Molecular Environmental Biology

Bachelor of Science (BS)

The Molecular Environmental Biology (MEB) major is designed to expose students to the organization and function of biological organisms. Molecular approaches are expected to play an increasing role in environmental problem-solving in the near future, and their success will depend upon a sound understanding of biological principles from molecular through ecological levels. The program trains students in the organization and function of biological organisms and their integration into the environment.

Declaring the Major

Advice on admission for freshmen and transfer students can be found on the CNR Admissions Guide (http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/#admissionstext) page or the CNR Prospective Student website (https://nature.berkeley.edu/prospective-students). Freshman students may apply directly to the major, or they may select the College of Natural Resource's undeclared option and declare the major by the end of their fourth semester. Transfer students apply directly to the major through the UC application.

Information for current Berkeley students who would like to declare the major after admission, including information on change of major or change of college, please see chapter 6 of the College of Natural Resources Undergraduate Student Handbook (https://nature.berkeley.edu/handbook). (https://nature.berkeley.edu/handbook) Students can meet with peer advisors or academic advisors for full guidance.

- There is a 3.0 GPA requirement to transfer into the College of Natural Resources from other colleges on campus.
- Required pre-requisite courses to declare the Molecular Environmental Biology are: Chemistry 1A/L and 3A/L, one semester of Biology (1A/L or 1B), R1A and R1B, Math 1A or 16A or 10A, and a second quantitative course in either Math (1B, 16B, 10B) or Statistics (STAT 2, C8, 20, 25, 131A, PB HLTH 141, 142A).
 - It is recommended that students complete the ESPM lower-division core courses prior to declaring.
- Undeclared students must declare a major by the end of their fourth semester. Failure to declare a major by junior standing will result in a registration block, and you will not be able to enroll in any courses until you are declared.
- Current UC Berkeley students who entered as freshmen are expected to be able to graduate in a total of 8 semesters (summers excluded). Exceptions are rarely granted. Students should be progressing in major requirements each semester.
 - All major requirements must be taken for a letter grade (including breadth).
 - Both halves of the Reading and Composition requirement must be completed by the end of the fourth semester.

Honors Program

Students with a grade point average (GPA) of 3.6 or higher may enroll in the College of Natural Resources Honors Program (H196) once they have reached upper division standing. To fulfill the program requirements, students design, conduct, and report on an individual research project working with a faculty sponsor. For further information on registering for the Honors Symposium and on Honors requirements, please see the College of Natural Resources website (http://nature.berkeley.edu/site/honors_program.php).

Minor Program

There is no minor program in Molecular Environmental Biology.

Other Majors and Minors Offered by the Department of Environmental Science, Policy, and Management

Conservation and Resource Studies (http://guide.berkeley.edu/undergraduate/degree-programs/conservation-resource-studies) (Major and Minor)
Environmental Sciences (http://guide.berkeley.edu/undergraduate/degree-programs/environmental-sciences) (Major only)
Food Systems (https://nature.berkeley.edu/advising/minors/food-systems) (Minor only)
Forestry and Natural Resources (http://guide.berkeley.edu/undergraduate/degree-programs/forestry-natural-resources)(Major and Minor)
Geospatial Information Science and Technology (https://nature.berkeley.edu/advising/minors/gist) (Minor only)
Society and Environment (http://guide.berkeley.edu/undergraduate/degree-programs/society-environment) (Major only)

In addition to the University, campus, and college requirements, listed on the College Requirements tab, students must fulfill the below requirements specific to their major program.

Structure of the MEB Major

The lower division coursework provides a strong foundation in biological principles, and the upper division areas introduce students to the organization and function of biological organisms at the molecular, cellular, organismal, and ecological levels. The major also offers specialization through six Areas of Concentration: (1) animal health and behavior, (2) biodiversity, (3) ecology, (4) environmental and human health, (5) insect biology, and (6) global change biology.

**The curriculum has been revised effective Fall 2016. Students admitted prior to Fall 16 and following the previous curriculum should refer to the 15-16 (http://guide.berkeley.edu/archive/2015-16/undergraduate/degree-programs/molecular-environmental-biology/#majorrequirementstext) Guide.

Lower Division Requirements

Breadth Requirement

Select courses from L&S “7 Breadth” Categories (https://ls.berkeley.edu/seven-course-breadth-requirement)

One course (3-4 units) in Arts & Literature, Historical Studies, or Philosophy & Values

One course (3-4 units) in Social & Behavioral Sciences or International Studies
Reading & Composition Requirement

Students must complete Reading & Composition (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/reading-composition-requirement) by the end of sophomore year.

Core Requirement

ESPM Environmental Science Core

Select one of the following:

- ESPM 2 The Biosphere [3]
- ESPM 6 Environmental Biology [3]
- ESPM C10 Environmental Issues [4]
- ESPM 15 Introduction to Environmental Sciences [3]
- ESPM C46 Climate Change and the Future of California [4]

ESPM Social Science Core

Select one of the following:

- ESPM 5 FROM FARM TO TABLE: FOOD SYSTEMS IN A CHANGING WORLD [4]
- ESPM C11 Americans and the Global Forest [4]
- ESPM C12 Introduction to Environmental Studies [4]
- ESPM C22AC Fire: Past, Present and Future Interactions with the People and Ecosystems of California [4]
- ESPM 50AC Introduction to Culture and Natural Resource Management [4]
- ESPM 60 Environmental Policy, Administration, and Law [4]

Science Core

Complete all of the following:

- CHEM 1A General Chemistry
 & 1AL and General Chemistry Laboratory
- CHEM 3A Chemical Structure and Reactivity
 & 3AL and Organic Chemistry Laboratory
- CHEM 3B Chemical Structure and Reactivity
 & 3BL and Organic Chemistry Laboratory
- BIOLOGY 1A General Biology Lecture
 & 1AL and General Biology Laboratory
- BIOLOGY 1B General Biology Lecture and Laboratory [4]

Quantitative Core (2 courses)

Select one of the following:

- MATH 1A Calculus [4]
- MATH 16A Analytic Geometry and Calculus [3] 1

Select one of the following:

- MATH 1B Calculus [4]
- MATH 16B Analytic Geometry and Calculus [3]
- STAT 2 Introduction to Statistics [4]
- STAT C8 Foundations of Data Science [4]
- PB HLTH 141 Introduction to Biostatistics [5]

Upper division Requirements

Select two courses from Area A and two courses from Area B. Also complete 12 units in Area of Concentration and two lab courses.

Area A: Molecular, Cell, and Developmental Biology

- CHEM 135 Chemical Biology 3
- ESPM 108B Environmental Change Genetics (lab included) 3
- INTEGBI 141 Human Genetics 3
- INTEGBI 161 Population and Evolutionary Genetics 4
- INTEGBI 162 Ecological Genetics 4
- INTEGBI 164 Human Genetics and Genomics (lab included) 4
- MCELLBI C100A Biophysical Chemistry: Physical Principles and the Molecules of Life 4
- MCELLBI 102 Survey of the Principles of Biochemistry and Molecular Biology 4
- MCELLBI 104 Genetics, Genomics, and Cell Biology 4
- MCELLBI 110 Molecular Biology: Macromolecular Synthesis and Cellular Function 4
- MCELLBI 130 Cell and Systems Biology 4
- MCELLBI 133L Physiology and Cell Biology Laboratory 4
- MCELLBI 137L Physical Biology of the Cell 3
- MCELLBI 140 General Genetics 4
- MCELLBI 141 Developmental Biology 4
- PLANTBI C109 Evolution and Ecology of Development 3
- PLANTBI C112 General Microbiology 3
- PLANTBI C112L General Microbiology Laboratory 2
- PLANTBI 135 Physiology and Biochemistry of Plants 3
- PLANTBI 150 Plant Cell Biology 3
- PLANTBI 160 Plant Molecular Genetics 3
- PB HLTH 162A Public Health Microbiology 3
- PB HLTH 162L Public Health Microbiology Laboratory 2

Area B: Ecology and Organismal Biology

- ESPM C105 Natural History Museums and Biodiversity Science (lab included) 3
- ESPM 108A Trees: Taxonomy, Growth, and Structures (lab included) 3
- ESPM 111 Ecosystem Ecology 4
- ESPM 112 Microbial Ecology 3
- ESPM 112L Microbial Metagenomic Data Analysis Lab 1
- ESPM 113 Insect Ecology 3
- ESPM 114 Wildlife Ecology 3
- ESPM 115C Fish Ecology (lab included) 3
- ESPM 116B Rangeland Ecology 4
- ESPM C125 Biogeography 4

2 For pre-health students, PHYSICS 8B is required in addition to PHYSICS 8A.
Lab Requirement

Select two upper division courses which include a lab, as part of the Areas A or B or Area of Concentration requirements. Additionally, this requirement may be fulfilled by: (1) One 3-4 unit independent study lab (research units numbered 192C, H196 or 199); Summer Forestry Field Camp; or the Moorea Field Study course.

Area of Concentration Requirement

Select 12 units from one concentration below. Up to four independent study units (research units numbered 192C, H196 or 199) may be applied to the concentration.

Animal Health & Behavior

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPM 132</td>
<td>Spider Biology (lab included)</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 137</td>
<td>Landscape Ecology (Lab included)</td>
<td>3</td>
</tr>
<tr>
<td>ESPM C138/</td>
<td>Introduction to Comparative Virology</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI C114/ MCELLBI C114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESPM 140</td>
<td>General Entomology (lab included)</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 144</td>
<td>Insect Physiology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 102LF</td>
<td>Introduction to California Plant Life with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 103LF</td>
<td>Invertebrate Zoology with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 104LF</td>
<td>Natural History of the Vertebrates with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 132</td>
<td>Survey of Human Physiology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 140</td>
<td>Evolutionary Environmental Physiology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 150</td>
<td>Plant Physiological Ecology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 151</td>
<td>Plant Physiological Ecology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 153</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 154 & 154L</td>
<td>Plant Ecology and Plant Ecology Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 154L</td>
<td>Plant Ecology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 157LF</td>
<td>Ecosystems of California</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 167</td>
<td>Evolution and Earth History: From Genes to Fossils</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 168 & 168L</td>
<td>Systematics of Vascular Plants with Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>INTEGBI 181L</td>
<td>Paleobotany - The 500-Million Year History of a Greening Planet</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C185L</td>
<td>Human Palaeontology</td>
<td>5</td>
</tr>
<tr>
<td>MCELLBI 136</td>
<td>Physiology</td>
<td>4</td>
</tr>
<tr>
<td>NUSCTX 103</td>
<td>Nutrient Function and Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI C110L</td>
<td>Biology of Fungi with Laboratory (lab included)</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI 113</td>
<td>California Mushrooms (lab included)</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI/ MCELLBI C116</td>
<td>Microbial Diversity</td>
<td>3</td>
</tr>
<tr>
<td>PLANTBI 120</td>
<td>Biology of Algae</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 144</td>
<td>Animal Behavior</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C144</td>
<td>Molecular Approaches to Environmental Problem Solving</td>
<td>2</td>
</tr>
</tbody>
</table>

Biodiversity

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPM C103/</td>
<td>Principles of Conservation Biology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESPM C105</td>
<td>Natural History Museums and Biodiversity Science (lab included)</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 108A</td>
<td>Trees: Taxonomy, Growth, and Structures (lab included)</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 125</td>
<td>Biogeography</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 132</td>
<td>Spider Biology (lab included)</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 140</td>
<td>General Entomology (lab included)</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 147</td>
<td>Field Entomology (“Ants,” “Beetles,” and “Spiders” (1 unit each) SP. All three courses must be completed to equal one “lab course”)</td>
<td>1</td>
</tr>
<tr>
<td>ESPM 157</td>
<td>Data Science in Global Change Ecology</td>
<td>4</td>
</tr>
<tr>
<td>ESPM C192</td>
<td>Molecular Approaches to Environmental Problem Solving</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 102LF</td>
<td>Introduction to California Plant Life with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 103LF</td>
<td>Invertebrate Zoology with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 104LF</td>
<td>Natural History of the Vertebrates with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 160</td>
<td>Evolution</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 168 & 168L</td>
<td>Systematics of Vascular Plants with Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>INTEGBI 173LF</td>
<td>Mammalogy with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 174LF</td>
<td>Ornithology with Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Molecular Environmental Biology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPM 114</td>
<td>Wildlife Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ESPM C126/</td>
<td>Animal Behavior</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESPM 142</td>
<td>Insect Behavior</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 157</td>
<td>Data Science in Global Change Ecology</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 158</td>
<td>Biodiversity Conservation in Working Landscapes</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 186</td>
<td>Management and Conservation of Rangeland Ecosystems</td>
<td>4</td>
</tr>
<tr>
<td>ESPM C192</td>
<td>Molecular Approaches to Environmental Problem Solving</td>
<td>2</td>
</tr>
<tr>
<td>INTEGBI 104LF</td>
<td>Natural History of the Vertebrates with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 135</td>
<td>The Mechanics of Organisms</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C135L</td>
<td>Laboratory in the Mechanics of Organisms</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C143A/ Biological Clocks: Physiology and Behavior</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYCH C113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTEGBI C143B/</td>
<td>Hormones and Behavior</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH C116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTEGBI C146LF</td>
<td>Behavioral Ecology with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 173LF</td>
<td>Mammalogy with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 174LF</td>
<td>Ornithology with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 175LF</td>
<td>Herpetology with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 148</td>
<td>Comparative Animal Physiology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 184L</td>
<td>Morphology of the Vertebrate Skeleton with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 121</td>
<td>Animal Cognition</td>
<td>3</td>
</tr>
</tbody>
</table>
Molecular Environmental Biology

INTEGBI 175LF Herpetology with Laboratory 4
INTEGBI 183L Evolution of the Vertebrates with Laboratory 4
PLANTBI C110L Biology of Fungi with Laboratory 4
PLANTBI 113 California Mushrooms 3
PLANTBI/ MCELLBI C116 Microbial Diversity 3
PLANTBI 120 Biology of Algae 4
& 120L and Laboratory for Biology of Algae 4

Ecology

ESPM C103/ INTEGBI C156 Principles of Conservation Biology 4
ESPM C104/ ENVECON C115 Modeling and Management of Biological Resources 4
ESPM 105A Sierra Nevada Ecology (Summer Forestry Camp) 4
ESPM 111 Ecosystem Ecology 4
ESPM 112 Microbial Ecology 3
ESPM 112L Microbial Metagenomic Data Analysis Lab 1
ESPM 113 Insect Ecology 3
ESPM 114 Wildlife Ecology 3
ESPM C115A Freshwater Ecology 3
ESPM 115C Fish Ecology 3
ESPM 116B Rangeland Ecology 4
ESPM 117 Urban Garden Ecosystems 4
ESPM 118 Agricultural Ecology 4
ESPM C130/ GEOG C136 Terrestrial Hydrology 4
ESPM 131 Soil Microbial Ecology 3
ESPM 134 Fire, Insects, and Diseases in Forest Ecosystems 3
ESPM 137 Landscape Ecology 3
ESPM 147 Field Entomology 1
ESPM 152 Global Change Biology 3
ESPM 157 Data Science in Global Change Ecology 4
ESPM 158 Biodiversity Conservation in Working Landscapes 4
ESPM 159 Human Diet 4
ESPM 162 Bioethics and Society 4
ESPM 162A Health, Medicine, Society and Environment 4
ESPM C167 Environmental Health and Development 4
ESPM C192 Molecular Approaches to Environmental Problem Solving 2
INTEGBI 116L Medical Parasitology 4
INTEGBI 117 Medical Ethnobotany 2
INTEGBI 117LF Medical Ethnobotany Laboratory 2
INTEGBI 131 General Human Anatomy 3
INTEGBI 131L General Human Anatomy Laboratory 2
INTEGBI 137 Human Endocrinology 4
INTEGBI 140 Biology of Human Reproduction 4
INTEGBI C143A/ PSYCH C113 Biological Clocks: Physiology and Behavior 3
INTEGBI C143B/ PSYCH C116 Hormones and Behavior 3
MCELLBI 135A Topics in Cell and Developmental Biology: Molecular Endocrinology 3
MCELLBI 150 Molecular Immunology 4
MCELLBI 165 Neurobiology of Disease 3
NUSCTX 103 Nutrient Function and Metabolism 3
NUSCTX 108A Introduction and Application of Food Science 3
NUSCTX 110 Toxicology 4
NUSCTX 160 Metabolic Bases of Human Health and Diseases 4
NUSCTX 166 Nutrition in the Community 3
PLANTBI/ MCELLBI C103 Bacterial Pathogenesis 3
PB HLTH 101 A Sustainable World: Challenges and Opportunities 3
PB HLTH 116 Seminar on Social, Political, and Ethical Issues in Health and Medicine 3
PB HLTH 150B Introduction to Environmental Health Sciences 3
PB HLTH 196 Special Topics in Public Health 1-4
PSYCH 110 Introduction to Biological Psychology 3

Insect Biology/Arthropod Science

ESPM 140 General Entomology (ESPM 140 required for Insect Biology concentration.) 4
ESPM C105 Natural History Museums and Biodiversity Science 3
ESPM 113 Insect Ecology 3
ESPM 132 Spider Biology 4
ESPM 134 Fire, Insects, and Diseases in Forest Ecosystems 3
ESPM 142 Insect Behavior 3
ESPM 144 Insect Physiology 3
ESPM 147 Field Entomology 1
ESPM C148 Pesticide Chemistry and Toxicology 3
ESPM 157 Data Science in Global Change Ecology 4

Environment & Human Health

ANTHRO 135 Paleoenvironmental Archaeology: Archaeological Techniques (lab included) 4
ESPM C126/ INTEGBI C144 Animal Behavior 4
ESPM C138/ PLANTBI C114/ MCELLBI C114 Introduction to Comparative Virology 4

Insect Biology/Arthropod Science

ESPM 140 General Entomology (ESPM 140 required for Insect Biology concentration.) 4
ESPM C105 Natural History Museums and Biodiversity Science 3
ESPM 113 Insect Ecology 3
ESPM 132 Spider Biology 4
ESPM 134 Fire, Insects, and Diseases in Forest Ecosystems 3
ESPM 142 Insect Behavior 3
ESPM 144 Insect Physiology 3
ESPM 147 Field Entomology 1
ESPM C148 Pesticide Chemistry and Toxicology 3
ESPM 157 Data Science in Global Change Ecology 4
General Guidelines

1. All courses taken to fulfill the major requirements below must be taken for graded credit, other than courses listed which are offered on a Pass/No Pass basis only. Other exceptions to this requirement are noted as applicable.

2. A minimum cumulative grade point average (GPA) of 2.0 is required.

3. A minimum GPA of 2.0 in upper division major requirements is required.

4. At least 15 of the 36 required upper division units must be taken in the College of Natural Resources (except for students majoring in Environmental Economics and Policy; please see the EEP major adviser for further information).

5. A maximum of 16 units of Independent Study (courses numbered 97, 98, 99, 197, 198, and 199) may count toward graduation, with a maximum of 4 units of Independent Study per semester.

6. No more than 1/3 of the total units attempted at UC Berkeley may be taken Pass/No Pass. This includes units in the Education Abroad Program and UC Intercampus Visitor or Exchange Programs.

7. A maximum of 4 units of Physical Education courses will count toward graduation.

Reading and Composition (http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/reading-composition-requirement)

In order to provide a solid foundation in reading, writing and critical thinking all majors in the College require two semesters of lower division work in composition. Students must complete a first-level reading and composition course by the end of their second semester and a second-level course by the end of their fourth semester.

Foreign Language (http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/foreign-language-requirement): EEP Majors only

The Foreign Language requirement is only required by Environmental Economics and Policy (EEP) majors. It may be satisfied by demonstrating proficiency in reading comprehension, writing, and conversation in a foreign language equivalent to the second semester college level, either by passing an exam or by completing approved course work.

Quantitative Reasoning (http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/quantitative-reasoning-requirement): EEP Majors only

The Quantitative Reasoning requirement is only required by Environmental Economics and Policy (EEP) majors. The requirement may be satisfied by exam or by taking an approved course.

Undergraduate Breadth

Undergraduate breadth provide Berkeley students with a rich and varied educational experience outside of their major program and many students complete their breadth courses in their first two years. Breadth courses are built into CNR major requirements and each major requires a different number of breadth courses and categories. The EEP major is the only CNR major that requires the entire 7 course breadth. Refer to the major snapshots on each CNR major page (https://nature.berkeley.edu/advising/majors-minors) for for additional information.

High School Exam Credit

Units Requirements

Students must complete at least 120 semester units of courses subject to certain guidelines:

- At least 36 units must be upper division courses, including a minimum of 15 units of upper division courses in the College of Natural Resources.
- A maximum of 16 units of Special Studies coursework (courses numbered 97, 98, 99, 197, 198, and 199) is allowed towards the 120 units; a maximum of four is allowed in a given semester.
- A maximum of 4 units of Physical Education from any school attended will count towards the 120 units.
• Students may receive unit credit for courses graded P (including P/ NP units taken through EAP) up to a limit of one-third of the total units taken and passed on the Berkeley campus at the time of graduation.

Semester Unit Minimum
All CNR students must enroll in at least 13 units each fall and spring semester.

Semester Unit Maximum
To request permission to take more than 19.5 units in a semester, please see the major adviser.

Semester Limit
Students admitted as freshmen must graduate within 8 fall/spring semesters at UC Berkeley. Students admitted as transfer students must graduate within 4 fall/spring semesters at UC Berkeley. Students who go on EAP and UCDC can petition for additional semesters. Summer session, UC Extension and non-UC study abroad programs do not count towards this semester limit. Students approved for double majors or simultaneous degrees in two colleges may be granted an additional semester. CNR does not limit the number of total units a student can accrue.

Senior Residence Requirement
After the term in which you achieve and exceed 90 units (senior status), you must complete at least 24 of the remaining 30 units in residence at the College of Natural Resources over at least 2 semesters. To count as residence, a semester must consist of at least 6 passed units taken while the student is a member of CNR. At least one of the two terms must be a fall or spring semester. Senior residence terms do not need to be completed consecutively. All courses offered on campus for the fall, spring, and summer terms by Berkeley departments and programs and all Berkeley online ("W") courses count. Inter-campus Visitor, Education Abroad Program, UC Berkeley Washington Program, and UC Berkeley Extension units do not count toward this requirement.

Students may use Summer Session to satisfy one semester of the Senior Residence Requirement, provided that four units of coursework are completed.

Modified Senior Residence Requirement
Participants in a fall, spring or summer UC Education Abroad Program (UCEAP), Berkeley Summer Abroad, or the UC Berkeley Washington Program may meet a modified Senior Residence Requirement by completing 24 of their final 60 semester units in residence (excluding UCEAP). At least 12 of these 24 units must be completed after senior status is reached. International travel study programs sponsored by Summer Sessions and education abroad programs offered outside of the UC system do not qualify for modified senior residence.

Most students automatically satisfy the residence requirement by attending classes here for four years. In general, there is no need to be concerned about this requirement, unless students go abroad for a semester or year or want to take courses at another institution or through University Extension during their senior year. In these cases, students should make an appointment to see an adviser to determine how they can meet the Senior Residence Requirement.

Grade Requirements
• A 2.0 UC GPA is required for graduation.
• A 2.0 average in all upper division courses required of the major program is required for graduation.
• A grade of at least C- is required in all courses for the major

Mission
Molecular Environmental Biology (MEB) focuses on biological organisms and the hierarchy of life, from molecules and genes through cells, organisms, communities and ecosystems. The breadth of this biological science program provides an important perspective for students who have a passion for biology and are interested in the application of biological principles to understand how organisms function in their environment. Also a pre-medical or pre-health science major, the discipline offers an array of six areas of concentration within biology: animal health and behavior, biodiversity, ecology, environmental and human health, insect biology, and global change biology.

Learning Goals for the Major
1. Holistic multidisciplinary thinking - understanding the “big picture”
 a. Interdisciplinarity & Crossdisciplinarity: The ability to understand and work across different disciplines (crossdisciplinarity) and to integrate the knowledge and methods from them (interdisciplinarity)
 b. Multiple processes: Recognition that biology and the environment involve multiple processes, as do solutions to modern problems
 c. Interconnectedness: Understanding that biology and the environment are interconnected at many spatial, temporal, and hierarchical levels
 d. Global and international approaches: Appreciating that the environment is necessarily global in nature and solutions to problems require international approaches

2. Training in the hierarchy of biology
 a. Fundamentals of Science: Training in the cores areas of physics, chemistry, biology, and mathematics
 b. Quantitative skills: Necessary tools for addressing biological problems
 c. Biochemistry: An understanding of the fundamentals of biological chemistry, including the properties of intermediary metabolites, the structure and function of biological macromolecules, and the logical basis of genetics and gene expression
 d. Molecular biology/Genetics: The molecular biology of bacterial, archaeal and eukaryotic cells and their viruses, mechanisms of DNA replication, transcription, translation, nuclear and organelar genome structure and function, regulation of gene expression, heritability, measures of selection, etc.
 e. Cell and developmental biology: Cell structure and function, cellular metabolic processes, embryonic and post-embryonic development and growth
f. Organismal physiology: Understanding of physiological function, whether microbial, animal or plant, or comparison between different systems

g. Organismal diversity: Emphasis on the nature of diversity whether plant, animal, fungus, protist, bacteria, or virus, the history of the lineages and life itself, global threats, how diversity is distributed, and the ecological and evolutionary processes that generate and maintain diversity.

h. Ecology: The nature of interactions, biotic or abiotic, that dictate organismal distributions in space and time, energy flows, or population dynamics

i. Laboratory experiences: Laboratory experiences allow students to gain hands-on experience in scientific approaches and methods

3. Analysis and application for students who choose the Animal Health & Behavior area of concentration

a. Interaction of health and environment: Understanding how the environment, whether internal or external, affects organism health and behavior

b. Expertise in health: Examination of the health of organisms from either physiological or environmental perspectives

c. Epizootics: An appreciation of the potential for diseases in animal populations to spill over into humans as is the case in avian influenza or even the origins of HIV

4. Analysis and application for students who choose the Biodiversity area of concentration

a. Biodiversity science: Detailed understanding of morphological and ecological diversity of a given organismic lineage

b. Origins and evolution of life: Basic understanding of systematics and phylogenetics

c. Quantifying biology: Knowledge of various sampling and species identification techniques to collect data

d. Informatics: Proficiency in database development and management

5. Analysis and application for students who choose the Ecology area of concentration

a. Principles of Ecology: Detailed understanding of ecological principles including energy flow, hydrologic, and mineral cycles, factors limiting species distribution and population size, and characteristics of species, populations, and communities

b. Ecological interactions: Interactions relevant to different organismic groups.

6. Analysis and application for students who choose the Environment & Human Health area of concentration.

b. Disease: Environmental epidemiology and the impacts of disease.

7. Analysis and application for students who choose the Insect Biology area of concentration.

a. Insects and biodiversity science: Understanding of major insects groups, relationships, and diversity.

b. Insects and environmental science: Knowledge of the impacts of insects (positive and negative) in the environment.

8. Analysis and application for students who choose the Global Change Biology area of concentration.

a. Global change biology expertise: How changes to the global environment impact organisms and ecosystems, including impacts to spatial and temporal distributions of organisms, ecological processes, and ecosystem functions.

b. Global change and the environment: Global change biology in environmental science, including effects of human activities and impacts on human health and well-being.

c. Environmental problem solving: Conservation and mitigation strategies, ecological analysis, and natural resource economics

9. Basic skills in research, analysis, communication.

a. Reading carefully: Ability to read for detail and comprehension.

b. Writing accurately: Ability to write succinctly, clearly, and coherently.

c. Thinking critically: Critical thinking through the synthesis of biological knowledge from courses and lab work.

d. Using theoretical and empirical knowledge: Ability to synthesize and apply information obtained through theory and observations.

e. Quantitative skills: Obtaining the quantitative skills necessary for the subdisciplines.

f. Analysis: Ability to perceive, tackle, and solve problems in environmental science.

g. Research experience: Research experience to practice scientific approaches and methods. Work with a faculty mentor while participating in an undergraduate research program or designing an individual research project. Share research results or work in progress in the form of a paper, report, research poster, or public presentation.

h. Communication: Strong communication skills, both written and verbal, to prepare for independent research work or team projects.

10. Lifetime skills.
a. Continuing appreciation for biological systems: To develop a passion for biology and its interconnections with the environment.

b. Representing science: To become an advocate for the training and knowledge of science, particularly the biological disciplines.

c. Problem solving: To develop and practice scientific thinking and problem-solving skills, through data analysis, hypothesis testing, and critical reasoning, that translate to future careers inside and outside of biology.

In the College of Natural Resources, we provide holistic, individual advising services to prospective and current students who are pursuing major and minors in our college. We assist with a range of topics including course selection, academic decision-making, achieving personal and academic goals, and maximizing the Berkeley experience.

If you are looking to explore your options, or you are ready to declare a major, double major, or minor, contact the undergraduate advisor for your intended major. Visit our website (https://nature.berkeley.edu/advising/meet-cnr-advisors) to explore all of our advising services.

Undergraduate Advisors, Molecular Environmental Biology

Leleña Avila (Last names A-C)
meb.ugrad@berkeley.edu
260 Mulford Hall
510-642-6730

Elizabeth Storer (Last names D-Z)
meb.ugrad@berkeley.edu
260 Mulford Hall
510-642-1986