welding, joining, casting, molding, and layered manufacturing).

Introduction to Manufacturing and Tolerancing: Read More [+]

Objectives & Outcomes

Course Objectives: Enable a student to create and understand tolerances in engineering drawings; enhance critical thinking and design skills; emphasize communication skills, both written and oral; offer hands-on experience in manufacturing; develop abilities in identifying, formulating, and solving engineering problems; introduce students to the context of engineering practice.

Student Learning Outcomes: Upon completion of the course, students shall be able to fabricate basic parts in the machine shop; understand and communicate tolerance requirements in engineering drawings using industry standard GD&T; use metrology tools to evaluate if physical parts are within specified tolerances; demonstrate familiarity with manufacturing processes; and design parts that can be fabricated realistically and economically using these processes.

Rules & Requirements

Prerequisites: ENGIN 25 (may be taken concurrently)

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of lecture and 2 hours of laboratory per week
Summer: 10 weeks - 1.5 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: McMains, Lieu, Taylor

Introduction to Manufacturing and Tolerancing: Read Less [-]
ENGIN 29 Manufacturing and Design Communication 4 Units

Terms offered: Not yet offered
An introduction to manufacturing process technologies and the ways in which dimensional requirements for manufactured objects are precisely communicated, especially through graphical means. Fundamentals of cutting, casting, molding, additive manufacturing, and joining processes are introduced. Geometric dimensioning and tolerancing (GD&T), tolerance analysis for fabrication, concepts of process variability, and metrology techniques are introduced and practiced. 3-D visualization skills for engineering design are developed via sketching and presentation of 3-D geometries with 2-D engineering drawings. Computer-aided design software is used. Teamwork and effective communication are emphasized through lab activities and a design project.

Objectives & Outcomes

Course Objectives:
- Develop early abilities in identifying, formulating, and solving engineering problems.
- Emphasize communication skills, both written and oral; develop teamwork skills.
- Enable a student to create and understand tolerances in engineering drawings.
- Enhance critical thinking and design skills.
- Improve 3-dimensional visualization skills; enable a student to create and understand engineering drawings.
- Introduce 2-dimensional computer-aided geometry modeling as a visualization, design, and analysis tool.
- Introduce students to the societal context of engineering practice.

Student Learning Outcomes:
- A knowledge of contemporary issues.
- A recognition of the need for, and an ability to engage in lifelong learning.
- An ability to apply knowledge of mathematics, science, and engineering.
- An ability to communicate effectively.
- An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- An ability to design and conduct experiments, as well as to analyze and interpret data.
- An ability to identify, formulate, and solve engineering problems.
- An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- An understanding of professional and ethical responsibility.

Rules & Requirements

Prerequisites: ENGIN 26 or equivalent experience in three-dimensional solid modeling (e.g. Solidworks, Fusion 360) is recommended.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Instructors: Taylor, Hayden, Mcmains, Sarah, Stuart, Hannah

Manufacturing and Design Communication: Read More [+]

ENGIN 39B Freshman/Sophomore Seminar 1.5 - 4 Units

Terms offered: Spring 2010, Spring 2009, Spring 2008
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1.5-4 hours of seminar per week

Additional Details
Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

Freshman/Sophomore Seminar: Read Less [-]

ENGIN 39E Freshman/Sophomore Seminar 1.5 - 4 Units

Terms offered: Spring 2010, Spring 2009, Spring 2008
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1.5-4 hours of seminar per week

Additional Details
Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

Freshman/Sophomore Seminar: Read Less [-]
ENGIN 39F Freshman/Sophomore Seminar
1.5 - 4 Units
Terms offered: Fall 2010
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

Freshman/Sophomore Seminar: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1.5-4 hours of seminar per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

Freshman/Sophomore Seminar: Read Less [-]

ENGIN 40 Engineering Thermodynamics 4 Units
Terms offered: Fall 2020, Fall 2019, Fall 2018
Fundamental laws of thermodynamics for simple substances; application to flow processes and to nonreacting mixtures; statistical thermodynamics of ideal gases and crystalline solids; chemical and materials thermodynamics; multiphase and multicomponent equilibria in reacting systems; electrochemistry. Sponsoring Departments: Materials Science and Engineering and Nuclear Engineering.

Engineering Thermodynamics: Read More [+]

Rules & Requirements

Prerequisites: PHYSICS 7B and MATH 54. CHEM 1B recommended

Credit Restrictions: Students will receive no credit for Engineering 40 after taking Engineering 115, Chemical Engineering 141 or Mechanical Engineering 40.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Bolind, Persson

Engineering Thermodynamics: Read Less [-]

ENGIN 47 Supplementary Work in Lower Division Engineering 1 - 3 Units
Terms offered: Fall 2016, Fall 2012, Spring 2012
May be taken only with permission of the Dean of the College of Engineering. Students with partial credit in a lower division engineering course may complete the work under this heading.

Supplementary Work in Lower Division Engineering: Read More [+]

Rules & Requirements

Prerequisites: Limited to students who must make up a fraction of a required lower division course

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 0 hours of independent study per week

Summer: 8 weeks - 1.5-5.5 hours of independent study per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Supplementary Work in Lower Division Engineering: Read Less [-]
ENGIN 78 Statistics and Data Science for Engineers 4 Units
Terms offered: Fall 2020
This course introduces engineering students to elements of statistics and probability, followed by a module-based introduction to select computational techniques from data science and stochastic optimization. Each module is based on a contemporary engineering problem of broad interest. The computational techniques presented in the course are drawn from Bayesian optimization, supervised learning, neural networks, classification, and Kalman filtering.

Statistics and Data Science for Engineers: Read More [+]

Objectives & Outcomes

Course Objectives: Enhance the students' computational skills in tackling engineering problems whose complexity may necessitate data-driven solutions.
Familiarize students with practical concepts of quantitative statistics and probability.
Introduce students to select state-of-the-art algorithms from data science and stochastic optimization in the context of engineering problems.

Student Learning Outcomes: A knowledge of contemporary issues.
An ability to apply knowledge of mathematics, science, and engineering.
An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
An ability to design and conduct experiments, as well as to analyze and interpret data.
An ability to identify, formulate, and solve engineering problems.
An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

Rules & Requirements

Prerequisites: ENGIN 7, MATH 1A, MATH 1B, and MATH 53; and MATH 54 (may be taken concurrently)

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Not specified. Final exam may or may not be required.

Instructor: Papadopoulos

Statistics and Data Science for Engineers: Read Less [-]

ENGIN 92 Perspectives in Engineering 1 Unit
Terms offered: Fall 2020, Fall 2019, Fall 2018
This series of lectures provides students, especially undeclared Engineering students, with information on the various engineering disciplines to guide them toward choice of major. Lectures describe research activities, how they made their own career choices, and indicate future opportunities. Recommended for all Engineering Science students and required for Engineering undeclared students.

Perspectives in Engineering: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Perspectives in Engineering: Read Less [-]

ENGIN 93 Energy Engineering Seminar 1 Unit
Terms offered: Fall 2020, Fall 2019, Fall 2018
Weekly seminar with different speakers on energy-related topics. The goal is to expose students to a broad range of energy issues.

Energy Engineering Seminar: Read More [+]

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of seminar per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Instructor: Zohdi

Energy Engineering Seminar: Read Less [-]
ENGIN 98 Directed Group Studies for Lower Division Undergraduates 1 - 4 Units

Terms offered: Spring 2020, Fall 2019, Spring 2019

Seminars for group study of selected topics, which will vary from year to year. Intended for students in the lower division.

Directed Group Studies for Lower Division Undergraduates: Read More [+]

Rules & Requirements

Prerequisites: Consent of instructor

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week

Summer:
6 weeks - 2.5-10 hours of directed group study per week
8 weeks - 1.5-7.5 hours of directed group study per week
10 weeks - 1.5-6 hours of directed group study per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Directed Group Studies for Lower Division Undergraduates: Read Less [-]

ENGIN 117 Methods of Engineering Analysis 3 Units

Terms offered: Fall 2019, Fall 2017, Fall 2015

Methods of theoretical engineering analysis; techniques for analyzing partial differential equations and the use of special functions related to engineering systems. Sponsoring Department: Mechanical Engineering.

Methods of Engineering Analysis: Read More [+]

Rules & Requirements

Prerequisites: MATH 53 and MATH 54

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Summer:
6 weeks - 2.5-10 hours of directed group study per week
8 weeks - 1.5-7.5 hours of directed group study per week
10 weeks - 1.5-6 hours of directed group study per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Methods of Engineering Analysis: Read Less [-]

ENGIN 120 Principles of Engineering Economics 3 Units

Terms offered: Fall 2020, Spring 2020, Fall 2019

Principles of Engineering Economics: Read More [+]

Rules & Requirements

Prerequisites: Completion of 60 units of an approved engineering curriculum

Credit Restrictions: Students will receive no credit for Engineering 120 after taking Industrial Engineering 120.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week

Summer:
8 weeks - 4 hours of lecture and 2 hours of discussion per week

Additional Details

Subject/Course Level: Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Adler

Principles of Engineering Economics: Read Less [-]

ENGIN 125 Ethics, Engineering, and Society 3 Units

Terms offered: Spring 2020, Spring 2014, Fall 2013

How should engineers analyze and resolve the ethical issues inherent in engineering? This seminar-style course provides an introduction to how theories, concepts, and methods from the humanities and social science can be applied to ethical problems in engineering. Assignments incorporate group and independent research designed to provide students an opportunity to contribute novel findings to the emerging field of engineering ethics while building their analytical and communication skills. This course cannot be used to fulfill any engineering technical requirements (units or courses).

Ethics, Engineering, and Society: Read More [+]

Rules & Requirements

Grading/Final exam status: Letter grade. Final exam not required.

Instructor: Adler

Ethics, Engineering, and Society: Read Less [-]

ENGIN 125 Ethics, Engineering, and Society 3 Units

Terms offered: Spring 2020, Spring 2014, Fall 2013

How should engineers analyze and resolve the ethical issues inherent in engineering? This seminar-style course provides an introduction to how theories, concepts, and methods from the humanities and social science can be applied to ethical problems in engineering. Assignments incorporate group and independent research designed to provide students an opportunity to contribute novel findings to the emerging field of engineering ethics while building their analytical and communication skills. This course cannot be used to fulfill any engineering technical requirements (units or courses).

Ethics, Engineering, and Society: Read More [+]

Rules & Requirements

Grading/Final exam status: Letter grade. Final exam not required.

Instructor: Adler

Ethics, Engineering, and Society: Read Less [-]
ENGIN 128 Advanced Engineering Design Graphics 3 Units
Terms offered: Fall 2020, Fall 2019, Fall 2018
Advanced Engineering Design Graphics: Read More [+]
Rules & Requirements
Prerequisites: ENGIN 26
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructor: Lieu
Advanced Engineering Design Graphics: Read Less [-]

ENGIN 147 Supplementary Work in Upper Division Engineering 1 - 3 Units
Terms offered: Fall 2016, Fall 2015, Spring 2015
May be taken only with permission of the Dean of the College of Engineering. Students with partial credit in an upper division engineering course may complete the work under this heading.
Supplementary Work in Upper Division Engineering: Read More [+]
Rules & Requirements
Prerequisites: Limited to students who must make up a fraction of a required upper division course
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Supplementary Work in Upper Division Engineering: Read Less [-]

ENGIN 150 Basic Modeling and Simulation Tools for Industrial Research Applications 3 Units
Terms offered: Fall 2020, Fall 2019, Fall 1997
The course emphasizes elementary modeling, numerical methods & their implementation on physical problems motivated by phenomena that students are likely to encounter in their careers, involving biomechanics, heat-transfer, structural analysis, control theory, fluid-flow, electrical conduction, diffusion, etc. This will help students develop intuition about the strengths and weaknesses of a variety of modeling & numerical methods, as well as develop intuition about modeling physical systems & strengths and weaknesses of a variety of numerical methods, including: Discretization of differential equations, Methods for solving nonlinear systems, Gradient-based methods and machine learning algorithms for optimization, stats & quantification
Basic Modeling and Simulation Tools for Industrial Research Applications: Read More [+]
Rules & Requirements
Prerequisites: ENGIN 7 or COMPSCI 61A, PHYSICS 7A, MATH 53, and MATH 54
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Basic Modeling and Simulation Tools for Industrial Research Applications: Read Less [-]

ENGIN 157AC Engineering, The Environment, and Society 4 Units
Terms offered: Spring 2020, Spring 2019, Spring 2018
This course engages students at the intersection of environmental justice, social justice, and engineering to explore how problems that are commonly defined in technical terms are at their roots deeply socially embedded. Through partnerships with community-based organizations, students are trained to recognize the socio-political nature of technical problems so that they may approach solutions in ways that prioritize social justice. Topics covered include environmental engineering as it relates to air, water, and soil contamination; race, class, and privilege; expertise; ethics; and engaged citizenship. This course cannot be used to complete any engineering technical unit requirements.
Engineering, The Environment, and Society: Read More [+]
Rules & Requirements
Prerequisites: ENGIN 7 or COMPSCI 61A, PHYSICS 7A, MATH 53, and MATH 54
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Also listed as: IAS 157AC
Engineering, The Environment, and Society: Read Less [-]
ENGIN 177 Advanced Programming with MATLAB 3 Units
Terms offered: Spring 2017, Spring 2015, Spring 2014
The course builds an understanding, demonstrates engineering uses, and provides hand-on experience for object-oriented programming as well as exposes a practical knowledge of advanced features available in MATLAB. The course will begin with a brief review of basic MATLAB features and quickly move to class organization and functionality. The introduced concepts are reinforced by examining the advanced graphical features of MATLAB. The material will also include the effective use of programs written in C and FORTRAN, and will cover SIMULINK, a MATLAB toolbox providing for an effective ways of model simulations. Throughout the course, the emphasis will be placed on examples and homework assignments from engineering disciplines.
Advanced Programming with MATLAB: Read More [+]

Rules & Requirements
Prerequisites: ENGIN 7, MATH 53 and MATH 54 (one of these math courses may be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Frenklach, Packard

ENGIN 180 Preparing for the Fields and Jobs of the Future 3 Units
Terms offered: Spring 2018
The course is concerned with giving students the tools to prepare for the fields and jobs of the future. Across all university departments and majors, the numbers of students who do not work in the fields in which they've received their degrees is not only significant, but growing. For example, anywhere from 20-40% of STEM graduates do not work in the fields in which they've received their degrees.
This does not mean that students shouldn't major in STEM, but that one of the primary purposes of higher education is learning how to learn. Accordingly, this course presents a number of frameworks that are critical for thinking about that which has not yet been invented. Preparing for the Fields and Jobs of the Future: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

ENGIN 185 The Art of STEM Communication 3 Units
Terms offered: Spring 2020, Fall 2019, Spring 2019
This course provides engineering majors with the fundamental skills for effective technical communication. During the course of the semester, students will develop communications for public dissemination, covering a project or initiative within UC Berkeley’s College of Engineering. This work will call on students to: (a) cultivate interest in a broad range of topics related to Engineering; (b) become an engaged and critical reader of academic and general-interest science publications; (c) learn how to assess, plan for, and respond to a variety of communicative situations; (d) produce focused, and at the same time, narratively-rich, accounts of Engineering research.
The Art of STEM Communication: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternate method of final assessment during regularly scheduled final exam group (e.g., presentation, final project, etc.).
The Art of STEM Communication: Read Less [-]

ENGIN 187 Global Engineering: The Challenges of Globalization and Disruptive Innovation 1 or 2 Units
Terms offered: Fall 2019
The course examines the challenges of innovation beyond new technology development: from the challenges of global expansion, to the issues of unintended consequences of technology and the ability of technology to support or hinder social justice. The course will provide examples in a variety of global locations (e.g., Latin America, Southeast Asia, Africa, China, and India), utilizing case examples (written and presented by speakers) that illustrate the challenges faced in a range of fields of engineering and technology, from water and transportation to information and communications technology, and from start-ups to major corporations, government entities, and policy makers.
Global Engineering: The Challenges of Globalization and Disruptive Innovation: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 8 weeks - 2-4 hours of lecture per week

Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Global Engineering: The Challenges of Globalization and Disruptive Innovation: Read Less [-]

Preparing for the Fields and Jobs of the Future: Read Less [-]
ENGIN 194 Undergraduate Research 3 Units
Terms offered: Spring 2020, Spring 2019, Spring 2018
Students who have completed a satisfactory number of advanced courses may pursue original research under the direction of one of the members of the staff. Final report and presentation required.
Undergraduate Research: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor and adviser, junior or senior standing
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week

Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Undergraduate Research: Read Less [-]

ENGIN 198 Directed Group Studies for Advanced Undergraduates 1 - 4 Units
Terms offered: Spring 2020, Spring 2019, Fall 2018
Group study of selected topics.
Directed Group Studies for Advanced Undergraduates: Read More [+]

Rules & Requirements
Prerequisites: Upper division standing, plus particular courses to be specified by instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Summer: 8 weeks - 1.5-7.5 hours of directed group study per week

Additional Details
Subject/Course Level: Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Studies for Advanced Undergraduates: Read Less [-]