Molecular Environmental Biology

Bachelor of Science (BS)
The Molecular Environmental Biology (MEB) major is designed to expose students to the organization and function of biological organisms. Molecular approaches are expected to play an increasing role in environmental problem-solving in the near future, and their success will depend upon a sound understanding of biological principles from molecular through ecological levels. The program trains students in the organization and function of biological organisms and their integration into the environment.

Declaring the Major
Students should refer to the College of Natural Resources website (https://nature.berkeley.edu/advising/choosing-major) for all pre-requisite courses and policies, and can meet with peer advisors or academic advisors for full guidance.

- There is a 3.0 GPA requirement to transfer into the College of Natural Resources from other colleges on campus.
- Required pre-requisite courses to declare the Molecular Environmental Biology are: Chemistry 1A/L and 3A/L, one semester of Biology (1A/L or 1B), R1A and R1B, Math 1A/1B or 16A/B or 10A/B
 - It is recommended to complete the ESPM lower-division core courses.
- Undeclared students must declare a major by the end of their fourth semester. Failure to declare a major by junior standing will result in a registration block, and you will not be able to enroll in any courses until you are declared.
- Current UC Berkeley students who entered as freshmen are expected to be able to graduate in a total of 8 semesters (summers excluded). Exceptions are rarely granted. Students should be progressing in major requirements each semester.
- All major requirements must be taken for a letter grade.
- Both halves of the Reading and Composition requirement must be completed by the end of the fourth semester.
- Transfer students are declared into a major upon admission. Students wishing to change majors and/or colleges must meet with the major advisor (https://nature.berkeley.edu/node/2951) for specific guidelines. Transfer students must meet all lower-division requirements and be on track to graduate in a total of four semesters at Berkeley. Transfer students may not apply to transfer colleges or change majors during their first semester, but are strongly encouraged to consult their intended major advisor while planning their schedule for the first semester.

Honors Program
Students with a grade point average (GPA) of 3.6 or higher may enroll in the College of Natural Resources Honors Program (H196) once they have reached upper division standing. To fulfill the program requirements, students design, conduct, and report on an individual research project working with a faculty sponsor. For further information on registering for the Honors Symposium and on Honors requirements, please see the College of Natural Resources website (http://nature.berkeley.edu/site/honors_program.php).

Minor Program
There is no minor program in Molecular Environmental Biology.

Other Majors and Minors Offered by the Department of Environmental Science, Policy, and Management
Conservation and Resource Studies (http://guide.berkeley.edu/undergraduate/degree-programs/conservation-resource-studies) (Major and Minor)
Environmental Sciences (http://guide.berkeley.edu/undergraduate/degree-programs/environmental-sciences) (Major only)
Forestry and Natural Resources (http://guide.berkeley.edu/undergraduate/degree-programs/forestry-natural-resources) (Major and Minor)
Society and Environment (http://guide.berkeley.edu/undergraduate/degree-programs/society-environment) (Major only)

In addition to the University, campus, and college requirements, listed on the College Requirements tab, students must fulfill the below requirements specific to their major program.

Structure of the MEB Major
The lower division coursework provides a strong foundation in biological principles, and the upper division areas introduce students to the organization and function of biological organisms at the molecular, cellular, organismal, and ecological levels. The major also offers specialization through six Areas of Concentration: (1) animal health and behavior, (2) biodiversity, (3) ecology, (4) environmental and human health, (5) insect biology, and (6) global change biology.

**The curriculum has been revised effective Fall 2016. Students admitted prior to Fall 16 and following the previous curriculum should refer to the 15-16 (http://guide.berkeley.edu/archive/2015-16/undergraduate/degree-programs/molecular-environmental-biology/#majorrequirementstext) Guide.

Lower Division Requirements
Breadth Requirement
Select courses from L&S "7 Breadth" Categories (http://guide.berkeley.edu/undergraduate/degree-programs/molecular-environmental-biology/%20http://ls-advise.berkeley.edu/requirements/lsreq.html#7breadth)
One course (3-4 units) in Arts & Literature, Historical Studies, or Philosophy & Values
One course (3-4 units) in Social & Behavioral Sciences or International Studies

Reading & Composition Requirement
Students must complete Reading & Composition (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/reading-composition-requirement) by the end of sophomore year.

ESPM Environmental Science Core
Select one of the following:
- ENV SCI 10 Introduction to Environmental Sciences
Upper division Requirements

Select two courses from Area A and two courses from Area B. No more than one course from each category. Also complete the Senior Seminar (ESPM 192) and 12 units in Area of Concentration.

Area A

Biochemistry
MCELLBI 102 Survey of the Principles of Biochemistry and Molecular Biology 4
CHEM 135 Chemical Biology 3
MCELLBI 110 Molecular Biology: Macromolecular Synthesis and Cellular Function 4

Molecular Biology/Genetics
ESPM 108B Environmental Change Genetics 3
PLANTBI 160 Plant Molecular Genetics 3
MCELLBI 104 Genetics, Genomics, and Cell Biology 4
INTEGBI 141 Human Genetics 3
INTEGBI 161 Population and Evolutionary Genetics 4
INTEGBI 162 Ecological Genetics 4
INTEGBI 164 Human Genetics and Genomics (lab included) 4
MCELLBI 140 General Genetics 4

Cell & Developmental Biology
MCELLBI 130 Cell and Systems Biology 4

MCELLBI 133L Physiology and Cell Biology Laboratory 4
MCELLBI 141 Developmental Biology 4
MCELLBI 137L Physical Biology of the Cell 3
PLANTBI C112 General Microbiology 4
PLANTBI C109 Evolution and Ecology of Development 3
PLANTBI C112 General Microbiology Laboratory 2
PLANTBI 150 Plant Cell Biology 3
PB HLTH 162A Public Health Microbiology 3
PB HLTH 162L Public Health Microbiology Laboratory 1

Area B

Organismal Physiology
ESPM 144 Insect Physiology 3
INTEGBI 132 Survey of Human Physiology 4
INTEGBI 140 Biology of Human Reproduction 4
INTEGBI 148 Comparative Animal Physiology 3
INTEGBI 150 Evolutionary Environmental Physiology 3
INTEGBI 151 Plant Physiological Ecology 4
INTEGBI 151L Plant Physiological Ecology Laboratory 2
MCELLBI 136 Physiology 4
MCELLBI C116 Microbial Diversity 3
PLANTBI/ MCELLBI C116

PLANTBI 135 Physiology and Biochemistry of Plants 3

Organismal Diversity
ESPM 106 American Wildlife: Identification and Conservation (lab included) 3
ESPM 108A Trees: Taxonomy, Growth, and Structures (lab included) 3
ESPM 115B Biology of Aquatic Insects 2
ESPM 132 Spider Biology (lab included) 4
ESPM C138/ INTENB C114/ MCELLBI C114 Introduction to Comparative Virology 4
ESPM 140 General Entomology (lab included) 4
INTEGBI 102LF Introduction to California Plant Life with Laboratory 4
INTEGBI 103LF Invertebrate Zoology with Laboratory 5
INTEGBI 104LF Natural History of the Vertebrates with Laboratory 5
INTEGBI 168 & 168L Systematics of Vascular Plants and Systematics of Vascular Plants with Laboratory 6
PLANTBI 113 California Mushrooms (lab included) 3
PLANTBI C110L Biology of Fungi with Laboratory (lab included) 4
PLANTBI/ MCELLBI C116 Microbial Diversity 3
PLANTBI 120 & 120L Biology of Algae and Laboratory for Biology of Algae 4

Ecology
ESPM 102A Terrestrial Resource Ecology (lab included) 4
ESPM 110 Primate Ecology 4
ESPM 111 Ecosystem Ecology 4
ESPM 112 Microbial Ecology 3
ESPM 112L Microbial Ecology Lab 1
ESPM 113 Insect Ecology 3
1. Animal Health & Behavior

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPM 114</td>
<td>Wildlife Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 115C</td>
<td>Fish Ecology (lab included)</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 116B</td>
<td>Range Ecology, Improvements, and Management</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 116C</td>
<td>Tropical Forest Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 131</td>
<td>Soil Microbial Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 137</td>
<td>Landscape Ecology (Lab included)</td>
<td>3</td>
</tr>
<tr>
<td>ESPM/INTEGBI C149</td>
<td>Molecular Ecology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 153</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 154</td>
<td>Plant Ecology</td>
<td>5</td>
</tr>
<tr>
<td>& 154L</td>
<td>Plant Ecology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 154L</td>
<td>Plant Ecology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 157LF</td>
<td>Ecosystems of California</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 159</td>
<td>The Living Planet: Impact of the Biosphere on the Earth System</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 181L</td>
<td>Paleobotany - The 500-Million Year History of a Greening Planet</td>
<td>4</td>
</tr>
</tbody>
</table>

Senior Seminar recommended Fall of senior year

ESPM C192 Molecular Approaches to Environmental Problem Solving | 2

Lab Requirement

Select two upper division courses which include a lab, as part of the Areas A or B or Area of Concentration requirements. Additionally, this requirement may be fulfilled by: (1) One 3-4 unit independent study lab (course numbered H196 or 199); Summer Forestry Field Camp; or the Moorea Field Study course.

Area of Concentration Requirement

Select 12 units from one concentration below. Up to four independent study units (e.g., ESPM 199, ESPM H196) may be applied to the concentration.

1. Animal Health & Behavior

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPM C103/</td>
<td>Principles of Conservation Biology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESPM 106</td>
<td>American Wildlife: Identification and Conservation (lab included)</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 110</td>
<td>Primate Ecology</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 114</td>
<td>Wildlife Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ESPM C126/</td>
<td>Animal Behavior</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESPM 142</td>
<td>Insect Behavior</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 146L</td>
<td>Medical and Veterinary Entomology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ESPM 186</td>
<td>Management and Conservation of Rangeland Ecosystems</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 188</td>
<td>Case Histories in Wildlife Management</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 104L</td>
<td>Natural History of the Vertebrates with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI C143A/PSYCH C113</td>
<td>Biological Clocks: Physiology and Behavior</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C143B/PSYCH C116</td>
<td>Hormones and Behavior</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 146L</td>
<td>Behavioral Ecology with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 148</td>
<td>Comparative Animal Physiology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 184L</td>
<td>Morphology of the Vertebrate Skeleton with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 121</td>
<td>Animal Cognition</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Biodiversity

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPM C103/</td>
<td>Principles of Conservation Biology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESPM C105</td>
<td>Natural History Museums and Biodiversity Science</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 106</td>
<td>American Wildlife: Identification and Conservation (lab included)</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 108A</td>
<td>Trees: Taxonomy, Growth, and Structures (lab included)</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 115B</td>
<td>Biology of Aquatic Insects</td>
<td>2</td>
</tr>
<tr>
<td>ESPM 132</td>
<td>Spider Biology (lab included)</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 140</td>
<td>General Entomology (lab included)</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 147</td>
<td>Field Entomology ("Ants," "Beetles," and "Spiders" (1 unit each) SP. All three courses must be completed to equal one "lab course")</td>
<td>1</td>
</tr>
<tr>
<td>INTEGBI 102LF</td>
<td>Introduction to California Plant Life with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 103LF</td>
<td>Invertebrate Zoology with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 104LF</td>
<td>Natural History of the Vertebrates with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 160</td>
<td>Evolution</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 166</td>
<td>Evolutionary Biogeography</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 168 & 168L</td>
<td>Systematics of Vascular Plants and Systematics of Vascular Plants with Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>INTEGBI 173LF</td>
<td>Mammalogy with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 174LF</td>
<td>Ornithology with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 175LF</td>
<td>Herpetology with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 183L</td>
<td>Evolution of the Vertebrates with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI C110L</td>
<td>Biology of Fungi with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI 113</td>
<td>California Mushrooms</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI/ MCELLBI C116</td>
<td>Microbial Diversity</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI 120 & 120L</td>
<td>Biology of Algae and Laboratory for Biology of Algae</td>
<td>4</td>
</tr>
</tbody>
</table>

3. Ecology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPM 105A</td>
<td>Sierra Nevada Ecology</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 102A</td>
<td>Terrestrial Resource Ecology</td>
<td>4</td>
</tr>
<tr>
<td>ESPM C103/</td>
<td>Principles of Conservation Biology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESPM 110</td>
<td>Primate Ecology</td>
<td>4</td>
</tr>
<tr>
<td>ESPM C104/</td>
<td>Modeling and Management of Biological Resources</td>
<td>4</td>
</tr>
<tr>
<td>ENVECON C115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESPM 111</td>
<td>Ecosystem Ecology</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 112</td>
<td>Microbial Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 113</td>
<td>Insect Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 114</td>
<td>Wildlife Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 115B</td>
<td>Biology of Aquatic Insects</td>
<td>2</td>
</tr>
<tr>
<td>ESPM 115C</td>
<td>Fish Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 116B</td>
<td>Range Ecology, Improvements, and Management</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 116C</td>
<td>Tropical Forest Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 117</td>
<td>Urban Garden Ecosystem</td>
<td>4</td>
</tr>
</tbody>
</table>
4. Environment & Human Health

ANTHRO 135 Paleoenvironmental Archaeology: Analytical Methods and Laboratory Techniques (lab included) 4

ESPM C126/ INTEGBI C144 Animal Behavior 4

ESPM C138/ PLANTBI C114/ MCELLBI C114 Introduction to Comparative Virology 4

ESPM C148/ NUSCTX C114 Pesticide Chemistry and Toxicology 3

ESPM 152 Global Change Biology 3

ESPM 158 Biodiversity Conservation in Working Landscapes 4

ESPM/NUSCTX C159 Human Diet 4

ESPM 162 Bioethics and Society 4

ESPM C167 Environmental Health and Development 4

INTEGBI 116L Medical Parasitology 4

INTEGBI 117 Medical Ethnobotany 2

INTEGBI 117LF Medical Ethnobotany Laboratory 2

INTEGBI 131 General Human Anatomy 3

INTEGBI 131L General Human Anatomy Laboratory 2

INTEGBI 137 Human Endocrinology 4

INTEGBI 140 Biology of Human Reproduction 4

INTEGBI C143A/ PSYCH C113 Biological Clocks: Physiology and Behavior 3

INTEGBI C143B/ PSYCH C116 Hormones and Behavior 3

MCELLBI 135A Topics in Cell and Developmental Biology: Molecular Endocrinology 3

MCELLBI 150 Molecular Immunology 4

MCELLBI 165 Neurobiology of Disease 3

NUSCTX 103 Nutrient Function and Metabolism 3

NUSCTX 108A Introduction and Application of Food Science 3

NUSCTX 110 Toxicology 4

NUSCTX 160 Metabolic Bases of Human Health and Diseases 4

NUSCTX 166 Nutrition in the Community 3

PLANTBI/ MCELLBI C103 Bacterial Pathogenesis 3

PLANTBI 180 Environmental Plant Biology 2

PB HLTH 103 Drugs, Health, and Society 2

PB HLTH 104A Health Promotion in a College Setting 2

PB HLTH 105 Policy, Planning, and Evaluation of Health Promotion in a College Setting 3

PB HLTH 116 Seminar on Social, Political, and Ethical Issues in Health and Medicine 3

PB HLTH 150B Introduction to Environmental Health Sciences 3

PSYCH 110 Introduction to Biological Psychology 3

5. Insect Biology/Arthropod Science

ESPM 140 General Entomology (ESPM 140 required for Insect Biology concentration.) 4

ESPM C105 Natural History Museums and Biodiversity Science 3

ESPM 113 Insect Ecology 3

ESPM 132 Spider Biology 4

ESPM 134 Fire, Insects, and Diseases in Forest Ecosystems 3

ESPM 142 Insect Behavior 3

ESPM 144 Insect Physiology 3

ESPM 147 Field Entomology 1

ESPM C148 Pesticide Chemistry and Toxicology 3

ESPM 172 Photogrammetry and Remote Sensing 3

6. Global Change Biology

CIV ENG 107 Climate Change Mitigation 3

ECON C102 Natural Resource Economics 4

ENE,RES 101 Ecology and Society 3

ENE,RES 102 Quantitative Aspects of Global Environmental Problems 4

ENVECON C175 The Economics of Climate Change 4

EPS 102 History and Evolution of Planet Earth 4

EPS 115 Stratigraphy and Earth History 4

ESP 152 Global Change Biology 3

ESP 167 Environmental Health and Development 4

ESP C170 Carbon Cycle Dynamics 3

GEOG 142 Climate Dynamics 4

GEOG 143 Global Change Biogeochemistry 3

GEOG C139 Atmospheric Physics and Dynamics 3

INTEGBI 154 Plant Ecology 3

INTEGBI 154L Plant Ecology Laboratory 2

INTEGBI 159 The Living Planet: Impact of the Biosphere on the Earth System 3

LD ARCH 110 Ecological Analysis 3
General Guidelines

1. All courses taken to fulfill the major requirements below must be taken for graded credit, other than courses listed which are offered on a Pass/No Pass basis only. Other exceptions to this requirement are noted as applicable.

2. A minimum cumulative grade point average (GPA) of 2.0 is required.

3. A minimum GPA of 2.0 in upper division major requirements is required.

4. At least 15 of the 36 required upper division units must be taken in the College of Natural Resources (except for students majoring in Environmental Economics and Policy; please see the EEP major adviser for further information).

5. A maximum of 16 units of Independent Study (courses numbered 97, 98, 99, 197, 198, and 199) may count toward graduation, with a maximum of 4 units of Independent Study per semester.

6. No more than 1/3 of the total units attempted at UC Berkeley may be taken Pass/No Pass. This includes units in the Education Abroad Program and UC Intercampus Visitor or Exchange Programs.

7. A maximum of 4 units of Physical Education courses will count toward graduation.

Reading and Composition (http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/reading-composition-requirement)

In order to provide a solid foundation in reading, writing and critical thinking all majors in the College require two semesters of lower division work in composition. Students must complete a first-level reading and composition course by the end of their second semester and a second-level course by the end of their fourth semester.

Foreign Language (http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/foreign-language-requirement): EEP Majors only

The Foreign Language requirement is only required by Environmental Economics and Policy (EEP) majors. It may be satisfied by demonstrating proficiency in reading comprehension, writing, and conversation in a foreign language equivalent to the second semester college level, either by passing an exam or by completing approved course work.

Quantitative Reasoning (http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/quantitative-reasoning-requirement): EEP Majors only

The Quantitative Reasoning requirement is only required by Environmental Economics and Policy (EEP) majors. The requirement may be satisfied by exam or by taking an approved course.

Undergraduate Breadth

Undergraduate breadth provide Berkeley students with a rich and varied educational experience outside of their major program. Breadth courses are built into CNR major requirements. The EEP major is the only CNR major that requires the entire 7 course breadth. As the foundation of a liberal arts education, breadth courses give students a view into the intellectual life of the University while introducing them to a multitude of perspectives and approaches to research and scholarship. Engaging students in new disciplines and with peers from other majors, the breadth experience strengthens interdisciplinary connections and context that prepares Berkeley graduates to understand and solve the complex issues of their day.

High School Exam Credit

CNR students may apply high school exam credit (Advanced Placement, International Baccalaureate, A-Level Exam) towards many College and Major Requirements. See AP Exam Equivalency Chart and Higher Level IB Exam Equivalency Chart in the CNR Student Handbook (https://nature.berkeley.edu/handbook) for more information.

Units Requirements

Students must complete at least 120 semester units of courses subject to certain guidelines:

- At least 36 units must be upper division courses, including a minimum of 15 units of upper division courses in the College of Natural Resources.
- A maximum of 16 units of Special Studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed towards the 120 units; a maximum of four is allowed in a given semester.
- A maximum of 4 units of Physical Education from any school attended will count towards the 120 units.
- Students may receive unit credit for courses graded P (including P/NP units taken through EAP) up to a limit of one-third of the total units taken and passed on the Berkeley campus at the time of graduation.

Semester Unit Minimum

All CNR students must enroll in at least 13 units each fall and spring semester.

Semester Unit Maximum

To request permission to take more than 19.5 units in a semester, please see the major adviser.

Semester Limit

Students admitted as freshmen must graduate within 8 fall/spring semesters at UC Berkeley. Students admitted as transfer students must graduate within 4 fall/spring semesters at UC Berkeley. Students who go on EAP and UCDC can petition for additional semesters. Summer session, UC Extension and non-UC study abroad programs do not count towards this semester limit. Students approved for double majors or simultaneous degrees in two colleges may be granted an additional semester. CNR does not limit the number of total units a student can accrue.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>UGIS 162E</td>
<td>Political Science: Environmental Policymaking and the Politics of Climate Change</td>
<td>4</td>
</tr>
<tr>
<td>UGIS 176B</td>
<td>Green Governance</td>
<td>4</td>
</tr>
<tr>
<td>ANTHRO C129D</td>
<td>Holocene Paleoecology: How Humans Changed the Earth</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Units</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD ARCH 110L</td>
<td>Ecological Analysis Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>LD ARCH C188</td>
<td>Geographic Information Systems</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI 122</td>
<td>Bioenergy</td>
<td>2</td>
</tr>
<tr>
<td>PLANTBI 180</td>
<td>Environmental Plant Biology</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Units</td>
<td>5</td>
</tr>
</tbody>
</table>
Senior Residence Requirement

After reaching senior status (90 semester units earned), students must complete at least 24 of the remaining 30 units in at least two semesters in residence at the College of Natural Resources. To count as residence, a semester must consist of at least four passed units. Inter-campus Visitor, Education Abroad Program, UC Berkeley Washington Program, and UC Berkeley Extension units do not count toward this requirement.

Students may use Summer Session to satisfy one semester of the Senior Residence Requirement, provided that four units of coursework are completed.

Modified Senior Residence Requirement

Participants in the UC Education Abroad Program (UCEAP) or the UC Berkeley Washington Program may meet a modified Senior Residence Requirement by completing 24 of their final 60 semester units in residence (excluding UCEAP). At least 12 of these 24 units must be completed after senior status is reached.

Most students automatically fulfill the residence requirement by attending classes here for four years. In general, there is no need to be concerned about this requirement, unless students go abroad for a semester or year or want to take courses at another institution or through University Extension during their senior year. In these cases, students should make an appointment to see an adviser to determine how they can meet the Senior Residence Requirement.

Grade Requirements

• A 2.0 UC GPA is required for graduation.
• A 2.0 average in all upper division courses required of the major program is required for graduation.

Mission

Molecular Environmental Biology (MEB) focuses on biological organisms and the hierarchy of life, from molecules and genes through cells, organisms, communities and ecosystems. The breadth of this biological science program provides an important perspective for students who have a passion for biology and are interested in the application of biological principles to understand how organisms function in their environment. Also a pre-medical or pre-health science major, the discipline offers an array of six areas of concentration within biology: microbiology, animal health and behavior, insect biology, ecology, biodiversity, and environmental and human health.

Learning Goals for the Major

1. Holistic interdisciplinary thinking, that understanding the “big picture”
 a. Interdisciplinarity: The ability to understand and work across different disciplines
 b. Multiple processes: Recognition that biology and the environment involve multiple processes as do solutions to modern problems
 c. Interconnectedness: Understanding that biology and the environment are interconnected at many spatial, temporal, and hierarchical levels
 d. Global and international approaches: Appreciating that the environment is necessarily global in nature and solutions to problems require international approaches
2. Training in the hierarchy of biology
 a. Fundamentals of Science: Training in the cores areas of physics, chemistry, biology, and mathematics
 b. Quantitative skills: Necessary tools for addressing biological problems
 c. Biochemistry: An understanding of the fundamentals of biological chemistry including the properties of intermediary metabolites, the structure and function of biological macromolecules, and the logic of basis of genetics and gene expression
 d. Molecular biology/Genetics: The molecular biology of bacterial, archaeal and eukaryotic cells and their viruses, mechanisms of DNA replication, transcription, translation, nuclear and organellar genome structure and function and regulation of gene expression heritability, measures of selection, etc.
 e. Cell and developmental biology: Cell structure and function, embryonic and post-embryonic development and growth, and gene expression
 f. Organismal physiology: Understanding of physiological function whether microbial, animal or plant, or comparison between different systems
 g. Organismal diversity: Emphasis on the nature of diversity whether plant, animal, fungus, protist, bacteria, or virus, the history of the lineages and life itself, and how diversity is distributed, global threats, etc.
 h. Ecology: The nature of interactions, biotic or abiotic, that dictate organismal distributions in space and time
 i. Laboratory experiences: Laboratory experiences allow students to gain hands-on experience in scientific approaches and methods
 j. Capstone seminar: The major ends with a senior seminar in Molecular Approaches to Environmental Problem-Solving. This course is highly interdisciplinary and is specifically intended to illustrate how all of the levels and approaches to biology are complementary and applicable to assessing or solving real-world problems especially as it relates to environmental issues

3. Analysis and application for students that choose the Animal Health & Behavior area of concentration
 a. Interaction of health and environment: Understanding how the environment, whether internal or external, affects organism health and behavior
 b. Expertise in health: Examination of the health of organisms from either physiological or environmental perspectives
 c. Epizootics: An appreciation of the potential for diseases in animal populations to spill over into humans as is the case in avian influenza or even the origins of HIV

4. Analysis and application for students that choose the Biodiversity area of concentration
 a. Biodiversity science: Detailed understanding of morphological and ecological diversity of a given organismic lineage
 b. Origins and evolution of life: Basic understanding of systematics and phylogenetics
 c. Quantifying biology: Knowledge of various sampling and species identification techniques to collect data
 d. Informatics: Proficiency in database development and management

5. Analysis and application for students that choose the Ecology area of concentration
 a. Principles of Ecology: Detailed understanding of ecological principles including energy flow, hydrologic, and mineral cycles, factors limiting species distribution and population size, and characteristics of species, populations, and communities
b. Ecological interactions: Interactions relevant to different organismic groups.

6. Analysis and application for students that choose the Environment & Human Health area of concentration.
b. Disease: Environmental epidemiology and the impacts of disease.

7. Analysis and application for students who choose the Insect Biology area of concentration.
a. Insects and biodiversity science: Understanding of major insects groups, relationships, and diversity.
b. Insects and environmental science: Knowledge of the impacts of insects (positive and negative) in the environment.

8. Analysis and application for students who choose the Microbiology area of concentration.
a. Microbiology expertise: Expertise and competence in processes, patterns in microbiology, and the role of microbes in ecosystem function.
c. Microbiology and the environment: Microbiology in environmental science, including impacts on human health & well-being.

9. Basic skills in research, analysis, communication.
a. Reading carefully: Ability to read for detail and comprehension.
b. Writing accurately: Ability to write succinctly, clearly, with coherence.
c. Thinking critically: Critical thinking through the exposure and synthesis of biological knowledge from courses and lab work.
d. Using theoretical and empirical knowledge: Ability to synthesize and apply information obtained through theory and observations.
e. Quantitative skills: Obtaining the quantitative skills necessary for the subdisciplines.
f. Analysis: Ability to perceive, tackle, and solve problems in environmental science.
g. Research experience: Research experience to practice scientific approaches and methods. Work with a faculty mentor while participating in an undergraduate research program or designing an individual research project. Share research results or work in progress in the form of a paper, report, research poster, or public presentation.
h. Communication: Strong communication skills, both written and verbal, to prepare for independent research work or team projects.

10. Lifetime skills.
a. Continuing appreciation for biological systems: To develop a passion for biology and its interconnections with the environment.
b. Representing science: To become an advocate for the training and knowledge of science, particularly the biological disciplines.

In the College of Natural Resources, we provide holistic, individual advising services to prospective and current students who are pursuing major and minors in our college. We assist with a range of topics including course selection, academic decision-making, achieving personal and academic goals, and maximizing the Berkeley experience.

If you are looking to explore your options, or you are ready to declare a major, double major, or minor, contact the undergraduate adviser for your intended major. Visit our website (https://nature.berkeley.edu/advising/meet-cnr-advisors) to explore all of our advising services.

Undergraduate Adviser, Molecular Environmental Biology
Elizabeth Storer
estorer@berkeley.edu
260 Mulford Hall
510-642-1986