Genetics and Plant Biology

Bachelor of Science (BS)

The Department of Plant and Microbial Biology's (PMB) undergraduate major program in Genetics and Plant Biology has been developed as a broadly based program emphasizing the study of plants from the molecular and genetic to organismal levels. Lower division courses are intended to produce a foundation in biological and physical sciences as preparation for advanced study at the upper division level. Coursework from the Department of Plant and Microbial Biology, which can be used as a foundation for medical school application, is interesting and varied. The small department provides a rich and supportive environment for learning.

Plant biology emphasizes the study of plants from the genetics to the organism. From oxygen to food to shelter to energy to shade, plants provide humans with virtually everything needed to survive and thrive. There is important work for those who want to unravel the mystery of genes, teach the next generation of biologists or to devise ways to feed the world.

Admission to the Major

Advice on admission for freshmen and transfer students can be found on the CNR Admissions Guide (http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/#admissionstext) page or the CNR Prospective Student website (https://nature.berkeley.edu/prospective-students). Freshman students may apply directly to the major, or they may select the College of Natural Resource's undeclared option and declare the major by the end of their fourth semester. Transfer students may apply directly to the major through the UC application.

Information for current Berkeley students who would like to declare the major after admission, including information on a change of major or change of college, please see chapter 6 of the College of Natural Resources Undergraduate Student Handbook (https://nature.berkeley.edu/handbook). (https://nature.berkeley.edu/handbook)

Research Opportunities

In addition to the Berkeley campus Undergraduate Research Apprenticeship Program (URAP), CNR students can also apply for the CNR Sponsored Projects for Undergraduate Research (SPUR) program. For more information, please see the College of Natural Resources website (http://nature.berkeley.edu/research/undergraduate-research)

Honors Program

Students with a GPA of 3.6 or higher may enroll in the College of Natural Resources honors program (H196) once they have reached upper division standing. To fulfill the program requirements, students design, conduct, and report on an individual research project working with a faculty sponsor. For further information about registration for the honors symposium and the honors requirements, please see the College of Natural Resources website (http://nature.berkeley.edu/site/honors_program.php).

Other Major Offered by the Department of Plant and Microbial Biology

Microbial Biology (http://guide.berkeley.edu/undergraduate/degree-programs/microbial-biology) (Major only)

In addition to the University, campus, and college requirements, listed on the College Requirements tab, students must fulfill the below requirements specific to their major program.

General Guidelines

1. All courses taken to fulfill the major requirements below must be taken for graded credit, other than courses listed which are offered on a Pass/No Pass basis only. Other exceptions to this requirement are noted as applicable.

2. A minimum cumulative grade point average (GPA) of 2.0 is required.

3. A minimum GPA of 2.0 in upper division major requirements is required.

4. At least 15 of the 36 required upper division units must be taken in the College of Natural Resources.

5. A maximum of 16 units of independent study (courses numbered 97, 98, 99, 197, 198, and 199) may count toward graduation, with a maximum of 4 units of independent study per semester.

6. No more than 1/3 of the total units attempted at UC Berkeley may be taken Pass/No Pass. This includes units in the Education Abroad Program and UC Intercampus Visitor or Exchange Programs. For information regarding residence requirements and unit requirements, please see the College Requirements tab.

7. A maximum of 4 units of physical education courses will count toward graduation.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

Reading and Composition Requirement

Students are required to complete the Reading and Composition (http://guide.berkeley.edu/undergraduate/degree-programs/lett... reading-composition-requirement) requirement by the end of their sophomore year.

Humanities & Social Sciences Requirement

15 units of coursework need to be taken from L&S breadth list (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/breadthrequirementstext), excluding biological and physical science course. A maximum of 6 foreign language units can be used to fulfill the requirement.

Lower Division Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 10A</td>
<td>Methods of Mathematics: Calculus, Statistics, and Combinatorics</td>
<td>4</td>
</tr>
<tr>
<td>MATH 10B</td>
<td>Methods of Mathematics: Calculus, Statistics, and Combinatorics</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1A</td>
<td>General Chemistry and General Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>& 1AL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>Chemical Structure and Reactivity and Organic Chemistry Laboratory</td>
<td>5</td>
</tr>
</tbody>
</table>
Upper Division Requirements

Core Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANTBI 135</td>
<td>Physiology and Biochemistry of Plants</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI 150</td>
<td>Plant Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI 160</td>
<td>Plant Molecular Genetics</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI C107L</td>
<td>Principles of Plant Morphology with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI 101L</td>
<td>Experimental Plant Biology Laboratory</td>
<td>3</td>
</tr>
</tbody>
</table>

Biotechnology and Bioenergy

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANTBI C103</td>
<td>Bacterial Pathogenesis</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI C112</td>
<td>General Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI C112L</td>
<td>General Microbiology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 120</td>
<td>Biology of Algae</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 120L</td>
<td>Laboratory for Biology of Algae</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 122</td>
<td>Bioenergy</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI C124</td>
<td>The Berkeley Lectures on Energy: Energy from Biomass</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI C148</td>
<td>Microbial Genomics and Genetics</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI 170</td>
<td>Modern Applications of Plant Biotechnology</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 180</td>
<td>Environmental Plant Biology</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 185</td>
<td>Techniques in Light Microscopy</td>
<td>3</td>
</tr>
<tr>
<td>ENE,RES C100</td>
<td>Energy and Society</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 108A</td>
<td>Trees: Taxonomy, Growth, and Structures</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 108B</td>
<td>Environmental Change Genetics</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 152</td>
<td>Global Change Biology</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 162</td>
<td>Bioethics and Society</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 117</td>
<td>Medical Ethnobotany</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 117LF</td>
<td>Medical Ethnobotany Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 151</td>
<td>Plant Physiological Ecology</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 151L</td>
<td>Plant Physiological Ecology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 162</td>
<td>Ecological Genetics</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 102</td>
<td>Survey of the Principles of Biochemistry and Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI H196</td>
<td>Honors Research - Plant and Microbial Biology</td>
<td>2-4</td>
</tr>
</tbody>
</table>

or PLANTBI 199 Supervised Independent Study and Research

Plant Diversity and Evolution

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANTBI C110L</td>
<td>Biology of Fungi with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI 113</td>
<td>California Mushrooms</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI 120</td>
<td>Biology of Algae</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 120L</td>
<td>Laboratory for Biology of Algae</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 180</td>
<td>Environmental Plant Biology</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 185</td>
<td>Techniques in Light Microscopy</td>
<td>3</td>
</tr>
<tr>
<td>ESPM C105</td>
<td>Natural History Museums and Biodiversity Science</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 108A</td>
<td>Trees: Taxonomy, Growth, and Structures</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 108B</td>
<td>Environmental Change Genetics</td>
<td>3</td>
</tr>
<tr>
<td>ESPM C149</td>
<td>Molecular Ecology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 151L</td>
<td>Plant Physiological Ecology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 154</td>
<td>Plant Ecology</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI 154L</td>
<td>Plant Ecology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 157LF</td>
<td>Ecosystems of California</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 160</td>
<td>Evolution</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 161</td>
<td>Population and Evolutionary Genetics</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 162</td>
<td>Ecological Genetics</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 163</td>
<td>Molecular and Genomic Evolution</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 168L</td>
<td>Systematics of Vascular Plants with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 181L</td>
<td>Paleobotany - The 500-Million Year History of a Greening Planet</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI H196</td>
<td>Honors Research - Plant and Microbial Biology</td>
<td>2-4</td>
</tr>
</tbody>
</table>

or PLANTBI 199 Supervised Independent Study and Research

Plant Genetics, Genomics and Bioinformatics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO ENG 131</td>
<td>Introduction to Computational Molecular and Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG 144</td>
<td>Introduction to Protein Informatics</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG 144L</td>
<td>Protein Informatics Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>BIO ENG 143</td>
<td>Computational Methods in Biology</td>
<td>4</td>
</tr>
<tr>
<td>ESPM C105</td>
<td>Natural History Museums and Biodiversity Science</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 108B</td>
<td>Environmental Change Genetics</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 162</td>
<td>Ecological Genetics</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 163</td>
<td>Molecular and Genomic Evolution</td>
<td>3</td>
</tr>
<tr>
<td>MATH 127</td>
<td>Mathematical and Computational Methods in Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 102</td>
<td>Survey of the Principles of Biochemistry and Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 130</td>
<td>Cell and Systems Biology</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI C134</td>
<td>Chromosome Biology/Cytogenetics</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI C148</td>
<td>Microbial Genomics and Genetics</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI 165</td>
<td>Plant-Microbe Interactions</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI 170</td>
<td>Modern Applications of Plant Biotechnology</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 185</td>
<td>Techniques in Light Microscopy</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI H196</td>
<td>Honors Research - Plant and Microbial Biology</td>
<td>2-4</td>
</tr>
</tbody>
</table>
or PLANTBI 199 Supervised Independent Study and Research

Plant Microbe Interactions

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESFM C105</td>
<td>Natural History Museums and Biodiversity Science</td>
<td>3</td>
</tr>
<tr>
<td>ESFM 131</td>
<td>Soil Microbial Ecology</td>
<td>3</td>
</tr>
<tr>
<td>MCCCLBI 102</td>
<td>Survey of the Principles of Biochemistry and</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>PLANTBI C103</td>
<td>Bacterial Pathogenesis</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI C110L</td>
<td>Biology of Fungi with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI C112</td>
<td>General Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI C112L</td>
<td>General Microbiology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 113</td>
<td>California Mushrooms</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI C114</td>
<td>Introduction to Comparative Virology</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI C116</td>
<td>Microbial Diversity</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI 120</td>
<td>Biology of Algae</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 120L</td>
<td>Laboratory for Biology of Algae</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI C148</td>
<td>Microbial Genomics and Genetics</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI 165</td>
<td>Plant-Microbe Interactions</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI 180</td>
<td>Environmental Plant Biology</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 185</td>
<td>Techniques in Light Microscopy</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI H196</td>
<td>Honors Research - Plant and Microbial Biology</td>
<td>2-4</td>
</tr>
<tr>
<td>or PLANTBI 199</td>
<td>Supervised Independent Study and Research</td>
<td></td>
</tr>
<tr>
<td>PLANTBI C192</td>
<td>Molecular Approaches to Environmental Problem</td>
<td>2</td>
</tr>
</tbody>
</table>

Reading and Composition (http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/reading-composition-requirement)

In order to provide a solid foundation in reading, writing and critical thinking all majors in the College require two semesters of lower division work in composition. Students must complete a first-level reading and composition course by the end of their second semester and a second-level course by the end of their fourth semester.

Foreign Language (http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/foreign-language-requirement): **EEP Majors only**

The Foreign Language requirement is only required by Environmental Economics and Policy (EEP) majors. It may be satisfied by demonstrating proficiency in reading comprehension, writing, and conversation in a foreign language equivalent to the second semester college level, either by passing an exam or by completing approved course work.

Quantitative Reasoning (http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/quantitative-reasoning-requirement): **EEP Majors only**

The Quantitative Reasoning requirement is only required by Environmental Economics and Policy (EEP) majors. The requirement may be satisfied by exam or by taking an approved course.

Undergraduate Breadth

Undergraduate breadth provide Berkeley students with a rich and varied educational experience outside of their major program and many students complete their breadth courses in their first two years. Breadth courses are built into CNR major requirements and each major requires a different number of breadth courses and categories. The EEP major is the only CNR major that requires the entire 7 course breadth. Refer to the major snapshots on each CNR major page (https://nature.berkeley.edu/advising/majors-minors) for for additional information.

High School Exam Credit

Units Requirements

Students must complete at least 120 semester units of courses subject to certain guidelines:

- At least 36 units must be upper division courses, including a minimum of 15 units of upper division courses in the College of Natural Resources.
- A maximum of 16 units of Special Studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed towards the 120 units; a maximum of four is allowed in a given semester.
- A maximum of 4 units of Physical Education from any school attended will count towards the 120 units.
- Students may receive unit credit for courses graded P (including P/ NP units taken through EAP) up to a limit of one-third of the total units taken and passed on the Berkeley campus at the time of graduation.

Semester Unit Minimum

All CNR students must enroll in at least 13 units each fall and spring semester.

Semester Unit Maximum

To request permission to take more than 19.5 units in a semester, please see the major adviser.

Semester Limit

Students admitted as freshmen must graduate within 8 fall/spring semesters at UC Berkeley. Students admitted as transfer students must graduate within 4 fall/spring semesters at UC Berkeley. Students who go on EAP and UCDC can petition for additional semesters. Summer session, UC Extension and non-UC study abroad programs do not count towards this semester limit. Students approved for double majors or simultaneous degrees in two colleges may be granted an additional semester. CNR does not limit the number of total units a student can accrue.

Senior Residence Requirement

After the term in which you achieve and exceed 90 units (senior status), you must complete at least 24 of the remaining 30 units in residence at the College of Natural Resources over at least 2 semesters. To count as residence, a semester must consist of at least 6 passed units taken while the student is a member of CNR. At least one of the two terms must be a fall or spring semester. Senior residence terms do not need to be completed consecutively. All courses offered on campus for the fall, spring, and summer terms by Berkeley departments and programs and all Berkeley online (‘W’) courses count. Inter-campus Visitor, Education Abroad Program, UC Berkeley Washington Program, and UC Berkeley Extension units do not count toward this requirement.
Students may use Summer Session to satisfy one semester of the Senior Residence Requirement, provided that four units of coursework are completed.

Modified Senior Residence Requirement

Participants in a fall, spring or summer UC Education Abroad Program (UCEAP), Berkeley Summer Abroad, or the UC Berkeley Washington Program may meet a modified Senior Residence Requirement by completing 24 of their final 60 semester units in residence (excluding UCEAP). At least 12 of these 24 units must be completed after senior status is reached. International travel study programs sponsored by Summer Sessions and education abroad programs offered outside of the UC system do not qualify for modified senior residence.

Most students automatically satisfy the residence requirement by attending classes here for four years. In general, there is no need to be concerned about this requirement, unless students go abroad for a semester or year or want to take courses at another institution or through University Extension during their senior year. In these cases, students should make an appointment to see an adviser to determine how they can meet the Senior Residence Requirement.

Grade Requirements

- A 2.0 UC GPA is required for graduation.
- A 2.0 average in all upper division courses required of the major program is required for graduation.
- A grade of at least C- is required in all courses for the major.

Learning Goals for the Major

1. Training in the basic sciences (i.e., math, physics, chemistry, biology, and statistics).
2. Training in the fundamental aspects of plant morphology, plant molecular genetics, plant cell biology, and the physiology and biochemistry of plants.
3. Training in a wider variety of plant and microbial courses, which may be selected by the student to enhance their knowledge in areas of their specific interest.
4. Training in the essential laboratory techniques associated with genetics and plant biology.
5. Training students to read and evaluate primary literature in the field of plant biology.
6. Training students to have a high level of competency in both oral and written presentation of scientific material.
7. Training students to carry out research projects independently (this includes critical thinking and the development of a hypothesis to test, designing experiments to specifically test their hypothesis, and other aspects of the scientific method including data analysis and interpretation, as well as oral and written presentation of their research).
8. Training students to appreciate the relationship of their major to the community at large.

In the College of Natural Resources, we provide holistic, individual advising services to prospective and current students who are pursuing major and minors in our college. We assist with a range of topics including course selection, academic decision-making, achieving personal and academic goals, and maximizing the Berkeley experience.

If you are looking to explore your options, or you are ready to declare a major, double major, or minor, contact the undergraduate advisor for your intended major or minor. Visit our website (https://nature.berkeley.edu/advising/meet-cnr-advisors) to explore all of our advising services.

Undergraduate Adviser, Genetics and Plant Biology

Patricia Helyer
phelyer@berkeley.edu
260 Mulford Hall
510-643-9479

Genetics and Plant Biology

Expand all course descriptions [+]
Collapse all course descriptions [-]

PLANTBI 10 Plants, Agriculture, and Society 2 Units

Terms offered: Fall 2018, Fall 2017, Fall 2016

Changing patterns of agriculture in relation to population growth, the biology and social impact of plant disease, genetic engineering of plants: a thousand years of crop improvement and modern biotechnology, interactions between plants and the environment, and effects of human industrial and agricultural activity on plant ecosystems. Knowledge of the physical sciences is neither required nor assumed. Plants, Agriculture, and Society: Read More [+]

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details

Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Staskawicz, David Zilberman

PLANTBI 11 Fungi, History, and Society 3 Units

Terms offered: Spring 2019, Spring 2018, Spring 2016

Fungi have interacted with humans in both positive and negative ways throughout history. These interactions have included production of foods, medicines, fuels, plant and animal diseases, decay, allergies, and mind-altering drugs. Fungi, History, and Society: Read Less [-]

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Bruns, Taylor
PLANTBI 20 Introduction to the Plant Sciences at Berkeley 1 Unit
Terms offered: Fall 2018, Fall 2016, Fall 2015
This course will include discussions on the academic path (courses) needed for the Genetics and Plant Biology major; an introduction to resources and facilities for studies of the plant sciences at Berkeley, such as the University Herbarium and the Botanical Garden; an exploration of plant science related careers, including presentations from guest speakers who work in organic farming, government, and Cooperative Extension; talks by faculty about their current research, and information about how to do research in a lab.
Introduction to the Plant Sciences at Berkeley: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Alternative to final exam.
Instructors: Feldman, Staskawicz

Introduction to the Plant Sciences at Berkeley: Read Less [-]

PLANTBI 22 Microbes Make the World Go Around 2 Units
Terms offered: Fall 2016, Fall 2014, Fall 2013
Although often unseen, microbes are everywhere! This course covers the role that microbes, including archaea, bacteria, protists and fungi, play in terrestrial, marine and extreme environments and their effect on the geochemistry of the earth. In addition, we will explore the profound effects of microbes on human and plant health and how microbes have changed the course of human history.
Microbes Make the World Go Around: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week
Summer:
6 weeks - 5 hours of lecture per week
8 weeks - 4 hours of lecture per week
10 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Glass

Microbes Make the World Go Around: Read Less [-]

PLANTBI 24 Freshman Seminar 1 Unit
Terms offered: Fall 2018, Fall 2017, Fall 2016
Reading and discussion with Plant and Microbial Biology faculty on current research and topics in plant and microbial biology. Topics which may be discussed include microbial biology, plant genetics, plant development, plant pathology, agricultural biotechnology, and genetic engineering. Ideal for students who are considering a major in the Department of Plant and Microbial Biology. Enrollment is limited to 20 freshmen.

Freshman Seminar: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week

Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam required.

Instructor: Glass

Freshman Seminar: Read Less [-]

PLANTBI 39E Freshman/Sophomore Seminar 2 - 4 Units
Terms offered: Spring 2012
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.

Freshman/Sophomore Seminar: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 2-4 hours of seminar per week

Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.
Instructor: Glass

Freshman/Sophomore Seminar: Read Less [-]
PLANTBI 40 The (Secret) Life of Plants 3 Units
Terms offered: Spring 2019, Spring 2018, Spring 2017
Covers contemporary topics in plant biology. Examines how plants grow, reproduce, and respond to the environment (e.g., to light) in ways distinct from animals. Presents basic principles of genetics, cell, and molecular biology. Basics of genetic engineering and biotechnology reveal how they are used to modify plants, and these socially relevant issues are assessed. Includes visit to modern plant biology research laboratory, and aspects of plant disease and diversity. Knowledge of the physical sciences neither required nor assumed.
The (Secret) Life of Plants: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Zambryski
The (Secret) Life of Plants: Read Less [-]

PLANTBI 84 Sophomore Seminar 1 or 2 Units
Terms offered: Spring 2011, Spring 2010, Spring 2009
Sophomore seminars are small interactive courses offered by faculty members in departments all across the campus. Sophomore seminars offer opportunity for close, regular intellectual contact between faculty members and students in the crucial second year. The topics vary from department to department and semester to semester. Enrollment limited to 15 sophomores.
Sophomore Seminar: Read More [+]
Rules & Requirements
Prerequisites: At discretion of instructor
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week
Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam required.
Instructor: Matsui
Also listed as: INTEGBI C96/MCELLBI C96
Sophomore Seminar: Read Less [-]

PLANTBI C96 Studying the Biological Sciences 1 Unit
Terms offered: Fall 2018, Fall 2017, Fall 2016
Freshmen will be introduced to the "culture" of the biological sciences, along with an in-depth orientation to the academic life and the culture of the university as they relate to majoring in biology. Students will learn concepts, skills, and information that they can use in their major course, and as future science professionals. Restricted to freshmen in the biology scholars program.
Studying the Biological Sciences: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week
Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam required.
Instructor: Matsui
Also listed as: INTEGBI C96/MCELLBI C96
Studying the Biological Sciences: Read Less [-]

PLANTBI 98 Directed Group Study 1 - 3 Units
Terms offered: Fall 2015, Fall 2014, Spring 2014
Lectures and small group discussions focusing on topics of interest, varying from semester to semester.
Directed Group Study: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of directed group study per week
Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Study: Read Less [-]
PLANTBI 99 Supervised Independent Study and Research 1 - 4 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
Lower division independent study and research intended for the academically superior student. Enrollment only with prior approval of faculty advisor directing the research.
Supervised Independent Study and Research: Read More [+]
Rules & Requirements
Prerequisites: GPA of 3.4 or higher; lower division status
Credit Restrictions: Enrollment is restricted; see the section on Academic Policies-Course Number Guide in the Berkeley Guide.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of independent study per week
Summer: 6 weeks - 2.5-8 hours of independent study per week
8 weeks - 1.5-6 hours of independent study per week
10 weeks - 1.5-4.5 hours of independent study per week
Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Supervised Independent Study and Research: Read Less [-]

PLANTBI C103 Bacterial Pathogenesis 3 Units
Terms offered: Spring 2019, Spring 2018, Spring 2017
This course for upper division and graduate students will explore the molecular and cellular basis of microbial pathogenesis. The course will focus on model microbial systems which illustrate mechanisms of pathogenesis. Most of the emphasis will be on bacterial pathogens of mammals, but there will be some discussion of viral and protozoan pathogens. There will be an emphasis on experimental approaches. The course will also include some aspects of bacterial genetics and physiology, immune response to infection, and the cell biology of host-parasite interactions.
Bacterial Pathogenesis: Read More [+]
Rules & Requirements
Prerequisites: 100, 102 or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Portnoy
Also listed as: MCELLBI C103/PB HLTH C102
Bacterial Pathogenesis: Read Less [-]

PLANTBI 101L Experimental Plant Biology Laboratory 3 Units
Terms offered: Spring 2019, Spring 2017, Spring 2016
Students will perform state-of-the-art research to address an important question in modern plant biology. The experimental progression exposes students to a variety of modern molecular approaches and techniques. Experimental design, data acquisition, and analysis of the student's real experimental data is emphasized. Research results will be presented in written and oral formats similar to those used in research laboratories. Experimental Plant Biology Laboratory: Read More [+]
Rules & Requirements
Prerequisites: Biology 1A-1B; Plant and Microbial Biology 135, 150, and 160 (may be taken concurrently)
Hours & Format
Fall and/or spring: 15 weeks - 6 hours of laboratory and 1 hour of discussion per week
Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Wildermuth
Experimental Plant Biology Laboratory: Read Less [-]

PLANTBI 104L Discovery-Based Research in Microbiology 2 Units
Terms offered: Summer 2019 6 Week Session, Summer 2018 First 6 Week Session, Summer 2010 10 Week Session
An introduction to microbiology research in which students generate gene knockouts in Caulobacter and analyze the mutant phenotypes. Each student will disrupt one gene of known function and one gene of unknown function. Students will attend lectures focusing on the techniques to be employed and perform experiments under supervision. This course may be taken by students with no prior laboratory experience to expose them to discovery-oriented research. Discovery-Based Research in Microbiology: Read More [+]
Hours & Format
Summer: 6 weeks - 3 hours of lecture and 7.5 hours of laboratory per week
10 weeks - 1.5 hours of lecture and 4.5 hours of laboratory per week
Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Ryan
Discovery-Based Research in Microbiology: Read Less [-]
PLANTBI C107L Principles of Plant Morphology with Laboratory 4 Units
Terms offered: Spring 2019, Fall 2017, Fall 2016
An analysis of the structural diversity of land plants with emphasis on the developmental mechanisms responsible for this variation in morphology and the significance of this diversity in relation to adaptation and evolution.

Principles of Plant Morphology with Laboratory: Read More [+]

Rules & Requirements

Prerequisites: Biology 1A-1B

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of lecture, 1 hour of discussion, and 4 hours of laboratory per week

Additional Details

Subject/Course Level: Plant and Microbial Biology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Specht

Also listed as: INTEGBI C107L

Principles of Plant Morphology with Laboratory: Read Less [-]

PLANTBI C109 Evolution and Ecology of Development 3 Units
Terms offered: Fall 2018, Fall 2016
From the seahorse’s body to the venus flytrap’s jaws to the human brain, nature abounds with amazing adaptations. This interdisciplinary course explores how and why such biodiversity evolves as well as what limits diversity. Lectures and case studies will focus on core concepts, recent advances, and integrative approaches, placing special emphasis on the interplay between gene regulatory networks, the environment, and population genetics.

Evolution and Ecology of Development: Read More [+]

Objectives Outcomes

Student Learning Outcomes:
• Explain how an interdisciplinary approach involving genetics, development, evolutionary biology, and ecology can be used to understand the processes that generate patterns of biodiversity.
• List and describe major questions, findings, and experimental approaches in the field of ecological and evolutionary developmental biology.
• Discuss biological research using specialized terminology and defend your opinions.
• Critically evaluate and interpret the primary scientific literature.
• Combine factual material with deductive reasoning to propose hypotheses and future research directions

Rules & Requirements

Prerequisites: BIOLOGY 1A and 1B

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Plant and Microbial Biology/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Instructor: Blackman

Also listed as: INTEGBI C109

Evolution and Ecology of Development: Read Less [-]
PLANTBI C110L Biology of Fungi with Laboratory 4 Units
Terms offered: Fall 2016, Fall 2014
Selected aspects of fungi: their structure, reproduction, physiology, ecology, genetics and evolution; their role in plant disease, human welfare, and industry. Offered even fall semesters.
Biology of Fungi with Laboratory: Read More [+]

Rules & Requirements
Prerequisites: Biology 1B

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 6 hours of laboratory per week

Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Bruns, Taylor
Also listed as: INTEGBI C110L

Biology of Fungi with Laboratory: Read Less [-]

PLANTBI C112 General Microbiology 4 Units
Terms offered: Summer 2019 10 Week Session, Fall 2018, Summer 2018 10 Week Session
This course will explore the molecular bases for physiological and biochemical diversity among members of the two major domains, Bacteria and Archaea. The ecological significance and evolutionary origins of this diversity will be discussed. Molecular, genetic, and structure-function analyses of microbial cell cycles, adaptive responses, metabolic capability, and macromolecular syntheses will be emphasized.

General Microbiology: Read More [+]

Rules & Requirements
Prerequisites: Biology 1A and 1B

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 10 weeks - 5 hours of lecture and 1.5 hours of discussion per week

Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Ryan
Also listed as: MCELLBI C112

General Microbiology: Read Less [-]

PLANTBI C112L General Microbiology Laboratory 2 Units
Terms offered: Summer 2019 10 Week Session, Spring 2019, Fall 2018
Experimental techniques of microbiology designed to accompany the lecture in C112 and C148. The primary emphasis in the laboratory will be on the cultivation and physiological and genetic characterization of bacteria. Laboratory exercises will include the observation, enrichment, and isolation of bacteria from selected environments.

General Microbiology Laboratory: Read More [+]

Rules & Requirements
Prerequisites: C112 (may be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 4 hours of laboratory and 1 hour of discussion per week
Summer: 10 weeks - 6 hours of laboratory and 1.5 hours of discussion per week

Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructors: Komeili, Traxler
Also listed as: MCELLBI C112L

General Microbiology Laboratory: Read Less [-]

PLANTBI 113 California Mushrooms 3 Units
Terms offered: Fall 2017, Fall 2015, Fall 2013
This is a hands-on class in identification of macro fungi. Emphasis will be on laboratory work with fresh and dried fungi. Short lectures at the beginning of labs focus on mushroom systematic, collection techniques, and identification. Three weekend field trips are required in addition to the weekly laboratory. Previous course experience with fungi is recommended, but not required. Grades are based on tests and a collection.

California Mushrooms: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of laboratory and 1 hour of discussion per week

Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Bruns
Also listed as: MCELLBI C112

California Mushrooms: Read Less [-]
PLANTBI C114 Introduction to Comparative Virology 4 Units
Terms offered: Spring 2019, Spring 2018, Spring 2017
This course will provide a comparative overview of virus life cycles and strategies viruses use to infect and replicate in hosts. We will discuss virus structure and classification and the molecular basis of viral reproduction, evolution, assembly, and virus-host interactions. Common features used during virus replication and host cellular responses to infection will be covered. Topics also included are common and emerging virus diseases, their control, and factors affecting their spread.
Introduction to Comparative Virology: Read More [+]

Rules & Requirements
Prerequisites: Introductory chemistry (Chemistry 1A or 3A-3B or equivalent) and introductory biology (Biology 1A, 1AL, and 1B or equivalent) and general biochemistry (Molecular and Cell Biology C100A or equivalent--preferably completed but may be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1.5 hours of discussion per week

Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Glaunsinger
Also listed as: ESPM C138/MCELLBI C114

PLANTBI C116 Microbial Diversity 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
This course for upper-division and graduate students will broadly survey myriad types of microbial organisms, both procaryote and eucaryote, using a phylogenetic framework to organize the concept of "biodiversity." Emphasis will be on the evolutionary development of the many biochemical themes, how they mold our biosphere, and the organisms that affect the global biochemistry. Molecular mechanisms that occur in different lineages will be compared and contrasted to illustrate fundamental biological strategies. Graduate students additionally should enroll in C216, Microbial Diversity Workshop.
Microbial Diversity: Read More [+]

Rules & Requirements
Prerequisites: Upper-division standing. C112 or consent of instructor and organic chemistry (may be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Coates
Formerly known as: 116
Also listed as: MCELLBI C116

PLANTBI 120 Biology of Algae 2 Units
Terms offered: Spring 2018, Spring 2016, Spring 2014
General biology of freshwater and marine algae, highlighting current research and integrating phylogeny, ecology, physiology, genetics, and molecular biology.
Biology of Algae: Read More [+]

Rules & Requirements
Prerequisites: Biology 1A-1B. Concurrent registration in 120L recommended

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Niyogi
Biology of Algae: Read Less [-]
PLANTBI 120L Laboratory for Biology of Algae 2 Units
Terms offered: Spring 2018, Spring 2016, Spring 2014
Laboratories include study of representative types, identification of specimens collected during several field trips, and experiments on development, physiology, and molecular genetics.
Laboratory for Biology of Algae: Read More [+]
Rules & Requirements
Prerequisites: Biology 1A-1B. Must be taken concurrently with 120
Hours & Format
Fall and/or spring: 15 weeks - 4 hours of laboratory per week
Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructor: Niyogi
Laboratory for Biology of Algae: Read Less [-]

PLANTBI 122 Bioenergy 2 Units
Terms offered: Spring 2017, Spring 2016, Spring 2015
Offers an assessment of global energy supply and demand, addresses the chemistry of climate change, examines the response of plants and microbes to changes in the environment, and emphasizes the role of biology and photosynthesis in offering solutions to related energy and societal problems. Bioenergy is examined from the point-of-view of potential biofuels, including aspects of the biological generation of hydrogen, hydrocarbons, fatty acids, lipids, and bio-oils, polymers and related materials.
Bioenergy: Read More [+]
Rules & Requirements
Prerequisites: Biology 1A and 1B; Chemistry 3B
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week
Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Melis
Bioenergy: Read Less [-]

PLANTBI C124 The Berkeley Lectures on Energy: Energy from Biomass 3 Units
Terms offered: Fall 2015, Fall 2014, Fall 2013
After an introduction to the different aspects of our global energy consumption, the course will focus on the role of biomass. The course will illustrate how the global scale of energy guides the biomass research. Emphasis will be placed on the integration of the biological aspects (crop selection, harvesting, storage and distribution, and chemical composition of biomass) with the chemical aspects to convert biomass to energy. The course aims to engage students in state-of-the-art research.
The Berkeley Lectures on Energy: Energy from Biomass: Read More [+]
Rules & Requirements
Prerequisites: Chemistry 1B or Chemistry 4B, Mathematics 1B, Biology 1A
Repeat rules: Course may be repeated for credit under special circumstances: Repeatable when topic changes with consent of instructor.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Bell, Blanch, Clark, Smit, C. Somerville
Also listed as: BIO ENG C181/CHEM C138/CHM ENG C195A
The Berkeley Lectures on Energy: Energy from Biomass: Read Less [-]

PLANTBI C134 Chromosome Biology/ Cytogenetics 3 Units
Terms offered: Spring 2019, Spring 2018, Spring 2016
Survey of behavior, structure, and function of chromosomes with emphasis on behavior in model organisms. Topics include mitosis, meiosis, chromosome aberrations, genome function, dosage compensation, transposons, repetitive DNA, and modern cytological imaging.
Chromosome Biology/Cytogenetics: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Dernburg, Karpen
Also listed as: MCELLBI C134
Chromosome Biology/Cytogenetics: Read Less [-]
PLANTBI 135 Physiology and Biochemistry of Plants 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
A study of physiological and biochemical processes in higher plants, including water relations, ion transport, and hormone physiology; photosynthesis (light utilization and carbon assimilation), nitrogen and sulfur metabolism, and plant-specific biosynthetic pathways.

PLANTBI C148 Microbial Genomics and Genetics 4 Units
Terms offered: Spring 2019, Spring 2018, Spring 2017
Course emphasizes bacterial and archaeal genetics and comparative genomics. Genetics and genomic methods used to dissect metabolic and development processes in bacteria, archaea, and selected microbial eukaryotes. Genetic mechanisms integrated with genomic information to address integration and diversity of microbial processes. Introduction to the use of computational tools for a comparative analysis of microbial genomes and determining relationships among bacteria, archaea, and microbial eukaryotes.

PLANTBI 150 Plant Cell Biology 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
An introduction to the structure, dynamics, and function of plant cells: organelle structure and development; intracellular trafficking of small and macromolecules; cellular signaling; cell division and specialization.

PLANTBI 160 Plant Molecular Genetics 3 Units
Terms offered: Spring 2019, Spring 2018, Spring 2017
A consideration of plant genetics and molecular biology. Topics include principles of genomics and gene functional analysis; regulation of gene expression in response to environmental and developmental stimuli; intercellular and intracellular signaling pathways; and the molecular and genetic basis for the exceptional cellular and developmental strategies adopted by plants.
PLANTBI 165 Plant-Microbe Interactions 3 Units
Terms offered: Spring 2019, Spring 2018, Spring 2017
This course will cover topics in molecular plant-microbe interactions ranging from how microbes cause disease to how plants defend themselves. A second goal of the course is to engage students in state-of-the-art research in the area of plant-microbe interactions.
Prerequisites: Biology 1A-1B, Statistics 2 or 20 or 131A or Public Health 142. Completion of an upper division plant biology and an upper division microbiology course is recommended

PLANTBI 170 Modern Applications of Plant Biotechnology 2 Units
Terms offered: Spring 2013, Spring 2012, Spring 2010
This course is designed to introduce students to the principles and applications of modern plant biotechnology. Basic concepts of modern agriculture will be reviewed in light of emerging biotechnology applications. Emphasis will be placed on understanding the tools and strategies involved in optimizing plant productivity.

PLANTBI 177 Communicating Quantitative Information 2 Units
Terms offered: Not yet offered
This course will cover several aspects of communicating quantitative information, with a primary focus on visualizations for publications, presentations, and posters. Other topics include sharing of data and analyses, such as new publication models and interactive notebooks, as well as lifecycle data management and publication. Primary discussion will be on conceptual issues, and students will be expected to use various systems and resources as self-directed homestudy.

PLANTBI 180 Environmental Plant Biology 2 Units
Terms offered: Fall 2017, Fall 2015, Fall 2013
An integrated and multidisciplinary approach to the study of interactions between plants and the environment. Introduces physical parameters in the global and micro-environment that affect plant function; and molecular, cellular, and developmental aspects of plant response to suboptimal/adverse conditions. Underlying biochemistry, physiology, and molecular biology of plant adaptation and acclimation mechanisms. Examines consequences of industrial activity on plant growth and productivity.

Rules & Requirements
Prerequisites:

PLANTBI 200 Advanced Plant Biotechnology 2 Units
Terms offered: Not yet offered
This course will cover advanced topics in plant biotechnology, including genomics, gene editing, genome-wide analysis, and advanced techniques in plant biotechnology. Students will gain hands-on experience in manipulating plant genomes and developing new crop varieties.

Rules & Requirements
Prerequisites:

PLANTBI 220 Plant Physiology 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover the physiological processes of plants, from cellular and molecular to whole plant levels. Emphasis will be placed on understanding the regulation of plant growth and development.

Rules & Requirements
Prerequisites:

PLANTBI 240 Molecular and Developmental Plant Biology 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover the molecular and developmental aspects of plant biology, including gene expression, signal transduction, and plant development.

Rules & Requirements
Prerequisites:

PLANTBI 260 Plant Molecular Biology 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover the molecular biology of plants, including gene expression, protein synthesis, and cellular processes.

Rules & Requirements
Prerequisites:

PLANTBI 280 Plant Nutrition 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover the nutrition of plants, including nutrient uptake, transport, and metabolism.

Rules & Requirements
Prerequisites:

PLANTBI 300 Advanced Research in Plant Biology 1-3 Units
Terms offered: Not yet offered
This course will provide advanced research opportunities in the field of plant biology. Students will conduct research under the guidance of a faculty member in the Department of Plant Biology.

Rules & Requirements
Prerequisites:

PLANTBI 320 Plant Ecology 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover the ecological principles and processes of plants, including population dynamics, community structure, and ecosystem function.

Rules & Requirements
Prerequisites:

PLANTBI 340 Advanced Molecular Genetics 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover advanced topics in molecular genetics, including gene mapping, gene regulation, and genetic analysis.

Rules & Requirements
Prerequisites:

PLANTBI 360 Plant Biochemistry 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover the biochemistry of plants, including metabolism, energy production, and nutrient utilization.

Rules & Requirements
Prerequisites:

PLANTBI 380 Advanced Plant Breeding and Genetics 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover advanced topics in plant breeding and genetics, including genetic diversity, breeding programs, and genetic analysis.

Rules & Requirements
Prerequisites:

PLANTBI 400 Advanced Topics in Plant Biology 1-3 Units
Terms offered: Not yet offered
This course will cover advanced topics in the field of plant biology, selected by the instructor.

Rules & Requirements
Prerequisites:

PLANTBI 420 Plant Cell Biology 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover the cell biology of plants, including cell structure, cell division, and cell differentiation.

Rules & Requirements
Prerequisites:

PLANTBI 440 Molecular and Developmental Plant Biology 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover the molecular and developmental aspects of plant biology, including gene expression, signal transduction, and plant development.

Rules & Requirements
Prerequisites:

PLANTBI 460 Plant Nutrition 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover the nutrition of plants, including nutrient uptake, transport, and metabolism.

Rules & Requirements
Prerequisites:

PLANTBI 480 Advanced Topics in Plant Physiology 1-3 Units
Terms offered: Not yet offered
This course will cover advanced topics in plant physiology, selected by the instructor.

Rules & Requirements
Prerequisites:

PLANTBI 500 Research Seminar 1-3 Units
Terms offered: Fall 2011, Fall 2010
This course is a research seminar for graduate students. Students will present their research and engage in discussions with other students and faculty.

Rules & Requirements
Prerequisites:

PLANTBI 520 Advanced Plant Cell Biology 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover advanced topics in plant cell biology, including cell structure, cell division, and cell differentiation.

Rules & Requirements
Prerequisites:

PLANTBI 540 Advanced Molecular Genetics 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover advanced topics in molecular genetics, including gene mapping, gene regulation, and genetic analysis.

Rules & Requirements
Prerequisites:

PLANTBI 560 Advanced Plant Biochemistry 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover advanced topics in plant biochemistry, including metabolism, energy production, and nutrient utilization.

Rules & Requirements
Prerequisites:

PLANTBI 580 Advanced Plant Breeding and Genetics 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover advanced topics in plant breeding and genetics, including genetic diversity, breeding programs, and genetic analysis.

Rules & Requirements
Prerequisites:

PLANTBI 600 Independent Research 1-3 Units
Terms offered: Not yet offered
This course is an independent research project for advanced graduate students in plant biology.

Rules & Requirements
Prerequisites:

PLANTBI 620 Advanced Plant Cell Biology 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover advanced topics in plant cell biology, including cell structure, cell division, and cell differentiation.

Rules & Requirements
Prerequisites:

PLANTBI 640 Advanced Molecular Genetics 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover advanced topics in molecular genetics, including gene mapping, gene regulation, and genetic analysis.

Rules & Requirements
Prerequisites:

PLANTBI 660 Advanced Plant Biochemistry 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover advanced topics in plant biochemistry, including metabolism, energy production, and nutrient utilization.

Rules & Requirements
Prerequisites:

PLANTBI 680 Advanced Plant Breeding and Genetics 3 Units
Terms offered: Spring 2011, Spring 2010
This course will cover advanced topics in plant breeding and genetics, including genetic diversity, breeding programs, and genetic analysis.

Rules & Requirements
Prerequisites:
PLANTBI 185 Techniques in Light Microscopy 3 Units
Terms offered: Spring 2019, Fall 2017, Fall 2016
The course will be a detailed overview of the practice of light microscopy as applied to scientific investigation. The emphasis of the course will be on the correct and appropriate use of the light microscope for biological scientists; however students of other disciplines are welcome. The course will cover optical microscope theory, microscope components and mechanics, and optical techniques including detailed descriptions, demonstrations, and use of all the modern light microscope contrast methods. Students will receive hands-on experience in all microscope and digital imaging techniques via direct instruction and use of instrumentation in the College of Natural Resources Biological Imaging Facility.

Plants in Light Microscopy: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Ruzin

Techniques in Light Microscopy: Read Less [-]

PLANTBI 190 Special Topics in Plant and Microbial Biology 1 - 4 Units
Terms offered: Summer 2014 Second 6 Week Session, Spring 2012, Spring 2011
This class is designed to develop skills in critical analysis of specific plant and/or microbial biology issues. Topics may vary from semester to semester.
Special Topics in Plant and Microbial Biology: Read More [+]

Rules & Requirements
Prerequisites: Upper division standing or consent of instructor
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of lecture per week
Summer:
6 weeks - 3-10 hours of lecture per week
8 weeks - 2-8 hours of lecture per week
10 weeks - 1.5-6 hours of lecture per week

Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Special Topics in Plant and Microbial Biology: Read Less [-]

PLANTBI C192 Molecular Approaches to Environmental Problem Solving 2 Units
Terms offered: Spring 2019, Fall 2018, Spring 2018
Seminar in which students consider how modern biotechnological approaches, including recombinant DNA methods, can be used to recognize and solve problems in the area of conservation, habitat and endangered species preservation, agriculture and environmental pollution. Students will also develop and present case studies of environmental problems solving using modern molecular methods.
Molecular Approaches to Environmental Problem Solving: Read More [+]

Rules & Requirements
Prerequisites: Junior or senior standing in the Genetics and Plant Biology or Microbial Biology major, or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Lindow
Formerly known as: Environ Sci, Policy, and Management 192
Also listed as: ESPM C192

Molecular Approaches to Environmental Problem Solving: Read Less [-]

PLANTBI H196 Honors Research - Plant and Microbial Biology 4 Units
Terms offered: Fall 2016, Spring 2016, Fall 2015
Supervised independent honors research specific to aspects of the plant and microbial biology major, followed by an oral presentation and a written report. Honors students must complete two semesters of research.
Honors Research - Plant and Microbial Biology: Read More [+]

Rules & Requirements
Prerequisites: Upper division standing and minimum GPA. See College of Natural Resources Honors website for current minimum GPA. http://nature.berkeley.edu/site/honors_program.php
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer: 8 weeks - 1.5-7.5 hours of independent study per week

Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.

Honors Research - Plant and Microbial Biology: Read Less [-]
PLANTBI 198 Directed Group Studies in Plant Biology 1 - 3 Units
Terms offered: Fall 2015, Fall 2014, Spring 2014
Group studies of selected topics.
Directed Group Studies in Plant Biology: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of directed group study per week
Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Studies in Plant Biology: Read Less [-]

PLANTBI 199 Supervised Independent Study and Research 1 - 4 Units
Terms offered: Fall 2017, Fall 2016, Spring 2016
Enrollment restrictions apply; see the Introduction to Courses and Curricula section of this catalog.
Supervised Independent Study and Research: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor; overall GPA of 3.0
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Summer:
6 weeks - 1-3 hours of independent study per week
8 weeks - 1-3 hours of independent study per week
Additional Details
Subject/Course Level: Plant and Microbial Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Supervised Independent Study and Research: Read Less [-]