Molecular and Cell Biology: Genetics, Genomics, and Development

Bachelor of Arts (BA)

The major in Molecular and Cell Biology: Genetics, Genomics, & Development (GG&D) emphasis focuses on understanding how sequence variation results in the amazing spectrum of life that surrounds us and how genetic and molecular tools can be used to reveal the role of genes in various biological processes. The undergraduate tracks within this emphasis are ideal for students interested in medical, research, and teaching careers.

This major program has two tracks:

1. Genetics, Genomics & Development
2. Developmental Genetics

For course information regarding the requirements for each track, please see the Major Requirements tab on this page.

Minor Program

There is no minor program in Molecular and Cell Biology.

Other Molecular and Cell Biology Majors (Emphases)

Biochemistry and Molecular Biology (http://guide.berkeley.edu/undergraduate/degree-programs/molecular-cell-biology-biochemistry) (BMB)

Cell and Developmental Biology (http://guide.berkeley.edu/undergraduate/degree-programs/molecular-cell-biology-development) (CDB)

Immunology & Pathogenesis (http://guide.berkeley.edu/undergraduate/degree-programs/molecular-cell-biology-immunology) (IMP)

Neurobiology (http://guide.berkeley.edu/undergraduate/degree-programs/molecular-cell-biology-neurobiology) (NEU)

Declaring the Major

MCB is not an impacted major. Therefore, the program will accept any interested student who meets the minimum course and GPA requirements and is realistically able to complete the major requirements during the student's time at UC Berkeley.

In order to declare the MCB major, students must have completed or be enrolled in BIOLOGY 1A/BIOLOGY 1AL (C or better on first midterm) and CHEM 3B (past the early drop deadline), have at least a 2.0 overall GPA, a 2.0 GPA in the courses taken for the major, a 2.0 GPA in any upper division courses taken for the major, and know which emphasis they will declare. Intended MCB students are not required to have completed the math or physics requirement at the time of declaration (though the requirement must be met in order to graduate).

To start the major declaration process, students must fill out the MCB major declaration form online (https://mcb.berkeley.edu/internal/uao/declaration).

Once the declaration form has been processed, students will receive an email with instructions to come in to meet with a staff advisor. Students should bring a printed copy of their Academic Summary from CalCentral to the Undergraduate Advising Office (3060 Valley Life Sciences Building) to discuss their academic plan. When signing in, students should inform the intake adviser that they declared online. Please note that major declarations are limited during the first week of class and the first week of course enrollment Phase 1. Any restrictions will be advertised on the MCB Undergraduate homepage (https://mcb.berkeley.edu/undergrad) and in the weekly MCB-News email.

General Guidelines

In addition to the University, campus, and college requirements, listed on the College Requirements tab, students must fulfill requirements specific to their major program and declared emphasis.

1. All courses taken to fulfill the major requirements below must be taken for letter graded credit.
2. No more than one upper division course may be used to simultaneously fulfill requirements for a student's major and minor programs. Double majors and simultaneous degrees are limited to a two course overlap.
3. Students must maintain a minimum grade point average (GPA) of at least a 2.0 GPA overall, a 2.0 GPA in the required major coursework (lower and upper division), and a 2.0 GPA in the upper division coursework for the major.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

Lower Division Requirements: All Tracks

Math 10A/10B is the preferred math sequence, but the MCB major will also accept Math 1A/1B

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1A</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1B</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1A</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>& 1AL</td>
<td>General Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>Chemical Structure and Reactivity</td>
<td>5</td>
</tr>
<tr>
<td>& 3AL</td>
<td>Organic Chemistry Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 3B</td>
<td>Chemical Structure and Reactivity</td>
<td>5</td>
</tr>
<tr>
<td>& 3BL</td>
<td>Organic Chemistry Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>BIOLOGY 1A & 1AL</td>
<td>General Biology Lecture and General Biology Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>BIOLOGY 1B</td>
<td>General Biology Lecture and Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 8A</td>
<td>Introductory Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 8B</td>
<td>Introductory Physics</td>
<td>4</td>
</tr>
</tbody>
</table>

CHEM 4A (http://guide.berkeley.edu/search/?P=CHEM%204A) may be taken place of CHEM 1A (http://guide.berkeley.edu/search/?P=CHEM%201A) and CHEM 1AL (http://guide.berkeley.edu/search/?P=CHEM%201AL).
2 CHEM 12A and CHEM 12B may be taken place of CHEM 3A/3AL and CHEM 3B/3BL.
3 PHYSICS 7A and PHYSICS 7B can be taken in place of PHYSICS 8A and PHYSICS 8B.

Upper Division Requirements: Genetics, Genomics & Development Track

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCELLBI C100A</td>
<td>Biophysical Chemistry: Physical Principles and the Molecules of Life</td>
</tr>
<tr>
<td>CHEM C130</td>
<td>Molecules of Life</td>
</tr>
<tr>
<td>MCELLBI 110</td>
<td>Molecular Biology: Macromolecular Synthesis and Cellular Function</td>
</tr>
<tr>
<td>MCELLBI 140</td>
<td>General Genetics</td>
</tr>
<tr>
<td>MCELLBI 140L</td>
<td>Genetics Laboratory</td>
</tr>
<tr>
<td>One GGD Elective, from List A or List B (see below)</td>
<td>3-4</td>
</tr>
<tr>
<td>One GGD Elective from List B (see below)</td>
<td>3-4</td>
</tr>
</tbody>
</table>

Upper Division Requirements: Developmental Genetics Track

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCELLBI 102</td>
<td>Survey of the Principles of Biochemistry and Molecular Biology</td>
</tr>
<tr>
<td>MCELLBI 104</td>
<td>Genetics, Genomics, and Cell Biology</td>
</tr>
<tr>
<td>or MCELLBI 140</td>
<td>General Genetics</td>
</tr>
<tr>
<td>MCELLBI 141</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>MCELLBI 140L</td>
<td>Genetics Laboratory</td>
</tr>
<tr>
<td>One GGD Elective from List A or List B (see below)</td>
<td>3-4</td>
</tr>
<tr>
<td>One GGD Elective from List B (see below)</td>
<td>3-4</td>
</tr>
</tbody>
</table>

GGD Elective A List

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 113</td>
<td>Advanced Mechanistic Organic Chemistry</td>
</tr>
<tr>
<td>CHEM 115</td>
<td>Organic Chemistry--Advanced Laboratory Methods</td>
</tr>
<tr>
<td>CHEM 130B</td>
<td>Biophysical Chemistry</td>
</tr>
<tr>
<td>ESPM C148/</td>
<td>Pesticide Chemistry and Toxicology</td>
</tr>
<tr>
<td>NUSCTX C114/ESPM C148</td>
<td></td>
</tr>
<tr>
<td>ESPM 162</td>
<td>Health, Medicine, Society and Environment</td>
</tr>
<tr>
<td>INTEGBI 160</td>
<td>Evolution</td>
</tr>
<tr>
<td>MATH 110</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MCELLBI 100B</td>
<td>Biochemistry: Pathways, Mechanisms, and Regulation</td>
</tr>
<tr>
<td>MCELLBI C103/PLANTBI C102/</td>
<td>Bacterial Pathogenesis</td>
</tr>
<tr>
<td>MCELLBI/</td>
<td>General Microbiology</td>
</tr>
<tr>
<td>MCELLBI/</td>
<td>Introduction to Comparative Virology</td>
</tr>
<tr>
<td>MCELLBI/</td>
<td>Microbial Diversity</td>
</tr>
<tr>
<td>MCELLBI 130</td>
<td>Cell and Systems Biology</td>
</tr>
<tr>
<td>MCELLBI 135A</td>
<td>Topics in Cell and Developmental Biology: Molecular Endocrinology</td>
</tr>
<tr>
<td>MCELLBI 136</td>
<td>Physiology</td>
</tr>
<tr>
<td>MCELLBI 150</td>
<td>Molecular Immunology</td>
</tr>
<tr>
<td>MCELLBI 160</td>
<td>Cellular and Molecular Neurobiology</td>
</tr>
<tr>
<td>MCELLBI 161</td>
<td>Circuit, Systems and Behavioral Neuroscience</td>
</tr>
<tr>
<td>MCELLBI 165</td>
<td>Neurobiology of Disease</td>
</tr>
<tr>
<td>MCELLBI 166</td>
<td>Biophysical Neurobiology</td>
</tr>
<tr>
<td>NUSCTX C114/</td>
<td>Pesticide Chemistry and Toxicology</td>
</tr>
<tr>
<td>PHYSICS 112</td>
<td>Introduction to Statistical and Thermal Physics</td>
</tr>
<tr>
<td>PLANTBI 135</td>
<td>Physiology and Biochemistry of Plants</td>
</tr>
<tr>
<td>PLANTBI 150</td>
<td>Plant Cell Biology</td>
</tr>
</tbody>
</table>

GGD Elective B List

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO ENG 131</td>
<td>Introduction to Computational Molecular and Cell Biology</td>
</tr>
<tr>
<td>BIO ENG 143</td>
<td>Computational Methods in Biology</td>
</tr>
<tr>
<td>BIO ENG 144</td>
<td>Introduction to Protein Informatics</td>
</tr>
<tr>
<td>ESPM 108B</td>
<td>Environmental Change Genetics</td>
</tr>
<tr>
<td>INTEGBI 161</td>
<td>Population and Evolutionary Genetics</td>
</tr>
<tr>
<td>INTEGBI 162</td>
<td>Ecological Genetics</td>
</tr>
<tr>
<td>INTEGBI 163</td>
<td>Molecular and Genomic Evolution</td>
</tr>
<tr>
<td>MATH 127</td>
<td>Mathematical and Computational Methods in Molecular Biology</td>
</tr>
<tr>
<td>MCELLBI 132</td>
<td>Biology of Human Cancer</td>
</tr>
<tr>
<td>MCELLBI/</td>
<td>Chromosome Biology/Cytogenetics</td>
</tr>
<tr>
<td>PLANTBI C134</td>
<td></td>
</tr>
<tr>
<td>MCELLBI 137L</td>
<td>Physical Biology of the Cell</td>
</tr>
<tr>
<td>MCELLBI 141</td>
<td>Developmental Biology (for track 1 students only)</td>
</tr>
<tr>
<td>MCELLBI 143</td>
<td>Evolution of Genomes, Cells, and Development</td>
</tr>
<tr>
<td>MCELLBI/</td>
<td>Microbial Genomics and Genetics</td>
</tr>
<tr>
<td>PLANTBI C148</td>
<td></td>
</tr>
<tr>
<td>MCELLBI 149</td>
<td>The Human Genome</td>
</tr>
<tr>
<td>PLANTBI/</td>
<td>Chromosome Biology/Cytogenetics</td>
</tr>
<tr>
<td>MCELLBI C134</td>
<td></td>
</tr>
<tr>
<td>PLANTBI 160</td>
<td>Plant Molecular Genetics</td>
</tr>
<tr>
<td>PB HLTH 141</td>
<td>Introduction to Biostatistics</td>
</tr>
<tr>
<td>PB HLTH 256</td>
<td>Human Genome, Environment and Public Health</td>
</tr>
<tr>
<td>STAT 134</td>
<td>Concepts of Probability</td>
</tr>
<tr>
<td>STAT 134A</td>
<td>Introduction to Probability and Statistics for Life Scientists</td>
</tr>
</tbody>
</table>

1 These GG&D electives have prerequisites outside of courses usually required of MCB majors. Please be sure to check these online.

Undergraduate students must fulfill the following requirements in addition to those required by their major program.

For detailed lists of courses that fulfill college requirements, please review the College of Letters & Sciences (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science) page in this Guide. For College advising appointments, please visit the L&S Advising (https://ls.berkeley.edu/advising/about-undergraduate-advising-services) Pages.
University of California Requirements

Entry Level Writing (http://writing.berkeley.edu/node/78)
All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing requirement. Fulfillment of this requirement is also a prerequisite to enrollment in all reading and composition courses at UC Berkeley.

American History and American Institutions (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/american-history-institutions-requirement)
The American History and Institutions requirements are based on the principle that a US resident graduated from an American university, should have an understanding of the history and governmental institutions of the United States.

Berkeley Campus Requirement

American Cultures (http://americancultures.berkeley.edu/students/courses)
All undergraduate students at Cal need to take and pass this course in order to graduate. The requirement offers an exciting intellectual environment centered on the study of race, ethnicity and culture of the United States. AC courses offer students opportunities to be part of research-led, highly accomplished teaching environments, grappling with the complexity of American Culture.

College of Letters & Science Essential Skills Requirements

Quantitative Reasoning (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/quantitative-reasoning-requirement)
The Quantitative Reasoning requirement is designed to ensure that students graduate with basic understanding and competency in math, statistics, or computer science. The requirement may be satisfied by exam or by taking an approved course.

Foreign Language (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/foreign-language-requirement)
The Foreign Language requirement may be satisfied by demonstrating proficiency in reading comprehension, writing, and conversation in a foreign language equivalent to the second semester college level, either by passing an exam or by completing approved course work.

Reading and Composition (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/reading-composition-requirement)
In order to provide a solid foundation in reading, writing, and critical thinking the College requires two semesters of lower division work in composition in sequence. Students must complete parts A & B reading and composition courses by the end of their second semester and a second-level course by the end of their fourth semester.

College of Letters & Science 7 Course Breadth Requirements

Breadth Requirements (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/#breadthrequirementstext)
The undergraduate breadth requirements provide Berkeley students with a rich and varied educational experience outside of their major program. As the foundation of a liberal arts education, breadth courses give students a view into the intellectual life of the University while introducing them to a multitude of perspectives and approaches to research and scholarship. Engaging students in new disciplines and with peers from other majors, the breadth experience strengthens interdisciplinary connections and context that prepares Berkeley graduates to understand and solve the complex issues of their day.

Unit Requirements

• 120 total units
• Of the 120 units, 36 must be upper division units
• Of the 36 upper division units, 6 must be taken in courses offered outside your major department

Residence Requirements

For units to be considered in "residence," you must be registered in courses on the Berkeley campus as a student in the College of Letters & Science. Most students automatically fulfill the residence requirement by attending classes here for four years. In general, there is no need to be concerned about this requirement, unless you go abroad for a semester or year or want to take courses at another institution or through UC Extension during your senior year. In these cases, you should make an appointment to meet an adviser to determine how you can meet the Senior Residence Requirement.

Note: Courses taken through UC Extension do not count toward residence.

Senior Residence Requirement

After you become a senior (with 90 semester units earned toward your BA degree), you must complete at least 24 of the remaining 30 units in residence in at least two semesters. To count as residence, a semester must consist of at least 6 passed units. Intercampus Visitor, EAP, and UC Berkeley-Washington Program (UCDC) units are excluded.

You may use a Berkeley Summer Session to satisfy one semester of the Senior Residence requirement, provided that you successfully complete 6 units of course work in the Summer Session and that you have been enrolled previously in the college.

Modified Senior Residence Requirement

Participants in the UC Education Abroad Program (EAP), Berkeley Summer Abroad, or the UC Berkeley Washington Program (UCDC) may meet a Modified Senior Residence requirement by completing 24 (excluding EAP) of their final 60 semester units in residence. At least 12 of these 24 units must be completed after you have completed 90 units.

Upper Division Residence Requirement

You must complete in residence a minimum of 18 units of upper division courses (excluding UCEAP units), 12 of which must satisfy the requirements for your major.
The sample plans below show a four-year plan for completing the major, taking classes only during fall and spring semesters. All of the lower division classes are offered during the summer as well. Please consult the sample plan appropriate to your track.

Please note that the sample plans below include only courses required for your major. For more detailed information regarding other requirements, including unit minimums per semester, Letters & Science Breadth requirements, Reading and Composition (R&C), and the American Cultures (AC) requirements, please see the College Requirements tab.

Example Track 1: Genetics, Genomics, and Development
Program beginning in the fall semester of freshman year.

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 10A</td>
<td>4 MATH 10B</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1A & 1AL</td>
<td>4 CHEM 1A & 1AL</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8 9

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3A & 3AL</td>
<td>5 CHEM 3B & 3AL</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSICS 8A</td>
<td>4 PHYSICS 8B</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9 9

<table>
<thead>
<tr>
<th>Junior</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGY 1B</td>
<td>4 MCELLBI 140</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCELLBI C100A</td>
<td>4 GGD Elective A/B</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8 4

<table>
<thead>
<tr>
<th>Senior</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCELLBI 110</td>
<td>4 MCELLBI 140L</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGD Elective B</td>
<td>3-4</td>
<td>7-8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Units: 58-59

Example Track 2: Developmental Genetics
Program beginning in the fall semester of freshman year.

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 10A</td>
<td>4 MATH 10B</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1A & 1AL</td>
<td>4 CHEM 1A & 1AL</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8 9

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3A & 3AL</td>
<td>5 CHEM 3B & 3AL</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSICS 8A</td>
<td>4 PHYSICS 8B</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9 9

<table>
<thead>
<tr>
<th>Junior</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCELLBI 102 or C100A (track-dependent)</td>
<td>4 MCELLBI 104 or C100A (or track-dependent)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGD Elective A/B (or MCELLBI 110; track-dependent)</td>
<td>3-4</td>
<td>7-8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Units: 61-63

Sample Program Plan, Spring Start
Example of program beginning in the spring semester of freshman year (e.g., FPF or Global Edge).

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1A</td>
<td>4 MATH 1B</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1A & 1AL</td>
<td>4 CHEM 1A & 1AL</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 8

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGY 1A & 1AL</td>
<td>5 CHEM 3A & 3AL</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSICS 8A</td>
<td>4 BIOLOGY 1B</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9 9

<table>
<thead>
<tr>
<th>Junior</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3B & 3BL</td>
<td>5 MCELLBI 102 or C100A</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSICS 8B</td>
<td>4 GGD Elective A/B</td>
<td>3-4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9 7-8

<table>
<thead>
<tr>
<th>Senior</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCB Core Course</td>
<td>4 MCELLBI 140L</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGD Elective B</td>
<td>3-4 MCB Core Course</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7-8 8

Total Units: 61-63

Sample Program Plan, Transfers
Example of program plan for students planning to transfer to Berkeley after completing all the lower division requirements.

<table>
<thead>
<tr>
<th>Junior</th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCELLBI 102 or C100A (track-dependent)</td>
<td>4 MCELLBI 104 or 140 (track-dependent)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGD Elective A/B (or GGD Elective B; track-dependent)</td>
<td>3-4</td>
<td>7-8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Units: 22-24
Mission
The Department of Molecular and Cell Biology (MCB) is a large department that is subdivided into five divisions: Biochemistry, Biophysics, and Structural Biology (BBS); Cell and Developmental Biology (CDB); Genetics, Genomics and Development (GGD); Immunology and Pathogenesis (IMMP); and Neurobiology (NEU). All MCB students complete the same lower division coursework to gain critical training in biology, mathematics, chemistry, and physics. All or most lower division coursework is completed before major declaration. Upon declaring the major, MCB students choose an emphasis, or specialization, which determines the upper division core courses they will take and elective choices from which they will choose. Students can choose among several areas of specialization; emphases are broadly defined along divisional lines and allow students to focus on a more defined topic within MCB. MCB students who elect to participate in independent research may choose from sponsoring research laboratories within any MCB division, or in laboratories outside the department (other Berkeley departments, LBNL, CHORI, UCSF, biotechnology companies). The MCB major provides excellent preparation for many careers and postbaccalaureate training programs, including graduate programs and health-related professional programs (e.g., medicine, dentistry, optometry, pharmacy), science writing, law school, biotechnology, teaching, and academic research.

Learning Goals for the Major
1. Describe basic biological concepts and principles.
2. Appreciate the different levels of biological organization, from molecules to ecosystems.
3. Understand that biology has a chemical, physical, and mathematical basis.
4. Explain the importance of the scientific method to understanding natural phenomena.
5. Effectively communicate scientific data and ideas, both orally and in writing.
6. Critically evaluate data, develop a hypothesis, and design experiments to address an interesting and novel problem.
7. Demonstrate advanced knowledge in a specialized field of molecular and cell biology.

MCB offers three types of undergraduate advising: staff advisers, faculty advisers, and peer advisers.

Staff Advisers
Staff academic advisers are trained to support students and assist them in successfully completing their MCB major. They are excellent resources for questions concerning administration and academics, or finding out about other available services. Students should see a staff adviser for the following:

- Ask questions about major requirements.
- Ask advice about schedule planning.
- Declare the MCB major.
- Consult about research opportunities, graduate and professional schools, career opportunities, scholarships, and internships.
- Get information and course control numbers (CCN's) for independent research.
- Request general assistance, advice or information.
- Find out about upcoming events and programs.

Staff advisers are primarily available for drop-in advising, though limited appointments are available for more complex issues such as probation, academic difficulty, and readmission. Students who would like to schedule an appointment should call 510-643-8895 during drop-in advising hours.

The general email address is mcbuao@berkeley.edu which is checked daily, Monday through Friday, so students will receive an answer to questions within one business day.

Faculty Advisers
Faculty advisers are MCB professors assigned to advise students about the MCB Department, its courses, research, and other academic issues. Students typically first meet with a faculty adviser when they declare an MCB major. Students should see their faculty advisers for the following:

- Receive guidance toward achieving academic and career goals.
- Ask questions about the content of MCB courses.
- Ask questions about biological research and about the field of biology in general.
- Ask for recommendations on which graduate schools to attend.
- Review and approve major declaration plan after speaking with a UAO staff adviser.

For a list of advisers and their office hours, please see the department's website (http://mcb.berkeley.edu/undergrad/advising/advising-office/advising-services). Office hours listed are designated for drop-in advising unless otherwise noted. Faculty adviser office hours are effective from the first day of instruction until the final day of instruction for the fall and spring semesters. Faculty advisers are not available for office hours during winter or summer break. Students may refer to staff drop-in advising hours during summer sessions and non-instructional periods.

Peer Adviser Walk-in Services (PAWS)
Peer advisers are junior and senior MCB majors who volunteer their time to complement the UAO advising services by sharing their knowledge of and experience with lower division requirements and upper division classes, experience with student groups on campus, preparation for life beyond the BA, and use of various campus resources. To see the schedule and more information about who the peer advisers are and which courses they have taken, click here (http://mcb.berkeley.edu/undergrad/advising/advising-office/peer-advising).

Undergraduate Research
Under the guidance of a faculty member and/or research mentor, undergraduates in the MCB major may have the opportunity to work in a laboratory to gain valuable experience in scientific research. Interested students must take the initiative to make such arrangements. Over forty percent of MCB majors work in a lab to gain valuable experience in scientific research. To get started, students should talk with classmates, peer advisers, a staff undergraduate adviser, graduate student instructors (GSIs), and faculty about their interest in learning more about laboratory research. For more information on research, see How to Find a Lab Position (http://mcb.berkeley.edu/undergrad/research/research/lab).

Benefits of research:

- Science is a way to figure things out, so doing research will aid students in other aspects of their life. Students ask and answer open ended questions and link seemingly disconnected pieces of information to find results that were not predicted.
• Explore things at the cutting edge and that no one has explored before.
• Learn tenacity, problem solving, and learn to be critical about the details because things have to be reproducible.
• Solve mysteries and experience the excitement of discovery.

Students may receive academic credit for their work by enrolling in an independent study course: MCELLBI 99/MCELLBI 199 or MCELLBI H196A/MCELLBI H196B. Enrollment applications are due in the Undergraduate Advising Office by the fifth week of each semester.

Honors Program
The MCB honors program offers exceptional senior students recognition for outstanding academic achievement and excellence in research. To graduate with honors in the major, students must satisfy the following:

1. Complete at least two credited semesters of research including 4 to 8 units of MCELLBI H196A and/or MCELLBI H196B (Honors Research).
2. Have a cumulative Berkeley grade point average (GPA) of at least 3.3 in all work completed at UC Berkeley.
3. Have at least a 3.5 GPA in the MCB major requirements or 3.5 GPA in MCB upper division courses.
4. Present their research in an approved forum, such as an MCB symposium, the Undergraduate Poster Session, or other scientific meeting.
5. Write an honors thesis approved by an MCB faculty sponsor.

Additional information on the honors program is available in the Undergraduate Affairs Office and on the MCB website (http://mcb.berkeley.edu/undergrad/major/honors-program/honors).

Other Research Opportunities
For additional resources for information regarding research opportunities, please see the links below:
Undergraduate Research Apprentice Program (URAP) (http://research.berkeley.edu/urap)
Scholarship Connection (http://scholarships.berkeley.edu)
Summer Research Opportunities (http://mcb.berkeley.edu/undergrad/research/summer-research)
Office of Research (http://vcresearch.berkeley.edu/faculty-expertise)

Funding for Student Research
There are a variety of ways to support students’ research. The department recommends attending a workshop at the Office of Undergraduate Research (http://research.berkeley.edu) or looking for funding opportunities on their website (http://research.berkeley.edu/opportunities) or the Scholarship Connection website (http://scholarships.berkeley.edu).

Molecular and Cell Biology: Genetics, Genomics, and Development

MCELLBI 15 Current Topics in the Biological Sciences 2 Units
Students in this course will critically examine modern methods of biological investigations and their social implications. Relevant literature will be used to present basic biological concepts that address the cultural, technological and health aspects of current topics in the biological sciences. Designing and evaluating scientific questions will be stressed.

Honors Program
The MCB honors program offers exceptional senior students recognition for outstanding academic achievement and excellence in research. To graduate with honors in the major, students must satisfy the following:

1. Complete at least two credited semesters of research including 4 to 8 units of MCELLBI H196A and/or MCELLBI H196B (Honors Research).
2. Have a cumulative Berkeley grade point average (GPA) of at least 3.3 in all work completed at UC Berkeley.
3. Have at least a 3.5 GPA in the MCB major requirements or 3.5 GPA in MCB upper division courses.
4. Present their research in an approved forum, such as an MCB symposium, the Undergraduate Poster Session, or other scientific meeting.
5. Write an honors thesis approved by an MCB faculty sponsor.

Additional information on the honors program is available in the Undergraduate Affairs Office and on the MCB website (http://mcb.berkeley.edu/undergrad/major/honors-program/honors).

Other Research Opportunities
For additional resources for information regarding research opportunities, please see the links below:
Undergraduate Research Apprentice Program (URAP) (http://research.berkeley.edu/urap)
Scholarship Connection (http://scholarships.berkeley.edu)
Summer Research Opportunities (http://mcb.berkeley.edu/undergrad/research/summer-research)
Office of Research (http://vcresearch.berkeley.edu/faculty-expertise)

Funding for Student Research
There are a variety of ways to support students’ research. The department recommends attending a workshop at the Office of Undergraduate Research (http://research.berkeley.edu) or looking for funding opportunities on their website (http://research.berkeley.edu/opportunities) or the Scholarship Connection website (http://scholarships.berkeley.edu).

Molecular and Cell Biology: Genetics, Genomics, and Development

MCELLBI 15 Current Topics in the Biological Sciences 2 Units
Students in this course will critically examine modern methods of biological investigations and their social implications. Relevant literature will be used to present basic biological concepts that address the cultural, technological and health aspects of current topics in the biological sciences. Designing and evaluating scientific questions will be stressed.

Honors Program
The MCB honors program offers exceptional senior students recognition for outstanding academic achievement and excellence in research. To graduate with honors in the major, students must satisfy the following:

1. Complete at least two credited semesters of research including 4 to 8 units of MCELLBI H196A and/or MCELLBI H196B (Honors Research).
2. Have a cumulative Berkeley grade point average (GPA) of at least 3.3 in all work completed at UC Berkeley.
3. Have at least a 3.5 GPA in the MCB major requirements or 3.5 GPA in MCB upper division courses.
4. Present their research in an approved forum, such as an MCB symposium, the Undergraduate Poster Session, or other scientific meeting.
5. Write an honors thesis approved by an MCB faculty sponsor.

Additional information on the honors program is available in the Undergraduate Affairs Office and on the MCB website (http://mcb.berkeley.edu/undergrad/major/honors-program/honors).

Other Research Opportunities
For additional resources for information regarding research opportunities, please see the links below:
Undergraduate Research Apprentice Program (URAP) (http://research.berkeley.edu/urap)
Scholarship Connection (http://scholarships.berkeley.edu)
Summer Research Opportunities (http://mcb.berkeley.edu/undergrad/research/summer-research)
Office of Research (http://vcresearch.berkeley.edu/faculty-expertise)

Funding for Student Research
There are a variety of ways to support students’ research. The department recommends attending a workshop at the Office of Undergraduate Research (http://research.berkeley.edu) or looking for funding opportunities on their website (http://research.berkeley.edu/opportunities) or the Scholarship Connection website (http://scholarships.berkeley.edu).
MCELLBI 32 Introduction to Human Physiology 3 Units
Terms offered: Fall 2018, Summer 2018 8 Week Session, Fall 2017
A comprehensive introduction to human biology. The course will concentrate on basic mechanisms underlying human life processes, including cells and membranes; nerve and muscle function; cardiovascular, respiratory, renal, and gastrointestinal physiology; metabolism, endocrinology, and reproduction.

Introduction to Human Physiology: Read More [+]

Rules & Requirements
Prerequisites: One year high school or college chemistry

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 8 weeks - 6 hours of lecture and 2 hours of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Ball

Introduction to Human Physiology Laboratory: Read Less [-]

MCELLBI 32L Introduction to Human Physiology Laboratory 2 Units
Terms offered: Fall 2018, Summer 2018 Second 6 Week Session, Fall 2017
Experiments and demonstrations are designed to amplify and reinforce information presented in 32. Exercises include investigations into the structure and function of muscle, nerve, cardiovascular, renal, respiratory, endocrine, and blood systems.

Introduction to Human Physiology Laboratory: Read More [+]

Rules & Requirements
Prerequisites: 32 or may be taken concurrently

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 3 hours of laboratory per week
Summer: 6 weeks - 2 hours of lecture and 8 hours of laboratory per week
8 weeks - 2 hours of lecture and 6 hours of laboratory per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructor: Ball

Introduction to Human Physiology Laboratory: Read Less [-]

MCELLBI 38 Stem Cell Biology, Ethics and Societal Impact 3 Units
Terms offered: Spring 2018
Innovations in bioengineering and use of stem cells will significantly impact our ability to combat human disease, genetic disorders and physiological dysfunction. An understanding of human stem cell biology will be critical to make informed decisions on our health and public policy.

Stem Cell Biology, Ethics and Societal Impact: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit with instructor consent.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Firestone, Ball

Stem Cell Biology, Ethics and Societal Impact: Read Less [-]

MCELLBI 41 Genetics and Society 3 Units
Terms offered: Spring 2016, Spring 2013, Summer 2012 8 Week Session
Basic communication of inheritance; gene mapping; gene expression and genetic disease in animals and humans; social inheritance of genetics.

Genetics and Society: Read More [+]

Rules & Requirements
Prerequisites: Primarily for students not specializing in biology
Credit Restrictions: Students will receive no credit for Molecular and Cell Biology 41 after completing Biology 1A, Biology 1B, or Letters and Science 18.

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week
Summer:
6 weeks - 7.5 hours of lecture per week
8 weeks - 6 hours of lecture and 2 hours of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Genetics and Society: Read Less [-]
MCELLBI C44 Biology for Voters 3 Units
Terms offered: Spring 2017, Spring 2015, Spring 2014
This is a Discovery Course for non-Biology majors designed to introduce lower-division college students to biology through the lens of the contemporary problems facing people, the planet and the species of the planet. Modern genetic contributions will be presented on such issues as genetic engineering of plants and animals, the emergence of new pathogens, the role of genetic variation among individuals, and the extent to which DNA is and isn’t destiny. Each week will close with the presentation and discussion of a defining biological challenge facing the world.

Biology for Voters: Read More [+]

Objectives Outcomes

Student Learning Outcomes: The learning objectives will be, at one end, to understand what an experiment is, how is it controlled and what does one need to know about an experiment to be able to rely upon any conclusion. That is the fundamental issue in all science, and is frequently overlooked in many media accounts of science. A second objective is to learn enough of the language of biology to be able to ask the kind of informed questions that we would want all elected representatives to pay attention to. A third objective is for students to cultivate confidence that through non-specialized information sources they can become informed consumers of contemporary scientific thought, and to develop those habits of intellect to think about evidence in a scientific manner. A fourth objective is for students to enjoy the abundance of high quality books, articles and multimedia that will enable a lifetime of discovery outside the structure of a college course.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Molecular and Cell Biology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Rine, Urnov

Also listed as: L & S C30Y

Biology for Voters: Read Less [-]

MCELLBI 50 The Immune System and Disease 4 Units
Course will discuss how the immune system resolves, prevents, or causes disease. A general overview of the immune system will be covered in the first five weeks followed by five weeks discussing infectious diseases including anthrax, mad cow, herpes, malaria, tuberculosis, and HIV. In addition, other lectures will focus on current immunology topics including vaccines, autoimmunity, allergy, transplantation, and cancer.

The Immune System and Disease: Read More [+]

Rules & Requirements

Prerequisites: High school chemistry or Chemistry 1A and high school biology or Biology 1A. Biology 1AL is not required

Credit Restrictions: Students will receive no credit for Molecular and Cell Biology 50 after completing Molecular and Cell Biology 102, C100A/Chemistry C130, or Chemistry 135.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Molecular and Cell Biology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Beatty

The Immune System and Disease: Read Less [-]
MCELLBI 55 Plagues and Pandemics 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Discussion of how infectious agents cause disease and impact society at large. We will examine historical and current examples of plagues and pandemics and consider the question of what we should do to ameliorate the impact of infectious disease in the future. The course is intended for non-majors and will begin by briefly providing necessary background in microbiology and immunology. The primary focus in each subsequent week, however, will be on discussing a particular infectious disease. The course will be broad in scope covering biological, historical, ethical and social implications of each disease.

Plagues and Pandemics: Read More [+]

Rules & Requirements

Credit Restrictions: Students will receive no credit for Molecular and Cell Biology 55 after completing Molecular and Cell Biology 100, C100A/Chemistry C130, 100B, 102, 103, C103/Plant and Microbial Biology C103/Public Health C102, 150, or Chemistry 135.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Molecular and Cell Biology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Beatty, Vance

Plagues and Pandemics: Read Less [-]

MCELLBI C61 Brain, Mind, and Behavior 3 Units
Introduction to human brain mechanisms of sensation, movement, perception, thinking, learning, memory, and emotion in terms of anatomy, physiology, and chemistry of the nervous system in health and disease. Intended for students in the humanities and social sciences and others not majoring in the biological sciences.

Brain, Mind, and Behavior: Read More [+]

Rules & Requirements

Credit Restrictions: Students will receive no credit for Molecular and Cell Biology/Psychology C61 after taking Molecular and Cell Biology 61, N61, W61, Molecular and Cell Biology 104, C100A/Chemistry C130, Molecular and Cell Biology 110, 130A, 136, 160, C160/Neuroscience C160 or Integrative Biology 132. A deficient grade in Molecular and Cell Biology 61, N61, or W61 can be removed with Molecular and Cell Biology C61. Students cannot credit for both MCELLBI/PSYCH C61 AND Psych 110.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Molecular and Cell Biology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Presti

Also listed as: PSYCH C61

Brain, Mind, and Behavior: Read Less [-]
MCELLBI W61 Brain, Mind, and Behavior 3 Units
Terms offered: Summer 2018 First 6 Week Session, Summer 2017 First 6 Week Session, Summer 2016 10 Week Session
This course deals with the structure and function of the human nervous system, with an emphasis on how brain physiology and chemistry are related to human behavior. This is a comprehensive introduction to the exciting field of contemporary neuroscience for students of all backgrounds and interests, including those from the humanities and social sciences, as well as physical and biological sciences. The Final Examination will be administered in a proctored setting. See Schedule of Classes for meeting information. This course is web-based.

Rules & Requirements

Credit Restrictions: Students will receive no credit for MCELLBI/PSYCH W61 after taking MCELLBI 61, N61, C61, MCELLBI 104, C100A/Chemistry C130, MCELLBI 110, 130A, 136, 160, C160/Neuroscience C160 or Integrative Biology 132. A deficient grade in MCELLBI 61, N61, OR C61 can be removed with W61. Students cannot credit for both MCELLBI/PSYCH C61 AND Psych 110.

Hours & Format

Summer: 6 weeks - 7 hours of web-based lecture and 2.5 hours of web-based discussion per week

Online: This is an online course.

Additional Details

Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Presti

MCELLBI C62 Drugs and the Brain 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2015, Fall 2014
The history, chemical nature, botanical origins, and effects on the human brain and behavior of drugs such as stimulants, depressants, psychedelics, analgesics, antidepressants, antipsychotics, steroids, and other psychoactive substances of both natural and synthetic origin. The necessary biological, chemical, and psychological background material for understanding the content of this course will be contained within the course itself.

Rules & Requirements

Credit Restrictions: Students will receive no credit for Molecular and Cell Biology C62/Psychology C19/Letters and Science C30T after completing Molecular and Cell Biology 62, C100A/Chemistry C130, 104, 110, 130A, 136, C160/Neuroscience C160, Integrative Biology 132.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Summer: 8 weeks - 4.5 hours of lecture and 2 hours of discussion per week

Additional Details

Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructor: Presti

Also listed as: L & S C30T/PSYCH C19

Drugs and the Brain: Read Less [-]
MCELLBI 63 Introduction to Functional Neuroanatomy 3 Units
Terms offered: Summer 2018 Second 6 Week Session, Summer 2017 Second 6 Week Session, Summer 2016 Second 6 Week Session
This course emphasizes beginning anatomy of the brain and spinal cord to individuals interested in understanding the dynamics of motor and sensory functions in the human body. Students in the Departments of Education, Psychology, and Integrative Biology, as well as students interested in medicine and the life sciences, are especially encouraged to attend.

Introduction to Functional Neuroanatomy: Read More [+]

Rules & Requirements
Credit Restrictions: Students will receive no credit for Molecular and Cell Biology 63 after completing Molecular and Cell Biology 104, C100A/Chemistry C130, Molecular and Cell Biology 110, 130A, 136, 160, 161, C160/Neuroscience C160 or Integrative Biology 132.

Hours & Format
Summer:
4 weeks - 12 hours of lecture per week
6 weeks - 7.5 hours of lecture per week
8 weeks - 6 hours of lecture per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Introduction to Functional Neuroanatomy: Read Less [-]

MCELLBI C64 Exploring the Brain: Introduction to Neuroscience 3 Units
Terms offered: Summer 2018 8 Week Session, Summer 2017 8 Week Session, Summer 2016 8 Week Session
This course will introduce lower division undergraduates to the fundamentals of neuroscience. The first part of the course covers basic membrane properties, synapses, action potentials, chemical and electrical synaptic interactions, receptor potentials, and receptor proteins. The second part of the course covers networks in invertebrates, memory and learning behavior, modulation, vertebrate brain and spinal cord, retina, visual cortex architecture, hierarchy, development, and higher cortical centers.

Exploring the Brain: Introduction to Neuroscience: Read More [+]

Rules & Requirements
Prerequisites: High school chemistry or Chemistry 1A; high school biology or Biology 1A. Biology 1AL is not required
Credit Restrictions: Students will receive no credit for Molecular and Cell Biology/Psychology C64 after taking Molecular and Cell Biology C61/Letters and Science C30W, Molecular and Cell Biology C104, C100A/Chemistry C130, Molecular and Cell Biology 110, 130A, 136, 160, C160/Neuroscience C160, or Integrative Biology 132. Students may remove a deficient grade in Molecular and Cell Biology C64/Psychology C64 after Molecular and Cell Biology 64.

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week
Summer: 8 weeks - 4 hours of lecture and 2 hours of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Caporale
Also listed as: PSYCH C64

Exploring the Brain: Introduction to Neuroscience: Read Less [-]
MCELLBI 84B Sophomore Seminar 1 or 2 Units
Terms offered: Fall 2013, Spring 2013, Fall 2012
Sophomore seminars are small interactive courses offered by faculty members in departments all across the campus. Sophomore seminars offer opportunity for close, regular intellectual contact between faculty members and students in the crucial second year. The topics vary from department to department and semester to semester. Enrollment limited to 15 sophomores.

Sophomore Seminar: Read More [+]

Rules & Requirements

Prerequisites: At discretion of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-2 hours of seminar per week
Summer:
6 weeks - 4-6 hours of seminar per week
8 weeks - 3-4 hours of seminar per week
Additional Details

Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

Sophomore Seminar: Read Less [-]

MCELLBI 88 Immunotherapy of Cancer: Success and Failures 2 Units
Terms offered: Spring 2018, Spring 2017
We will work with a variety of datasets that describe a molecular view of cells and how they divide. We will learn about the processes that cause cells to become specialized (differentiate) and to give rise to cancer (transform). We will analyze data on genetic mutations in cancer that distinguish tumor cells from normal cells. We will learn how mutations are detected by the immune system and the basis of cancer immunotherapy. Finally we will analyze data on clinical trials of cancer immunotherapy to define the correlates of success in curing the disease. The students are expected to gain an understanding of data that reveals the basics of cell physiology and cancer, how immunotherapies of cancer work and their current limitations.

Immunotherapy of Cancer: Success and Failures: Read More [+]

Rules & Requirements

Prerequisites: Foundations of Data Science: COMPSCI C8, DATASCIC8, INFO C8 or STAT C8
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 1 hour of laboratory per week
Additional Details

Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Shastri

Immunotherapy of Cancer: Success and Failures: Read Less [-]

MCELLBI 90A Freshman Seminars: Biochemistry and Molecular Biology 1 Unit
Terms offered: Fall 2018, Fall 2017, Spring 2017
The Berkeley Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Berkeley Seminars are offered in all campus departments, and topics vary from department to department and semester to semester.

Freshman Seminars: Biochemistry and Molecular Biology: Read More [+]

Rules & Requirements

Prerequisites: Open to freshmen only
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week
Additional Details

Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

Freshman Seminars: Biochemistry and Molecular Biology: Read Less [-]
MCELLBI 90B Freshman Seminars: Cell and Developmental Biology 1 Unit
Terms offered: Spring 2018, Fall 2017, Fall 2016
The Berkeley Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Berkeley Seminars are offered in all campus departments, and topics vary from department to department and semester to semester.
Freshman Seminars: Cell and Developmental Biology: Read More [+]
Rules & Requirements
Prerequisites: Open to freshmen only
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week
Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.
Freshman Seminars: Cell and Developmental Biology: Read Less [-]

MCELLBI 90C Freshman Seminars: Genetics and Development 1 Unit
Terms offered: Fall 2018, Fall 2016, Fall 2010
The Berkeley Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Berkeley Seminars are offered in all campus departments, and topics vary from department to department and semester to semester.
Freshman Seminars: Genetics and Development: Read More [+]
Rules & Requirements
Prerequisites: Open to freshmen only
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week
Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.
Freshman Seminars: Genetics and Development: Read Less [-]

MCELLBI 90D Freshman Seminars: Immunology 1 Unit
Terms offered: Fall 2018, Fall 2017, Fall 2016
The Berkeley Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Berkeley Seminars are offered in all campus departments, and topics vary from department to department and semester to semester.
Freshman Seminars: Immunology: Read More [+]
Rules & Requirements
Prerequisites: Open to freshmen only
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week
Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.
Freshman Seminars: Immunology: Read Less [-]

MCELLBI 90E Freshman Seminars: Neurobiology 1 Unit
Terms offered: Fall 2018, Spring 2018, Fall 2017
The Berkeley Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Berkeley Seminars are offered in all campus departments, and topics vary from department to department and semester to semester.
Freshman Seminars: Neurobiology: Read More [+]
Rules & Requirements
Prerequisites: Open to freshmen only
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week
Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.
Freshman Seminars: Neurobiology: Read Less [-]
MCELLBI C96 Studying the Biological Sciences 1 Unit
Terms offered: Fall 2018, Fall 2017, Fall 2016
Freshmen will be introduced to the "culture" of the biological sciences, along with an in-depth orientation to the academic life and the culture of the university as they relate to majoring in biology. Students will learn concepts, skills, and information that they can use in their major course, and as future science professionals. Restricted to freshmen in the biology scholars program.
Studying the Biological Sciences: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week
Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam required.
Instructor: Matsui
Also listed as: INTEGBI C96/PLANTBI C96
Studying the Biological Sciences: Read Less [-]

MCELLBI 98 Directed Group Study 1 - 4 Units
Terms offered: Spring 2017, Spring 2016, Fall 2015
Lectures and small group discussions focusing on topics of interest, varying from semester to semester.
Directed Group Study: Read More [+]
Rules & Requirements
Prerequisites: Freshmen and sophomores only
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Study: Read Less [-]

MCELLBI 99 Supervised Independent Study 1 - 4 Units
Terms offered: Spring 2012, Fall 2009, Spring 2009
Supervised Independent Study: Read More [+]
Rules & Requirements
Prerequisites: 3.3 GPA and consent of instructor
Credit Restrictions: One unit of credit is given for every three hours of work in the lab per week to a maximum of 4 units.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer:
8 weeks - 1.5-7.5 hours of independent study per week
10 weeks - 1.5-6 hours of independent study per week
Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Supervised Independent Study: Read Less [-]

MCELLBI 100B Biochemistry: Pathways, Mechanisms, and Regulation 4 Units
This course surveys cellular metabolism with a focus on the underlying bioenergetics, mechanisms, and chemistry. Lectures will cover major principles in the biochemistry of metabolism and also highlight selected topics including signaling, transport, metabolic engineering, and human diseases related to metabolic dysfunction. The course is designed for majors in the biochemistry and molecular biology, genetics and development, or immunology emphases.
Biochemistry: Pathways, Mechanisms, and Regulation: Read More [+]
Rules & Requirements
Prerequisites: C100A/Chemistry C130
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Savage, Zoncu, Marletta
Biochemistry: Pathways, Mechanisms, and Regulation: Read Less [-]
MCELLBI C100A Biophysical Chemistry: Physical Principles and the Molecules of Life 4 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
Thermodynamic and kinetic concepts applied to understanding the chemistry and structure of biomolecules (proteins, DNA, and RNA). Molecular distributions, reaction kinetics, enzyme kinetics. Bioenergetics, energy transduction, and motor proteins. Electrochemical potential, membranes, and ion channels.
Biophysical Chemistry: Physical Principles and the Molecules of Life: Read More [+]
Rules & Requirements
Prerequisites: Chemistry 3A or 112A, Mathematics 1A, Biology 1A and 1AL; Chemistry 3B or 112B recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 8 weeks - 5.5 hours of lecture and 2 hours of discussion per week
Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Also listed as: CHEM C130
Biophysical Chemistry: Physical Principles and the Molecules of Life: Read Less [-]

MCELLBI 102 Survey of the Principles of Biochemistry and Molecular Biology 4 Units
Terms offered: Fall 2018, Summer 2018 8 Week Session, Spring 2018
A comprehensive survey of the fundamentals of biological chemistry, including the properties of intermediary metabolites, the structure and function of biological macromolecules, the logic of metabolic pathways (both degradative and biosynthetic) and the molecular basis of genetics and gene expression.
Survey of the Principles of Biochemistry and Molecular Biology: Read More [+]
Rules & Requirements
Prerequisites: Biology 1A, 1AL, and Chemistry 3B (or equivalent courses). Recommended: a course in physical chemistry
Credit Restrictions: Students will receive no credit for 102 after taking 100B or C100A/Chemistry C130 or Chemistry 135.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer:
8 weeks - 6 hours of lecture and 2 hours of discussion per week
10 weeks - 4 hours of lecture and 2 hours of discussion per week
Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Survey of the Principles of Biochemistry and Molecular Biology: Read Less [-]
MCELLBI C103 Bacterial Pathogenesis 3 Units
This course for upper division and graduate students will explore the molecular and cellular basis of microbial pathogenesis. The course will focus on model microbial systems which illustrate mechanisms of pathogenesis. Most of the emphasis will be on bacterial pathogens of mammals, but there will be some discussion of viral and protozoan pathogens. There will be an emphasis on experimental approaches. The course will also include some aspects of bacterial genetics and physiology, immune response to infection, and the cell biology of host-parasite interactions.
Bacterial Pathogenesis: Read More [+]

Rules & Requirements
Prerequisites: 100, 102 or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Portnoy
Also listed as: PB HLTH C102/PLANTBI C103
Bacterial Pathogenesis: Read Less [-]

MCELLBI C104 Genetics, Genomics, and Cell Biology 4 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
This course will introduce students to key concepts in genetic analysis, eukaryotic cell biology, and state-of-the-art approaches in genomic medicine. Lectures will highlight basic knowledge of cellular processes with the basis for human diseases, particularly cancer. Prerequisite courses will have introduced students to the concepts of cells, the central dogma of molecular biology, and gene regulation. Emphasis in this course will be on eukaryotic cell processes, including cellular organization, dynamics, and signaling.
Genetics, Genomics, and Cell Biology: Read More [+]

Rules & Requirements
Prerequisites: 102
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 8 weeks - 6 hours of lecture and 2 hours of discussion per week
Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Genetics, Genomics, and Cell Biology: Read Less [-]

MCELLBI 110 Molecular Biology: Macromolecular Synthesis and Cellular Function 4 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
Molecular Biology: Macromolecular Synthesis and Cellular Function: Read More [+]

Rules & Requirements
Prerequisites: C100A (may not be taken concurrently); Plan 1 Emphasis 1 (BMB) majors should take 100B prior to 110
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Molecular Biology: Macromolecular Synthesis and Cellular Function: Read Less [-]

MCELLBI C110L General Biochemistry and Molecular Biology Laboratory 4 Units
Experimental techniques of biochemistry and molecular biology, designed to accompany the lectures in Molecular and Cell Biology 100B and 110. General Biochemistry and Molecular Biology Laboratory: Read More [+]

Rules & Requirements
Prerequisites: 110 (may be taken concurrently)
Hours & Format
Fall and/or spring: 15 weeks - 2-2 hours of lecture and 6-8 hours of laboratory per week
Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Also listed as: CHEM C110L
General Biochemistry and Molecular Biology Laboratory: Read Less [-]
MCELLBI C112 General Microbiology 4 Units
Terms offered: Fall 2018, Summer 2018 10 Week Session, Fall 2017
This course will explore the molecular bases for physiological and biochemical diversity among members of the two major domains, Bacteria and Archaea. The ecological significance and evolutionary origins of this diversity will be discussed. Molecular, genetic, and structure-function analyses of microbial cell cycles, adaptive responses, metabolic capability, and macromolecular syntheses will be emphasized. General Microbiology: Read More [+]

Rules & Requirements
Prerequisites: Biology 1A and 1B

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 10 weeks - 5 hours of lecture and 1.5 hours of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Ryan
Also listed as: PLANTBI C112
General Microbiology: Read Less [-]

MCELLBI C112L General Microbiology Laboratory 2 Units
Terms offered: Fall 2018, Summer 2018 10 Week Session, Spring 2018
Experimental techniques of microbiology designed to accompany the lecture in C112 and C148. The primary emphasis in the laboratory will be on the cultivation and physiological and genetic characterization of bacteria. Laboratory exercises will include the observation, enrichment, and isolation of bacteria from selected environments. General Microbiology Laboratory: Read More [+]

Rules & Requirements
Prerequisites: C112 (may be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 4 hours of laboratory and 1 hour of discussion per week
Summer: 10 weeks - 6 hours of laboratory and 1.5 hours of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructors: Komeili, Traxler
Also listed as: PLANTBI C112L
General Microbiology Laboratory: Read Less [-]

MCELLBI C114 Introduction to Comparative Virology 4 Units
This course will provide a comparative overview of virus life cycles and strategies viruses use to infect and replicate in hosts. We will discuss virus structure and classification and the molecular basis of viral reproduction, evolution, assembly, and virus-host interactions. Common features used during virus replication and host cellular responses to infection will be covered. Topics also included are common and emerging virus diseases, their control, and factors affecting their spread. Introduction to Comparative Virology: Read More [+]

Rules & Requirements
Prerequisites: Introductory chemistry (Chemistry 1A or 3A-3B or equivalent) and introductory biology (Biology 1A, 1AL, and 1B or equivalent) and general biochemistry (Molecular and Cell Biology C100A or equivalent--preferably completed but may be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1.5 hours of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Glaunsinger
Also listed as: ESPM C138/PLANTBI C114
Introduction to Comparative Virology: Read Less [-]
MCELLBI C116 Microbial Diversity 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
This course for upper-division and graduate students will broadly survey myriad types of microbial organisms, both procaryote and eucaryote, using a phylogenetic framework to organize the concept of "biodiversity." Emphasis will be on the evolutionary development of the many biochemical themes, how they mold our biosphere, and the organisms that affect the global biochemistry. Molecular mechanisms that occur in different lineages will be compared and contrasted to illustrate fundamental biological strategies. Graduate students additionally should enroll in C216, Microbial Diversity Workshop.

Molecular and Cell Biology: Read More [+]

Rules & Requirements
Prerequisites: Upper-division standing. C112 or consent of instructor and organic chemistry (may be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Coates
Formerly known as: 116
Also listed as: PLANTBI C116

Microbial Diversity: Read Less [-]

MCELLBI 130 Cell and Systems Biology 4 Units
Terms offered: Spring 2018, Spring 2017, Fall 2009
This course will provide a detailed discussion of a wide range of topics in cell biology emphasizing experimental approaches and key experiments that have provided important insights. The course is aimed at conveying an understanding of how cellular structure and function arise as a result of the properties of cellular macromolecules. An emphasis will be placed on the dynamic nature of cellular organization and will include a description of physical properties of cells (dimensions, concepts of free energy, diffusion, biophysical properties). Students will be introduced to quantitative aspects of cell biology and a view of cellular function that is based on integrating multiple pathways and modes of regulation (systems biology).

Cell and Systems Biology: Read More [+]

Rules & Requirements
Prerequisites: 102 and 104. Instructors may waive 104 prerequisite for non-Molecular and Cell Biology majors

Credit Restrictions: Students will receive no credit for 130A after taking 130.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructor: Duesberg

Formerly known as: Molecular and Cell Biology 130A

Cell and Systems Biology: Read Less [-]

MCELLBI 118 The Cancer Karyotype: What it is and What it Does 1 Unit
Terms offered: Fall 2018, Spring 2018, Fall 2017
Mutational cancer theories do not explain why cancers: 1) have clonal individual karyotypes; 2) have polygenic transcriptomes and phenotypes; 3) have flexible karyotypes, which evolve progressive malignancy and drug resistance, but maintain autonomy and even immortality; and 4) Why carcinogens induce cancer only after conspicuously long latent periods of years to decades. To answer these questions, this course tests a new karyotypic theory, which postulates that cancers evolve much like new species.

The Cancer Karyotype: What it is and What it Does: Read More [+]

Rules & Requirements
Prerequisites: 102. 104 recommended

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructor: Duesberg

The Cancer Karyotype: What it is and What it Does: Read Less [-]
MCELLBI 132 Biology of Human Cancer 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
The course is designed for students interested in learning about the molecular and cell biology of cancer and how this knowledge is being applied to the prevention, diagnosis and therapy of cancer. Topics covered include tumor pathology and epidemiology; tumor viruses and oncogenes; intracellular signaling; tumor suppressors; multi-step carcinogenesis and tumor progression; genetic instability in cancer; tumor-host interactions; invasion and metastasis; tumor immunology; cancer therapy.

Biology of Human Cancer: Read More [+]

Rules & Requirements
Prerequisites: 102 or 110 (may be taken concurrently); Biology 1A, 1AL, 1B

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: 135G

MCELLBI 133L Physiology and Cell Biology Laboratory 4 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
Experimental analyses of central problems in cell biology and physiology using modern techniques, including DNA cloning and protein biochemistry, fluorescence microscopy of the cytoskeleton and organelles, DNA transfection and cell cycle analysis of cultured mammalian cells, RNA interference and drug treatments to analyze ion channel function in cell contractility and intracellular signaling, and somatosensation.

Physiology and Cell Biology Laboratory: Read More [+]

Rules & Requirements
Prerequisites: MCELLBI 104 recommended (may be taken concurrently)

Credit Restrictions: Students will receive no credit for 133L after taking 130L.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 7 hours of laboratory per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.

MCELLBI C134 Chromosome Biology/ Cytogenetics 3 Units
Terms offered: Spring 2018, Spring 2016, Spring 2015
Survey of behavior, structure, and function of chromosomes with emphasis on behavior in model organisms. Topics include mitosis, meiosis, chromosome aberrations, genome function, dosage compensation, transposons, repetitive DNA, and modern cytological imaging.

Chromosome Biology/Cytogenetics: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Dernburg, Karpen
Also listed as: PLANTBI C134
Chromosome Biology/Cytogenetics: Read Less [-]

MCELLBI 135A Topics in Cell and Developmental Biology: Molecular Endocrinology 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Molecular mechanisms by which hormones elicit specific responses and regulate gene expression; hormone-receptor interaction; synthesis, transport and targeting of hormones, growth factors and receptors. Topics in Cell and Developmental Biology: Molecular Endocrinology: Read More [+]

Rules & Requirements
Prerequisites: Molecular and Cell Biology 102, Biology 1A, 1AL, 1B, Chemistry 3A-3B or equivalent, or consent of instructor

Credit Restrictions: Students will receive no credit for Molecular and Cell Biology 135A after taking Physiology 142.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Firestone
Topics in Cell and Developmental Biology: Molecular Endocrinology: Read Less [-]
MCELLBI 136 Physiology 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Principles of mammalian (primarily human) physiology emphasizing physical, chemical, molecular and cellular bases of functional biology. The following topics will be covered: cellular and membrane ion and nonelectrolyte transport; cell and endocrine regulation; autonomic nervous system regulation; skeletal, smooth and cardiac muscle; cardiovascular physiology; respiration; renal physiology; gastrointestinal physiology. Discussion section led by Graduate Student Instructor will review material covered in lecture.
Physiology: Read More [+]

Rules & Requirements
Prerequisites: Biology 1A, 1AL, 1B, Physics 8A. Physics 8B recommended
Credit Restrictions: Students will receive no credit for Molecular and Cell Biology 136 after completing Integrative Biology 132.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer:
6 weeks - 7 hours of lecture and 4 hours of discussion per week
8 weeks - 6 hours of lecture and 2 hours of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

MCELLBI 137L Physical Biology of the Cell 3 Units
Terms offered: Spring 2017
Biology is being revolutionized by new experimental techniques that have made it possible to measure the inner workings of molecules, cells and multicellular organisms with unprecedented precision. The objective of this course is to explore this deluge of quantitative data through the use of biological numeracy. We will develop theoretical models that make precise predictions about biological phenomena. These predictions will be tested through the hands-on analysis of experimental data and by performing numerical simulations using Matlab.

Physical Biology of the Cell: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 2 hours of laboratory per week
Summer: 8 weeks - 4 hours of lecture and 4 hours of laboratory per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Garcia

MCELLBI 140 General Genetics 4 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
An in depth introduction to genes, their sexual and asexual transmission in individuals and populations, and gene regulation in prokaryotes and eukaryotes. Gene manipulation by recombination, molecular cloning and genome editing is presented in contexts ranging from fundamental mechanisms of chromosome biology to applications in development, aging and disease. Human genetic variation and quantitative evaluation are illuminated. Non-Mendelian and epigenetic modes of inheritance of transposable elements, prions and chromatin states are paired with discussions of groundbreaking technology rewriting the rules of how the genome is analyzed, with attention to the ethical considerations ranging from the history of eugenics to modern controversies.
General Genetics: Read More [+]

Rules & Requirements
Prerequisites: Biology 1A and 1AL

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

MCELLBI 140L Genetics Laboratory 4 Units
Experimental techniques in classical and molecular genetics.

Genetics Laboratory: Read More [+]

Rules & Requirements
Prerequisites: Molecular and Cell Biology 104 or 140. May be taken concurrently

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 6 hours of laboratory per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
MCELLBI 141 Developmental Biology 4 Units
An introduction to principles and processes of embryonic and post-embryonic development, stressing mechanisms of cell and tissue interactions, morphogenesis and regulation of gene expression. Developmental Biology: Read More [+]

Rules & Requirements
Prerequisites: 102 or C100A; Biology 1A, 1AL, and 1B; 110 or 130 recommended

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: 131

Developmental Biology: Read Less [-]

MCELLBI 143 Evolution of Genomes, Cells, and Development 3 Units
Terms offered: Fall 2016, Fall 2015, Fall 2014
This course is intended for upper-division undergraduates seeking an interactive course based on modern concepts in evolution and comparative genomics. The course will emphasize the contribution of molecular evolution to a series of seminal events in life's history: origin of life; origin of cells; origin of eukaryotes; origin of multicellularity; evolution of animal development; human origins. Evolution of Genomes, Cells, and Development: Read More [+]

Rules & Requirements
Prerequisites: Biology 1A-1B and Molecular and Cell Biology C100A or 102; 104 or 140 recommended
Credit Restrictions: Student will receive no credit for 143 after taking Integrative Biology 163.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer:
8 weeks - 6 hours of lecture and 2 hours of discussion per week
10 weeks - 5 hours of lecture and 1.5 hours of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Brenner, Taga
Also listed as: PLANTBI C148
Microbial Genomics and Genetics: Read Less [-]

MCELLBI C148 Microbial Genomics and Genetics 4 Units
Course emphasizes bacterial and archaeal genetics and comparative genomics. Genetics and genomic methods used to dissect metabolic and development processes in bacteria, archaea, and selected microbial eukaryotes. Genetic mechanisms integrated with genomic information to address integration and diversity of microbial processes. Introduction to the use of computational tools for a comparative analysis of microbial genomes and determining relationships among bacteria, archaea, and microbial eukaryotes.
Microbial Genomics and Genetics: Read More [+]

Rules & Requirements
Prerequisites: Molecular and Cell Biology C100A/Chemistry C130 or Molecular and Cell Biology 102

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer:
8 weeks - 6 hours of lecture and 2 hours of discussion per week
10 weeks - 5 hours of lecture and 1.5 hours of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Eisen, Meyer, Rokhsar
Also listed as: PLANTBI C148
The Human Genome: Read Less [-]

MCELLBI 149 The Human Genome 3 Units
Terms offered: Spring 2018, Spring 2016, Spring 2015
This is an upper division course for majors in MCB with an interest in an in-depth exploration of the forces that shape the human genome and the human population, as well as the ways that human genetic information can be used in medicine, ancestry and forensics. The course will combine lectures and discussion of research papers. The Human Genome: Read More [+]

Rules & Requirements
Prerequisites: MCB 140, MCB 104 or equivalent

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructors: Eisen, Meyer, Rokhsar
The Human Genome: Read Less [-]
MCELLBI 150 Molecular Immunology 4 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
Fundamentals of immunology with emphasis on biochemical and molecular approaches to study of the immune system and its application in medicine and biotechnology. Topics covered include description of the immune system, antibody and T-cell receptor structure and function, genes of the immunoglobulin superfamily, cells and molecular mediators that regulate the immune response, allergy, autoimmunity, immunodeficiency, tissue and organ transplants, and tumor immunology.

Molecular Immunology: Read More [+]

Rules & Requirements
Prerequisites: C100A/Chemistry C130, or 102

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

MCELLBI 150L Immunology Laboratory 4 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
Experimental techniques in mammalian molecular biology and cellular immunology. Molecular techniques covered include PCR and recombinant DNA procedures such as gene cloning, gene transfer, DNA sequencing, Southern blot, and restriction mapping. Immunological techniques covered include cell culture and monoclonal antibody production, flow cytometry, ELISA, immunoprecipitation, and western blot.

Immunology Laboratory: Read More [+]

Rules & Requirements
Prerequisites: Molecular and Cell Biology 150 (may be taken concurrently); consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 8 hours of laboratory and 1 hour of lecture per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.

MCELLBI 160 Cellular and Molecular Neurobiology 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Comprehensive introductory survey of cellular and molecular neuroscience, including cellular neurophysiology, ion channel function, synaptic function and plasticity, sensory transduction, and brain development. Includes introduction to molecular basis of neurological disease. Analysis from the level of molecules to cells to simple circuits.

Cellular and Molecular Neurobiology: Read More [+]

Rules & Requirements
Prerequisites: Biology 1A and 1AL. Prerequisite or co-requisite: Physics 8B

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: Molecular and Cell Biology C160/Neuroscience C160

MCELLBI 160L Neurobiology Laboratory 4 Units
Experimental analyses of properties and interactions of nerve cells and systems, illustrating principal features and current methods. Techniques employed include computer simulation of neuron properties, electrophysiological recording and stimulation of nerves and cells, digitally enhanced video imaging of outgrowth, fluorescence immunocytochemistry, analysis of sensory: CNS mapping, human-evoked potential recording, sensory psychophysics.

Neurobiology Laboratory: Read More [+]

Rules & Requirements
Prerequisites: Biology 1A, 1AL; Physics 8A, 8B; MCB 160 or equivalent (may be taken concurrently). Recommended: a course in physical chemistry

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 8 hours of laboratory per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Neurobiology Laboratory: Read Less [-]
MCELLBI 161 Circuit, Systems and Behavioral Neuroscience 4 Units
Comprehensive survey of circuits and systems neuroscience, including sensory and motor systems, learning and memory, neuromodulatory systems and brain state and higher functions. Biological and computational principles of neural circuit function. Analysis from the level of small circuits to behavior.

Prerequisites: Molecular and Cell Biology 160

Rules & Requirements

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Molecular and Cell Biology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Circuit, Systems and Behavioral Neuroscience: Read Less [-]

MCELLBI 163L Mammalian Neuroanatomy Lab 4 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Development, structure (gross and microscopic), and functional relationships of the mammalian nervous system.

Prerequisites: Biology 1A/1AL, Molecular and Cell Biology 160 but can be taken concurrently. Molecular and Cell Biology 161 is recommended

Rules & Requirements

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 6 hours of laboratory per week

Additional Details

Subject/Course Level: Molecular and Cell Biology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Roelink, Lammel, Ball

Mammalian Neuroanatomy Lab: Read Less [-]

MCELLBI 165 Neurobiology of Disease 3 Units
The molecular, cellular, and neural circuit basis of neurological disease. Includes neurochemistry and reward systems, neural development and its disorders, addiction, neurodegenerative and neuropsychiatric disorders. Students will read and discuss primary papers from the research literature.

Prerequisites: Molecular and Cell Biology 160

Rules & Requirements

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Molecular and Cell Biology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Caporale

Neurobiology of Disease: Read Less [-]
MCELLBI 166 Biophysical Neurobiology 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
Electrochemistry and ion transport phenomena, equivalent circuits, excitability, action potentials, voltage clamp and the Hodgkin-Huxley model. Biophysical properties of ion channels. Statistical and electrophysiological models of synaptic transmission, Quantitative models for dendritic structure and neuronal morphogenesis. Sensory transduction, cellular networks as computational devices, information processing and transfer.
Biophysical Neurobiology: Read More [+]

Objectives Outcomes

Course Objectives:
1) Derive equations for Nernst and GHK membrane potential from fundamental physics concepts.
2) Describe the experiments and theory underlying the Hodgkin-Huxley model.
3) Understand biophysical properties of gating particles called ion channels.
4) Apply and solve equivalent circuit models to describe resting and excitable cells, synaptic transmission and sensory transduction.
5) Use Poisson, Gaussian and binomial distributions to analyze the gating of ion channels, synaptic transmission, and absolute sensitivity of vision.
6) Model dendritic structure based on quantitative descriptors of shape and energy minimization theory.
7) Explain experiments and models of sensory transduction, neuronal integration and lateral inhibition.

Rules & Requirements

Prerequisites: Biology 1A, 1AL, Physics 8A-8B, Chemistry 1A, 3A/3AL-3B, or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Summer: 8 weeks - 6-12 hours of session per week

Additional Details

Subject/Course Level: Molecular and Cell Biology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Elul, Isacoff, Miller

Biophysical Neurobiology: Read Less [-]

MCELLBI 180 Undergraduate Teaching of Biology 1A Laboratory 1 or 2 Units
Terms offered: Spring 2012, Spring 2007, Fall 2006
Course consists of a weekly three-hour training session that focuses on laboratory techniques, instructional aids, and problem solving, plus an additional three hour weekly laboratory where the UGSI is required to assist a GSI in the instruction of laboratory (answering questions, providing demonstrations, etc.).
Undergraduate Teaching of Biology 1A Laboratory: Read More [+]

Rules & Requirements

Prerequisites: Biology 1A, 1AL with a minimum grade of B. Appointment as a UGSI in biology by consent of instructor. Restricted to undergraduate students

Repeat rules: Course may be repeated for credit up to a total of 4 units.

Hours & Format

Fall and/or spring: 15 weeks - 3-6 hours of session per week

Summer: 8 weeks - 6-12 hours of session per week

Additional Details

Subject/Course Level: Molecular and Cell Biology/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Undergraduate Teaching of Biology 1A Laboratory: Read Less [-]
MCELLBI 180C Undergraduate Teaching of Molecular and Cell Biology 32 Laboratory 1 - 2 Units
Terms offered: Fall 2012, Fall 2011, Fall 2010
Course consists of a weekly three-hour training session that focuses on laboratory techniques, instructional aids, and problem solving, plus an additional three-hour weekly laboratory where the UGSI is required to assist a GSI in the instruction of laboratory (answering questions, providing demonstrations, etc.). Students will be graded on lecture and laboratory attendance and preparation of one quiz.
Undergraduate Teaching of Molecular and Cell Biology 32 Laboratory: Read More [+]

Rules & Requirements
Prerequisites: 32, 136, or Integrative Biology 132 and Molecular and Cell Biology 32L or Integrative Biology 132L laboratory courses in physiology with minimum grades of B. Appointment as a UGSI in physiology by consent of instructor
Repeat rules: Course may be repeated for credit up to a total of 4 units.

Hours & Format
Fall and/or spring: 15 weeks - 3-6 hours of session per week
Summer:
6 weeks - 7.5-15 hours of session per week
8 weeks - 5.5-11 hours of session per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam required.
Undergraduate Teaching of Molecular and Cell Biology 32 Laboratory: Read Less [-]

MCELLBI N184 IGI CRISPR Workshop: Practical Aspects of Precision Biology for Undergraduates 2 Units
Terms offered: Summer 2018 3 Week Session, Summer 2017 3 Week Session
This 3 week lab course will focus on applications of CRISPR technology as a platform for genome editing and functional genomics. The program will consist of lectures from experts in the field and a hands-on laboratory experience demonstrating CRISPR editing both in vitro and in vivo.
Workshop faculty will address topics in genome editing and CRISPR-Cas9 research, including basic and enhanced CRISPR methods, cellular repair mechanisms, regulation of gene expression, bioinformatics, applications to various organisms, and bioethics.
IGI CRISPR Workshop: Practical Aspects of Precision Biology for Undergraduates: Read More [+]
Rules & Requirements
Prerequisites: Any one of the lab courses (MCB 110L, 133L, 140L, 150L and 160L) or equivalent lab experience

Hours & Format
Summer: 3 weeks - 4 hours of lecture and 12 hours of laboratory per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Alternative to final exam.
Instructor: Corn
IGI CRISPR Workshop: Practical Aspects of Precision Biology for Undergraduates: Read Less [-]
MCELLBI 194 Undergraduate Student Instructor for Molecular and Cell Biology Courses 1 - 2 Units
Terms offered: Fall 2018, Fall 2017
UGSIs will work under supervision of instructor and/or GSI. The UGSI will attend three hours of lecture per week and one hour or two hours of discussion section a week depending on the number of units, where they will assist a GSI in instruction (answering questions, providing demonstrations, facilitating activities, etc.). In addition, UGSIs will meet with students from their section for one or two hours of tutoring per week depending on the number of units. UGSIs do not evaluate students' work or assign grades. UGSIs will be graded on lecture and discussion attendance and preparation of one lesson plan and one quiz. Required to attend any mandatory preparatory and review meetings.

MCELLBI H196A Honors Research 1 - 4 Units
Terms offered: Fall 2015, Fall 2014, Spring 2013
Individual research and thesis preparation under the supervision of a faculty member. Acceptance to the Molecular and Cell Biology Honors Program is required. Contact the MCB Undergraduate Affairs Office, 3060 Valley Life Sciences Building, for application and details. Honor students must complete at least two semesters of research, taking a minimum of 4 units and a maximum of 8 units of H196A-196B. If desired, one semester of 199 can be used to replace H196A.

MCELLBI H196B Honors Research 1 - 4 Units
Terms offered: Spring 2016, Spring 2015, Spring 2014
Individual research and completion of thesis under the supervision of a faculty member. This course satisfies the thesis requirement for the Molecular and Cell Biology Department Honors Program. Contact the MCB Undergraduate Affairs Office, 3060 Valley Life Sciences Building, for program details and an application. Honor students must complete at least two semesters of research, taking a minimum of 4 units and a maximum of 8 units of H196A-196B. One semester of H196B is required.
MCELLBI 197 Supervised Internship 1 Unit
Terms offered: Fall 2016
Supervised experience relevant to specific topics of biology in off-campus organizations. Written report and evaluation from internship supervisor required.
Supervised Internship: Read More [+]

Rules & Requirements
Prerequisites: Consent of MCB Faculty, restricted to MCB majors and prospective majors only. Certification from supervisor that credit is required
Repeat rules: Course may be repeated for credit with instructor consent.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of internship per week
Summer: 8 weeks - 6 hours of internship per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

MCELLBI 198 Directed Group Study 1 - 4 Units
Terms offered: Fall 2018, Spring 2018, Fall 2017
Lectures and small group discussions focusing on topics of interest, varying from semester to semester.
Directed Group Study: Read More [+]

Rules & Requirements
Prerequisites: Upper division standing
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

MCELLBI 199 Supervised Independent Study and Research 1 - 4 Units
Terms offered: Fall 2018, Fall 2015, Spring 2015
Enrollment restrictions apply; see the Introduction to Courses and Curricula section of this catalog.
Supervised Independent Study and Research: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer:
6 weeks - 1-4 hours of independent study per week
8 weeks - 1-4 hours of independent study per week
10 weeks - 1-4 hours of independent study per week

Additional Details
Subject/Course Level: Molecular and Cell Biology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.