Statistics

Bachelor of Arts (BA)

The undergraduate major at Berkeley provides a systematic and thorough grounding in applied and theoretical statistics as well as probability. The quality and dedication of the teaching staff and faculty are extremely high. A major in Statistics from Berkeley is an excellent preparation for a career in science or industry, or for further academic study in a wide variety of fields. The department has particular strength in Machine Learning, a key ingredient of the emerging field of Data Science. It is also very useful to combine studies of statistics and probability with other subjects. Our department excels at interdisciplinary science, and more than half of the department’s undergraduate students are double or triple majors.

Students interested in teaching statistics and mathematics in middle or high school should pursue the teaching option within the major. Students interested in teaching should also consider the Cal Teach Program (http://calteach.berkeley.edu).

Declaring the Major

Students should apply in the semester they will complete their prerequisites. For applicants with prerequisites in progress, applications will be reviewed after the grades for all prerequisites are available, 2-3 weeks after finals. For applicants who have completed all prerequisites in a previous term, applications will be reviewed and processed within a week.

For detailed information regarding the process of declaring the major, please see the Statistics Department website. (http://statistics.berkeley.edu/programs/undergrad/major/#HowtoDeclare)

Minor Program

The minor is for students who want to study a significant amount of statistics and probability at the upper division level. For information regarding the requirements, please see the Minor Requirements tab on this page.

For detailed information regarding the process of declaring the minor, please see the Statistics Department website. (http://statistics.berkeley.edu/programs/undergrad/minor)

In addition to the University, campus, and college requirements, listed on the College Requirements tab, students must fulfill the below requirements specific to their major program.

General Guidelines

1. All courses taken to fulfill the major requirements below must be taken for graded credit, other than courses listed which are offered on a Pass/No Pass basis only. Other exceptions to this requirement are noted as applicable.

2. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs, with the exception of minors offered outside of the College of Letters & Science.

3. A minimum grade point average (GPA) of 2.0 must be maintained in both upper and lower division courses used to fulfill the major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

Lower Division Prerequisites (Four Courses)

Students must earn a minimum 3.2 UC grade point average in the lower division math prerequisites with no lower than a C in each.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1A</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1B</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 53</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 54</td>
<td>Linear Algebra and Differential Equations</td>
<td>4</td>
</tr>
</tbody>
</table>

Upper Division Requirements (Nine Courses)

Core Statistics Courses (3)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 133</td>
<td>Concepts in Computing with Data</td>
<td>3</td>
</tr>
<tr>
<td>STAT 134</td>
<td>Concepts of Probability or STAT 140 Probability for Data Science</td>
<td>4</td>
</tr>
<tr>
<td>STAT 135</td>
<td>Concepts of Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

Statistics Electives (3)

Select three statistics electives from the following: at least one of the selections must have a lab:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 150</td>
<td>Stochastic Processes</td>
<td></td>
</tr>
<tr>
<td>STAT 151A</td>
<td>Linear Modelling: Theory and Applications (LAB COURSE)</td>
<td></td>
</tr>
<tr>
<td>STAT 152</td>
<td>Sampling Surveys (LAB COURSE)</td>
<td></td>
</tr>
<tr>
<td>STAT 153</td>
<td>Introduction to Time Series (LAB COURSE)</td>
<td></td>
</tr>
<tr>
<td>STAT 154</td>
<td>Modern Statistical Prediction and Machine Learning (LAB COURSE)</td>
<td></td>
</tr>
<tr>
<td>STAT 155</td>
<td>Game Theory</td>
<td></td>
</tr>
<tr>
<td>STAT 157</td>
<td>Seminar on Topics in Probability and Statistics</td>
<td></td>
</tr>
<tr>
<td>STAT 158</td>
<td>The Design and Analysis of Experiments (LAB COURSE)</td>
<td></td>
</tr>
<tr>
<td>STAT 159</td>
<td>Reproducible and Collaborative Statistical Data Science (LAB COURSE)</td>
<td></td>
</tr>
</tbody>
</table>

Applied Cluster Courses (3)

Select three applied cluster courses. See Cluster Course Information and Approved Cluster Courses below the Teaching Option requirements.

Upper Division Requirements: Teaching Option (Nine Courses)

Core Statistics Courses (3)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 133</td>
<td>Concepts in Computing with Data</td>
<td>3</td>
</tr>
<tr>
<td>STAT 134</td>
<td>Concepts of Probability or STAT 140 Probability for Data Science</td>
<td>4</td>
</tr>
<tr>
<td>STAT 135</td>
<td>Concepts of Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

Statistics Electives (2)

Select two of the following; at least one course must include a lab:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 150</td>
<td>Stochastic Processes</td>
<td></td>
</tr>
<tr>
<td>STAT 151A</td>
<td>Linear Modelling: Theory and Applications (LAB COURSE)</td>
<td></td>
</tr>
<tr>
<td>STAT 152</td>
<td>Sampling Surveys (LAB COURSE)</td>
<td></td>
</tr>
<tr>
<td>STAT 153</td>
<td>Introduction to Time Series (LAB COURSE)</td>
<td></td>
</tr>
</tbody>
</table>
Cluster Course Information

The applied cluster is a chance to learn about areas in which statistics can be applied and to learn specialized techniques not taught in the Statistics Department. Students need to design their own applied cluster. The courses should have a unifying theme. Picking their own applied cluster is a valuable exercise that gives students a chance to explore and refine their interests and to develop a coherent course of study. A preapproved list has been provided below. However, it is not exhaustive. If students would like to use a course that is not on the list, approved courses from the same department. Students' choices consist of courses from more than one department, but at least two must be approved courses from the same department. This is not an exhaustive list.

1. Courses must be upper division courses and at least 3 units.
2. Courses in the biological and physical sciences, chemistry, and engineering are often acceptable.
3. Courses in social sciences must be quantitative.
4. Courses with statistics prerequisites are often acceptable.
5. Courses that are similar to courses offered in the Statistics Department are not acceptable.
6. Courses that primarily teach how to use a particular software package are not acceptable.
7. Courses that focus on the use of spreadsheet software (e.g., UGBA 104) are not acceptable.
8. Courses should be taken in the home department. For instance, economics classes should be taken in the economics or business department.

9. Seminars and special topics courses require approval by the undergraduate faculty adviser.

Approved Cluster Courses

Of the three applied cluster courses required for the major, at least two must be approved courses from the same department. This is not an exhaustive list.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHRO C100</td>
<td>Human Paleontology</td>
<td>5</td>
</tr>
<tr>
<td>ANTHRO C103</td>
<td>Introduction to Human Osteology</td>
<td>6</td>
</tr>
<tr>
<td>ANTHRO 115</td>
<td>Introduction to Medical Anthropology</td>
<td>4</td>
</tr>
<tr>
<td>ANTHRO 121C</td>
<td>Historical Archaeology: Historical Artifact</td>
<td>4</td>
</tr>
<tr>
<td>ANTHRO 124C/INTEGBI C187</td>
<td>Human Biogeography of the Pacific</td>
<td>3</td>
</tr>
<tr>
<td>ANTHRO 127A</td>
<td>Bioarchaeology: Introduction to Skeletal Biology and Bioarchaeology</td>
<td>4</td>
</tr>
<tr>
<td>ANTHRO 127B</td>
<td>Bioarchaeology: Reconstruction of Life in Bioarchaeology</td>
<td>4</td>
</tr>
<tr>
<td>ANTHRO 129D/INTEGBI C155</td>
<td>Holocene Paleoecology: How Humans Changed the Earth</td>
<td>3</td>
</tr>
<tr>
<td>ANTHRO 132A</td>
<td>Analysis of Archaeological Materials: Analysis of Archaeological Ceramics</td>
<td>4</td>
</tr>
<tr>
<td>ANTHRO 135</td>
<td>Paleoenthobotany: Archaeological Methods and Laboratory Techniques</td>
<td>4</td>
</tr>
<tr>
<td>ANTHRO 169B</td>
<td>Research Theory and Methods in Socio-Cultural Anthropology</td>
<td>5</td>
</tr>
<tr>
<td>ARCH 140</td>
<td>Energy and Environment</td>
<td>4</td>
</tr>
<tr>
<td>ARCH 150</td>
<td>Introduction to Structures</td>
<td>4</td>
</tr>
<tr>
<td>ARCH 154</td>
<td>Design and Computer Analysis of Structure</td>
<td>3</td>
</tr>
<tr>
<td>ASTRON 160</td>
<td>Stellar Physics</td>
<td>4</td>
</tr>
<tr>
<td>ASTRON C161</td>
<td>Relativistic Astrophysics and Cosmology</td>
<td>4</td>
</tr>
<tr>
<td>ASTRON C162</td>
<td>Planetary Astrophysics</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG 104</td>
<td>Biological Transport Phenomena</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG C112</td>
<td>Molecular Biomechanics and Mechanobiology of the Cell</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG C117</td>
<td>Structural Aspects of Biomaterials</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG C119</td>
<td>Orthopedic Biomechanics</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG C125</td>
<td>Introduction to Robotics</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG C125B</td>
<td>Robotic Manipulation and Interaction</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG 131</td>
<td>Introduction to Computational Molecular and Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG C136L</td>
<td>Laboratory in the Mechanics of Organisms</td>
<td>3</td>
</tr>
<tr>
<td>BIO ENG C137</td>
<td>Designing for the Human Body</td>
<td>3</td>
</tr>
<tr>
<td>BIO ENG 144</td>
<td>Introduction to Protein Informatics</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG C145L</td>
<td>Introductory Electronic Transducers Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>BIO ENG C145M</td>
<td>Introductory Microcomputer Interfacing Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>BIO ENG 147</td>
<td>Principles of Synthetic Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG C165</td>
<td>Medical Imaging Signals and Systems</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG C181</td>
<td>The Berkeley Lectures on Energy: Energy from Biomass</td>
<td>3</td>
</tr>
<tr>
<td>CHM ENG 140</td>
<td>Introduction to Chemical Process Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG 141</td>
<td>Chemical Engineering Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>CHM ENG C195A</td>
<td>The Berkeley Lectures on Energy: Energy from Biomass</td>
<td>3</td>
</tr>
</tbody>
</table>
CHEM C110L General Biochemistry and Molecular Biology Laboratory 4
CHEM 120A Physical Chemistry 3
CHEM 120B Physical Chemistry 3
CHEM C130 Biophysical Chemistry: Physical Principles and the Molecules of Life 4
CHEM C138 The Berkeley Lectures on Energy: Energy from Biomass 3
CY PLAN 101 Introduction to Urban Data Analytics 4
CY PLAN 118A The Urban Community 4
CY PLAN 119 Planning for Sustainability 3
CIV ENG 100 Elementary Fluid Mechanics 4
CIV ENG 103 Introduction to Hydrology 3
CIV ENG C106 Air Pollution 3
CIV ENG C116 Chemistry of Soils 3
CIV ENG C133 Engineering Analysis Using the Finite Element Method 3
CIV ENG 155 Transportation Systems Engineering 3
COG SCI C100 Basic Issues in Cognition 3
COG SCI C101 The Mind and Language 4
COG SCI C102 Scientific Approaches to Consciousness 3
COG SCI C126 Perception 3
COG SCI C127 Cognitive Neuroscience 3
COG SCI C131 Computational Models of Cognition 4
COG SCI C140 Quantitative Methods in Linguistics 4
COG SCI C147 Language Disorders 3
COMPSCI C149 Course Not Available 4
COMPSCI 152 Computer Architecture and Engineering 4
COMPSCI 160 User Interface Design and Development 4
COMPSCI 161 Computer Security 4
COMPSCI 162 Operating Systems and System Programming 4
COMPSCI 164 Programming Languages and Compilers 4
COMPSCI 168 Introduction to the Internet: Architecture and Protocols 4
COMPSCI 169 Software Engineering 4
COMPSCI 170 Efficient Algorithms and Intractable Problems 4
COMPSCI 172 Computability and Complexity 4
COMPSCI 176 Algorithms for Computational Biology 4
COMPSCI 184 Foundations of Computer Graphics 4
COMPSCI 186 Introduction to Database Systems 4
COMPSCI 188 Introduction to Artificial Intelligence 4
COMPSCI 189 Introduction to Machine Learning 4
NOT CompSci C100
DEMOC 110 Introduction to Population Analysis 3
DEMOC C175 Economic Demography 4
EPS 101 Field Geology and Digital Mapping 4
EPS C129 Biometeorology 3
EPS 130 Strong Motion Seismology 3
EPS C146 Geological Oceanography 4
EPS C162 Planetary Astrophysics 4
EPS C180 Air Pollution 3
EPS C181 Atmospheric Physics and Dynamics 3
ECON 101A Economic Theory-Micro 4
ECON 101B Economic Theory-Macro 4
ECON C102 Natural Resource Economics 4
ECON C103 Introduction to Mathematical Economics 4
ECON 104 Advanced Microeconomic Theory 4
ECON 119 Psychology and Economics 4
ECON 121 Industrial Organization and Public Policy 4
ECON C125 Environmental Economics 4
ECON 131 Public Economics 4
ECON 136 Financial Economics 4
ENGIN 120 Principles of Engineering Economics 4
UGBA 103 Introduction to Finance 4
ECON 138 Financial and Behavioral Economics 4
ECON 141 Econometric Analysis 4
ECON C142 Applied Econometrics and Public Policy 4
ECON 157 Health Economics 4
ECON 174 Global Poverty and Impact Evaluation 4
ECON C175 Economic Demography 3
or ECON N175 Economic Demography 3
ECON C181 International Trade 4
ECON 182 International Monetary Economics 4
EL ENG 105 Microelectronic Devices and Circuits 4
EL ENG C106A Introduction to Robotics 4
EL ENG C106B Robotic Manipulation and Interaction 4
EL ENG 113 Power Electronics 4
EL ENG 117 Electromagnetic Fields and Waves 4
EL ENG 118 Introduction to Optical Engineering 3
EL ENG 120 Signals and Systems 4
EL ENG 121 Introduction to Digital Communication Systems 4
EL ENG 122 Introduction to Communication Networks 4
EL ENG 123 Digital Signal Processing 4
EL ENG C128 Feedback Control Systems 4
EL ENG 129 Neural and Nonlinear Information Processing 3
EL ENG 130 Integrated-Circuit Devices 4
EL ENG 134 Fundamentals of Photovoltaic Devices 4
EL ENG 137A Introduction to Electric Power Systems 4
EL ENG 137B Introduction to Electric Power Systems 4
EL ENG 140 Linear Integrated Circuits 4
EL ENG 142 Integrated Circuits for Communications 4
EL ENG 143 Microfabrication Technology 4
EL ENG 144 Fundamental Algorithms for Systems Modeling, Analysis, and Optimization 4
EL ENG C145B Medical Imaging Signals and Systems 4
EL ENG C145L Introductory Electronic Transducers Laboratory 3
EL ENG C145M Introductory Microcomputer Interfacing Laboratory 3
EL ENG C145O Laboratory in the Mechanics of Organisms 3
EL ENG 147 Introduction to Microelectromechanical Systems (MEMS) 3
EL ENG C149 Course Not Available 4
ENE,RES C100 Energy and Society 4
ENE,RES 102 Quantitative Aspects of Global Environmental Problems 4
ENGECON 140A | Economics of Race, Agriculture, and the Environment

ENVECON 141 | Agricultural and Environmental Policy

ENVECON 142 | Industrial Organization with Applications to Agriculture and Natural Resources

ENVECON 143 | Economics of Innovation and Intellectual Property

ENVECON 145 | Health and Environmental Economic Policy

ENVECON 147 | Regulation of Energy and the Environment

ENVECON 151 | Economic Development

ENVECON 152 | Advanced Topics in Development and International Trade

ENVECON 153 | Population, Environment, and Development

ENVECON 154 | Economics of Poverty and Technology

ENVECON 161 | Advanced Topics in Environmental and Resource Economics

ENVECON 162 | Economics of Water Resources

ENVECON 176 | Climate Change Economics

ENVECON 181 | International Trade

ENVECON 183 | Forest Ecosystem Management

ENV SCI 100 | Introduction to the Methods of Environmental Science

ESPM 102A | Terrestrial Resource Ecology

ESPM 102C | Resource Management

ESPM 102D | Climate and Energy Policy

ESPM 103 | Principles of Conservation Biology

ESPM 104 | Modeling and Management of Biological Resources

ESPM 107 | Biology and Geomorphology of Tropical Islands

ESPM 108A | Trees: Taxonomy, Growth, and Structures

ESPM 108B | Environmental Change Genetics

ESPM 111 | Ecosystem Ecology

ESPM 112 | Microbial Ecology

ESPM 114 | Wildlife Ecology

ESPM 115C | Fish Ecology

ESPM 116B | Range Ecology, Improvements, and Management

ESPM 116C | Tropical Forest Ecology

ESPM 117 | Urban Garden Ecosystems

ESPM 118 | Agricultural Ecology

ESPM 120 | Soil Characteristics

ESPM 121 | Development and Classification of Soils

ESPM 126 | Animal Behavior

ESPM 128 | Chemistry of Soils

ESPM 129 | Biometeorology

ESPM 131 | Soil Microbial Ecology

ESPM 132 | Spider Biology

ESPM 138 | Introduction to Comparative Virology

ESPM 140 | General Entomology

ESPM 142 | Insect Behavior

ESPM 144 | Insect Physiology

ESPM 148 | Pesticide Chemistry and Toxicology

ESPM 149 | Molecular Ecology

ESPM 152 | Global Change Biology

ESPM 159 | Human Diet

ESPM 165 | International Rural Development Policy

ESPM 166 | Natural Resource Policy and Indigenous Peoples

ESPM 172 | Photogrammetry and Remote Sensing

ESPM 173 | Introduction to Ecological Data Analysis

ESPM 177 | GIS and Environmental Spatial Data Analysis

ESPM 180 | Air Pollution

ESPM 181A | Fire Ecology

ESPM 182 | Forest Operations Management

ESPM 183 | Forest Ecosystem Management

ESPM 185 | Applied Forest Ecology

ESPM 186 | Management and Conservation of Rangeland Ecosystems

ESPM 187 | Restoration Ecology

GEOG 139 | Atmospheric Physics and Dynamics

GEOG 140A | Physical Landscapes: Process and Form

GEOG 142 | Climate Dynamics

GEOG 143 | Global Change Biogeochemistry

GEOG 145 | Geological Oceanography

GEOG 148 | Biogeography

GEOG 187 | Geographic Information Analysis

GEOG 188 | Geographic Information Systems

IND ENG 115 | Industrial and Commercial Data Systems

IND ENG 130 | Methods of Manufacturing Improvement

IND ENG 131 | Discrete Event Simulation

IND ENG 150 | Production Systems Analysis

IND ENG 151 | Service Operations Design and Analysis

IND ENG 153 | Logistics Network Design and Supply Chain Management

IND ENG 160 | Nonlinear and Discrete Optimization

IND ENG 162 | Linear Programming and Network Flows

IND ENG 166 | Decision Analytics

IND ENG 170 | Industrial Design and Human Factors

IND ENG 171 | Technology Firm Leadership

IND ENG 221 | Introduction to Financial Engineering

IND ENG 222 | Financial Engineering Systems I

NOT Ind Eng 165, Ind Eng 172 or Ind Eng 173
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 202</td>
<td>Information Organization and Retrieval</td>
<td>2</td>
</tr>
<tr>
<td>INFO 213</td>
<td>User Interface Design and Development</td>
<td>4</td>
</tr>
<tr>
<td>INFO 232</td>
<td>Applied Behavioral Economics for Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>INFO 247</td>
<td>Information Visualization and Presentation</td>
<td>4</td>
</tr>
<tr>
<td>INFO 253</td>
<td>Web Architecture</td>
<td>3</td>
</tr>
<tr>
<td>INFO 256</td>
<td>Applied Natural Language Processing</td>
<td>3</td>
</tr>
<tr>
<td>INFO 271B</td>
<td>Quantitative Research Methods for Information Systems and Management</td>
<td>3</td>
</tr>
<tr>
<td>INFO 272</td>
<td>Qualitative Research Methods for Information Systems and Management</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 102LF</td>
<td>Introduction to California Plant Life with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 103LF</td>
<td>Invertebrate Zoology with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 104LF</td>
<td>Natural History of the Vertebrates with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 106A</td>
<td>Physical and Chemical Environment of the Ocean</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C107L</td>
<td>Principles of Plant Morphology with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C109</td>
<td>Evolution and Ecology of Development</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C110L</td>
<td>Biology of Fungi with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 113L</td>
<td>Paleobiological Perspectives on Ecology and Evolution</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 115</td>
<td>Introduction to Systems in Biology and Medicine</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 117</td>
<td>Medical Ethnobotany & Medical Ethnobotany Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 118</td>
<td>Host-Pathogen Interactions: A Trans-Discipline Outlook</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 119</td>
<td>Evaluating Scientific Evidence in Medicine</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 123AL</td>
<td>Exercise and Environmental Physiology with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI C125L</td>
<td>Introduction to the Biomechanical Analysis of Human Movement</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 128</td>
<td>Sports Medicine</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C129L</td>
<td>Human Physiological Assessment</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 131</td>
<td>General Human Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 132</td>
<td>Survey of Human Physiology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 135</td>
<td>The Mechanics of Organisms</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C135L</td>
<td>Laboratory in the Mechanics of Organisms</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 137</td>
<td>Human Endocrinology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 138</td>
<td>Comparative Endocrinology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 139</td>
<td>The Neurobiology of Stress</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 140</td>
<td>Biology of Human Reproduction</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C142L</td>
<td>Introduction to Human Osteology</td>
<td>6</td>
</tr>
<tr>
<td>INTEGBI C143A</td>
<td>Biological Clocks: Physiology and Behavior</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C143B</td>
<td>Hormones and Behavior</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C144</td>
<td>Animal Behavior</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 146LF</td>
<td>Behavioral Ecology with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 148</td>
<td>Comparative Animal Physiology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C149</td>
<td>Molecular Ecology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 151</td>
<td>Plant Physiological Ecology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 152</td>
<td>Environmental Toxicology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 153</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 154</td>
<td>Plant Ecology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C155</td>
<td>Holocene Paleoecology: How Humans Changed the Earth</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C156</td>
<td>Principles of Conservation Biology</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 157LF</td>
<td>Ecosystems of California</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 158LF</td>
<td>Biology and Geomorphology of Tropical Islands</td>
<td>13</td>
</tr>
<tr>
<td>INTEGBI 160</td>
<td>Evolution</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 161</td>
<td>Population and Evolutionary Genetics</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 162</td>
<td>Ecological Genetics</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 164</td>
<td>Human Genetics and Genomics</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 166</td>
<td>Evolutionary Biogeography</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 168L</td>
<td>Systematics of Vascular Plants with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 169</td>
<td>Evolutionary Medicine</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 173LF</td>
<td>Mammalogy with Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI 174LF</td>
<td>Ornithology with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 175LF</td>
<td>Herpetology with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 181L</td>
<td>Paleobotany - The 500-Million Year History of a Greening Planet</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 183L</td>
<td>Evolution of the Vertebrates with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI 184L</td>
<td>Morphology of the Vertebrate Skeleton with Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>INTEGBI C185L</td>
<td>Human Paleontology</td>
<td>5</td>
</tr>
<tr>
<td>INTEGBI C187L</td>
<td>Human Biogeography of the Pacific</td>
<td>3</td>
</tr>
<tr>
<td>IAS C175</td>
<td>The Economics of Climate Change</td>
<td>4</td>
</tr>
<tr>
<td>IAS C176</td>
<td>Climate Change Economics</td>
<td>4</td>
</tr>
<tr>
<td>LD ARCH 122</td>
<td>Hydrology for Planners</td>
<td>4</td>
</tr>
<tr>
<td>LD ARCH C177</td>
<td>GIS and Environmental Spatial Data Analysis</td>
<td>4</td>
</tr>
<tr>
<td>LD ARCH C188L</td>
<td>Geographic Information Systems</td>
<td>4</td>
</tr>
<tr>
<td>L & S C180U</td>
<td>Wealth and Poverty</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIS 100</td>
<td>Introduction to Linguistic Science</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIS C105</td>
<td>The Mind and Language</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIS 110L</td>
<td>Introduction to Phonetics and Phonology</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIS 113L</td>
<td>Experimental Phonetics</td>
<td>3</td>
</tr>
<tr>
<td>LINGUIS 140L</td>
<td>Introduction to Field Methods</td>
<td>3</td>
</tr>
<tr>
<td>LINGUIS C146</td>
<td>Language Acquisition</td>
<td>3</td>
</tr>
<tr>
<td>LINGUIS C147</td>
<td>Language Disorders</td>
<td>3</td>
</tr>
<tr>
<td>LINGUIS C160</td>
<td>Quantitative Methods in Linguistics</td>
<td>4</td>
</tr>
<tr>
<td>MATH C103</td>
<td>Introduction to Mathematical Economics</td>
<td>4</td>
</tr>
<tr>
<td>MATH 104</td>
<td>Introduction to Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MATH H104</td>
<td>Honors Introduction to Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MATH 105</td>
<td>Second Course in Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MATH 110</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MATH H110</td>
<td>Honors Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MATH 113</td>
<td>Introduction to Abstract Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MATH H113</td>
<td>Honors Introduction to Abstract Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MATH 114</td>
<td>Second Course in Abstract Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MATH 115</td>
<td>Introduction to Number Theory</td>
<td>4</td>
</tr>
<tr>
<td>MATH 116</td>
<td>Cryptography</td>
<td>4</td>
</tr>
<tr>
<td>MATH 118</td>
<td>Fourier Analysis, Wavelets, and Signal Processing</td>
<td>4</td>
</tr>
<tr>
<td>MATH 121A</td>
<td>Mathematical Tools for the Physical Sciences</td>
<td>4</td>
</tr>
<tr>
<td>MATH 121B</td>
<td>Mathematical Tools for the Physical Sciences</td>
<td>4</td>
</tr>
<tr>
<td>MATH 123</td>
<td>Ordinary Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>MATH 125A</td>
<td>Mathematical Logic</td>
<td>4</td>
</tr>
<tr>
<td>MATH 126</td>
<td>Introduction to Partial Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>MATH 127</td>
<td>Mathematical and Computational Methods in Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>MATH 128A</td>
<td>Numerical Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>MATH 128B</td>
<td>Numerical Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MATH 130</td>
<td>The Classical Geometries</td>
<td>4</td>
</tr>
<tr>
<td>MATH 135</td>
<td>Introduction to the Theory of Sets</td>
<td>4</td>
</tr>
<tr>
<td>MATH 136</td>
<td>Incompleteness and Undecidability</td>
<td>4</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Metric Differential Geometry</td>
<td>4</td>
</tr>
<tr>
<td>MATH 141</td>
<td>Elementary Differential Topology</td>
<td>4</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Elementary Algebraic Topology</td>
<td>4</td>
</tr>
<tr>
<td>MATH 143</td>
<td>Elementary Algebraic Geometry</td>
<td>4</td>
</tr>
<tr>
<td>MATH 170</td>
<td>Mathematical Methods for Optimization</td>
<td>4</td>
</tr>
<tr>
<td>MATH 172</td>
<td>Combinatorics</td>
<td>4</td>
</tr>
<tr>
<td>MATH 185</td>
<td>Introduction to Complex Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MATH H185</td>
<td>Honors Introduction to Complex Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MATH 189</td>
<td>Mathematical Methods in Classical and Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>MEC ENG 101</td>
<td>Introduction to Lean Manufacturing Systems</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 102A</td>
<td>Introduction to Mechanical Systems for Mechatronics</td>
<td>4</td>
</tr>
<tr>
<td>MEC ENG 102B</td>
<td>Mechatronics Design</td>
<td>4</td>
</tr>
<tr>
<td>MEC ENG 104</td>
<td>Engineering Mechanics II</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 106</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 107</td>
<td>Mechanical Engineering Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 108</td>
<td>Mechanical Behavior of Engineering Materials</td>
<td>4</td>
</tr>
<tr>
<td>MEC ENG 109</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 110</td>
<td>Introduction to Product Development</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG C115</td>
<td>Molecular Biomechanics and Mechanobiology of the Cell</td>
<td>4</td>
</tr>
<tr>
<td>MEC ENG C117</td>
<td>Structural Aspects of Biomaterials</td>
<td>4</td>
</tr>
<tr>
<td>MEC ENG 118</td>
<td>Introduction to Nanotechnology and Nanoscience</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 119</td>
<td>Introduction to MEMS (Microelectromechanical Systems)</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 120</td>
<td>Computational Biomechanics Across Multiple Scales</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 122</td>
<td>Processing of Materials in Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 130</td>
<td>Design of Planar Machinery</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 131</td>
<td>Vehicle Dynamics and Control</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 132</td>
<td>Dynamic Systems and Feedback</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 133</td>
<td>Mechanical Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG C134</td>
<td>Feedback Control Systems</td>
<td>4</td>
</tr>
<tr>
<td>MEC ENG 135</td>
<td>Design of Microprocessor-Based Mechanical Systems</td>
<td>4</td>
</tr>
<tr>
<td>MEC ENG 138</td>
<td>Introduction to Micro/Nano Mechanical Systems Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 140</td>
<td>Combustion Processes</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 146</td>
<td>Energy Conversion Principles</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 150A</td>
<td>Solar-Powered Vehicles: Analysis, Design and Fabrication</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 151</td>
<td>Advanced Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 163</td>
<td>Engineering Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 164</td>
<td>Marine Statics and Structures</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 165</td>
<td>Ocean-Environment Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 167</td>
<td>Microscale Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 168</td>
<td>Mechanics of Offshore Systems</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 170</td>
<td>Engineering Mechanics III</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 173</td>
<td>Fundamentals of Acoustics</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 175</td>
<td>Intermediate Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG C176</td>
<td>Orthopedic Biomechanics</td>
<td>4</td>
</tr>
<tr>
<td>MEC ENG C178</td>
<td>Designing for the Human Body</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG C180</td>
<td>Engineering Analysis Using the Finite Element Method</td>
<td>3</td>
</tr>
<tr>
<td>MEC ENG 185</td>
<td>Introduction to Continuum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI 100B</td>
<td>Biochemistry: Pathways, Mechanisms, and Regulation</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI C100A</td>
<td>Biophysical Chemistry: Physical Principles and the Molecules of Life</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 102</td>
<td>Survey of the Principles of Biochemistry and Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI C103</td>
<td>Bacterial Pathogenesis</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI 104</td>
<td>Genetics, Genomics, and Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 110</td>
<td>Molecular Biology: Macromolecular Synthesis and Cellular Function</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI C110L</td>
<td>General Biochemistry and Molecular Biology Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI C112</td>
<td>General Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 114</td>
<td>Introduction to Comparative Virology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI C116</td>
<td>Microbial Diversity</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 130</td>
<td>Cell and Systems Biology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 132</td>
<td>Biology of Human Cancer</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 133L</td>
<td>Physiology and Cell Biology Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI C134</td>
<td>Chromosome Biology/Cytogenetics</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI 135A</td>
<td>Topics in Cell and Developmental Biology: Molecular Endocrinology</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI 136</td>
<td>Physiology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 137L</td>
<td>Physical Biology of the Cell</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI 140</td>
<td>General Genetics</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 140L</td>
<td>Genetics Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 141</td>
<td>Developmental Biology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 143</td>
<td>Evolution of Genomes, Cells, and Development</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI C148</td>
<td>Microbial Genomics and Genetics</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 149</td>
<td>The Human Genome</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI 150</td>
<td>Molecular Immunology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 150L</td>
<td>Immunology Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 160</td>
<td>Cellular and Molecular Neurobiology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 160L</td>
<td>Neurobiology Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 161</td>
<td>Circuit, Systems and Behavioral Neuroscience</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 163L</td>
<td>Mammalian Neuroanatomy Lab</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 165</td>
<td>Neurobiology of Disease</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI 166</td>
<td>Biophysical Neurobiology</td>
<td>3</td>
</tr>
<tr>
<td>MUSIC 108</td>
<td>Music Perception and Cognition</td>
<td>4</td>
</tr>
<tr>
<td>MUSIC 108M</td>
<td>Music Perception and Cognition</td>
<td>4</td>
</tr>
<tr>
<td>MUSIC 109</td>
<td>Music Cognition: The Mind Behind the Musical Ear</td>
<td>3</td>
</tr>
<tr>
<td>MUSIC 109M</td>
<td>Music Cognition: The Mind Behind the Musical Ear</td>
<td>3</td>
</tr>
<tr>
<td>NEUROSC C129</td>
<td>The Aging Human Brain</td>
<td>3</td>
</tr>
<tr>
<td>NUC ENG 100</td>
<td>Introduction to Nuclear Engineering</td>
<td>3</td>
</tr>
<tr>
<td>NUC ENG 130</td>
<td>Analytical Methods for Non-proliferation</td>
<td>4</td>
</tr>
<tr>
<td>NUC ENG 175</td>
<td>Methods of Risk Analysis</td>
<td>3</td>
</tr>
<tr>
<td>NUSCTX 103</td>
<td>Nutrient Function and Metabolism</td>
<td>3</td>
</tr>
</tbody>
</table>
when taken for 3-4 units)

Toxicology 4
Pesticide Chemistry and Toxicology 3
Computational Toxicology 3
Human Diet 4
Philosophy of Science 4
Intermediate Logic 4
Intermediate Logic 4
Philosophy of Logical 4
Philosophy of Mathematics 4
Human Physiological Assessment 3
Introduction to the Biomechanical Analysis of Human Movement 4
Analytic Mechanics 4
Electromagnetism and Optics 4
Electromagnetism and Optics 4
Instrumentation Laboratory 3
Advanced Experimentation Laboratory (only when taken for 3 units) 3
Introduction to Statistical and Thermal Physics 4
Particle Physics 4
Quantum and Nonlinear Optics 3
Quantum Mechanics 4
Quantum Mechanics 4
Modern Atomic Physics 3
Special Relativity and General Relativity 3
Solid State Physics 4
Solid State Physics 3
Introduction to Plasma Physics 4
Elective Physics: Special Topics 3
Relativistic Astrophysics and Cosmology 4
Principles of Molecular Biophysics 3
Experimental Plant Biology Laboratory 3
Bacterial Pathogenesis 3
Principles of Plant Morphology with Laboratory 4
Evolution and Ecology of Development 3
Biology of Fungi with Laboratory 4
General Microbiology 4
California Mushrooms 3
Introduction to Comparative Virology 4
Microbial Diversity 3
Biology of Algae and Laboratory for Bioalge Biomass 3
The Berkeley Lectures on Energy: Energy from Biomass 3
Chromosome Biology/Cytogenetics 3
Physiology and Biochemistry of Plants 3
Microbial Genomics and Genetics 4
Plant Cell Biology 3
Plant Molecular Genetics 3
Plant-Microbe Interactions 3
Techniques in Light Microscopy 3
Special Topics in Plant and Microbial Biology (only when taken for 3-4 units) 3
Applied Econometrics and Public Policy 4
Selected Topics in Quantitative Methods 4
Introduction to Biological Psychology 3
Biological Clocks: Physiology and Behavior 3
Biology of Learning 3
Hormones and Behavior 3
Human Neuropsychology 3
Basic Issues in Cognition 3
Animal Cognition 3
Introduction to Human Learning and Memory 3
The Developing Brain 3
Perception 3
Cognitive Neuroscience 3
Scientific Approaches to Consciousness 3
Clinical Psychology 3
Developmental Psychopathology 3
Psychology of Sleep 3
Developmental Psychology 3
Development During Infancy 3
Language Acquisition 3
Psychology of Personality 3
Social Cognition 3
Bacterial Pathogenesis 3
Global Health: A Multidisciplinary Examination 4
Health Economics and Public Policy 3
The Aging Human Brain 3
Introduction to Epidemiology and Human Disease 4
Introduction to Environmental Health Sciences 3
Public Health Microbiology 3
Toxicology 3
Epidemiologic Methods I 3
Modeling the Dynamics of Infectious Disease Processes (only when taken for 3-4 units) 3
Applied Econometrics and Public Policy 4
Introduction to Public Policy Analysis 4
Wealth and Poverty 4
Applied Econometrics and Public Policy 4
Rhetoric of Scientific Discourse 4
Rhetoric of Social Science 4
Research Design and Sociological Methods 5
Quantitative Sociological Methods 4
Advanced Methods: In-depth Interviewing 4
Microeconomic Analysis for Business Decisions 3
Macroeconomic Analysis for Business Decisions 3
Introduction to Financial Accounting 3
Introduction to Managerial Accounting 3

Only one from the following may be used in an applied cluster for the Statistics major:

Introduction to Finance
Financial Economics
Principles of Engineering Economics
Requirements

General Guidelines

1. All courses taken to fulfill the minor requirements below must be taken for graded credit.
2. A minimum of three of the upper division courses taken to fulfill the minor requirements must be completed at UC Berkeley.
3. A minimum grade point average (GPA) of 2.0 is required for courses used to fulfill the minor requirements.
4. Courses used to fulfill the minor requirements may be applied toward the Seven-Course Breadth requirement, for Letters & Science students.
5. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.
6. All minor requirements must be completed prior to the last day of finals during the semester in which the student plans to graduate. Students who cannot finish all courses required for the minor by that time should see a College of Letters & Science adviser.
7. All minor requirements must be completed within the unit ceiling. (For further information regarding the unit ceiling, please see the College Requirements tab.)

Requirements

Lower Division Prerequisites

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1A</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1B</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 53</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Upper Division Requirements

Select three statistics electives from the following; at least one of the selections must have a lab:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 150</td>
<td>Stochastic Processes</td>
<td>4</td>
</tr>
<tr>
<td>STAT 151A</td>
<td>Linear Modelling: Theory and Applications (LAB COURSE)</td>
<td></td>
</tr>
<tr>
<td>STAT 152</td>
<td>Sampling Surveys (LAB COURSE)</td>
<td>4</td>
</tr>
<tr>
<td>STAT 153</td>
<td>Introduction to Time Series (LAB COURSE)</td>
<td>4</td>
</tr>
<tr>
<td>STAT 154</td>
<td>Modern Statistical Prediction and Machine Learning (LAB COURSE)</td>
<td>4</td>
</tr>
<tr>
<td>STAT 155</td>
<td>Game Theory</td>
<td>4</td>
</tr>
<tr>
<td>STAT 157</td>
<td>Seminar on Topics in Probability and Statistics</td>
<td></td>
</tr>
<tr>
<td>STAT 158</td>
<td>The Design and Analysis of Experiments (LAB COURSE)</td>
<td>4</td>
</tr>
<tr>
<td>STAT 159</td>
<td>Reproducible and Collaborative Statistical Data Science (LAB COURSE)</td>
<td>4</td>
</tr>
</tbody>
</table>

Undergraduate students in the College of Letters & Science must fulfill the following requirements in addition to those required by their major program.

Entry Level Writing

All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing requirement. Fulfillment of this requirement is also a prerequisite to enrollment in all reading and composition courses at UC Berkeley.

American History and American Institutions

The American History and Institutions requirements are based on the principle that a US resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.

American Cultures

American Cultures is the one requirement that all undergraduate students at Cal need to take and pass in order to graduate. The requirement offers an exciting intellectual environment centered on the study of race, ethnicity and culture of the United States. AC courses offer students opportunities to be part of research-led, highly accomplished teaching environments, grappling with the complexity of American Culture.
Quantitative Reasoning
The Quantitative Reasoning requirement is designed to ensure that students graduate with basic understanding and competency in math, statistics, or computer science. The requirement may be satisfied by exam or by taking an approved course.

Foreign Language
The Foreign Language requirement may be satisfied by demonstrating proficiency in reading comprehension, writing, and conversation in a foreign language equivalent to the second semester college level, either by passing an exam or by completing approved course work.

Reading and Composition
In order to provide a solid foundation in reading, writing and critical thinking the College requires two semesters of lower division work in composition in sequence. Students must complete a first-level reading and composition course by the end of their second semester and a second-level course by the end of their fourth semester.

Breadth Requirements
The undergraduate breadth requirements provide Berkeley students with a rich and varied educational experience outside of their major program. As the foundation of a liberal arts education, breadth courses give students a view into the intellectual life of the University while introducing them to a multitude of perspectives and approaches to research and scholarship. Engaging students in new disciplines and with peers from other majors, the breadth experience strengthens interdisciplinary connections and context that prepares Berkeley graduates to understand and solve the complex issues of their day.

Unit Requirements
• 120 total units, including at least 60 L&S units
• Of the 120 units, 36 must be upper division units
• Of the 36 upper division units, 6 must be taken in courses offered outside your major department

Residence Requirements
For units to be considered in “residence,” you must be registered in courses on the Berkeley campus as a student in the College of Letters & Science. Most students automatically fulfill the residence requirement by attending classes here for four years. In general, there is no need to be concerned about this requirement, unless you go abroad for a semester or year or want to take courses at another institution or through UC Extension during your senior year. In these cases, you should make an appointment to meet an adviser to determine how you can meet the Senior Residence Requirement.

Note: Courses taken through UC Extension do not count toward residence.

Senior Residence Requirement
After you become a senior (with 90 semester units earned toward your BA degree), you must complete at least 24 of the remaining 30 units in residence in at least two semesters. To count as residence, a semester must consist of at least 6 passed units. Intercampus Visitor, EAP, and UC Berkeley-Washington Program (UCDC) units are excluded.

You may use a Berkeley Summer Session to satisfy one semester of the Senior Residence requirement, provided that you successfully complete 6 units of course work in the Summer Session and that you have been enrolled previously in the college.

Modified Senior Residence Requirement
Participants in the UC Education Abroad Program (EAP) or the UC Berkeley-Washington Program (UCDC) may meet a Modified Senior Residence requirement by completing 24 (excluding EAP) of their final 60 semester units in residence. At least 12 of these 24 units must be completed after you have completed 90 units.

Upper Division Residence Requirement
You must complete in residence a minimum of 18 units of upper division courses (excluding EAP units), 12 of which must satisfy the requirements for your major.

Mission
Statisticians help to design data collection plans, analyze data appropriately, and interpret and draw conclusions from those analyses. The central objective of the undergraduate major in Statistics is to equip students with consequently requisite quantitative skills that they can employ and build on in flexible ways.

Learning Goals for the Major
Majors are expected to learn concepts and tools for working with data and have experience in analyzing real data that goes beyond the content of a service course in statistical methods for non-majors. Majors should understand the following:

1. The fundamentals of probability theory
2. Statistical reasoning and inferential methods
3. Statistical computing
4. Statistical modeling and its limitations

Skills
Graduates should also have skills in the following:

1. Description, interpretation, and exploratory analysis of data by graphical and other means
2. Effective communication
Statistics

STAT 0PX Preparatory Statistics 1 Unit
Terms offered: Summer 2016 10 Week Session, Summer 2015 10 Week Session, Summer 2014 10 Week Session
This course assists entering Freshman students with basic statistical concepts and problem solving. Designed for students who do not meet the prerequisites for 2. Offered through the Student Learning Center.

Rules & Requirements
Prerequisites: Consent of instructor

Hours & Format
Summer:
6 weeks - 5 hours of lecture and 4.5 hours of workshop per week
8 weeks - 5 hours of lecture and 4.5 hours of workshop per week

Additional Details
Subject/Course Level: Statistics/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam required.

Instructor: Purves

Preparatory Statistics: Read Less [-]

STAT 2 Introduction to Statistics 4 Units
Terms offered: Fall 2017, Summer 2017 8 Week Session, Spring 2017, Fall 2016

Rules & Requirements
Credit Restrictions: Students who have taken 2X, 5, 20, 21, 21X, or 25 will receive no credit for 2.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2-2 hours of laboratory per week
Summer: 8 weeks - 6 hours of lecture and 4 hours of laboratory per week

Additional Details
Subject/Course Level: Statistics/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Also listed as: COMPSCI C8/INFO C8

Foundations of Data Science: Read Less [-]

STAT C8 Foundations of Data Science 4 Units
Terms offered: Fall 2017, Summer 2017 8 Week Session, Spring 2017, Fall 2016
Foundations of data science from three perspectives: inferential thinking, computational thinking, and real-world relevance. Given data arising from some real-world phenomenon, how does one analyze that data so as to understand that phenomenon? The course teaches critical concepts and skills in computer programming and statistical inference, in conjunction with hands-on analysis of real-world datasets, including economic data, document collections, geographical data, and social networks. It delves into social and legal issues surrounding data analysis, including issues of privacy and data ownership.

Rules & Requirements
Prerequisites: This course may be taken on its own, but students are encouraged to take it concurrently with a data science connector course (numbered 88 in a range of departments)

Hours & Format
Fall and/or spring: 15 weeks - 3-3 hours of lecture and 2-2 hours of laboratory per week
Summer: 8 weeks - 6 hours of lecture and 4 hours of laboratory per week

Additional Details
Subject/Course Level: Statistics/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Also listed as: COMPSCI C8/INFO C8

Foundations of Data Science: Read Less [-]
STAT C8R Introduction to Computational Thinking with Data 3 Units
Terms offered: Not yet offered
An introduction to computational thinking and quantitative reasoning, preparing students for further coursework, especially Foundations of Data Science (CS/Info/Stat C8). Emphasizes the use of computation to gain insight about quantitative problems with real data. Expressions, data types, collections, and tables in Python. Programming practices, abstraction, and iteration. Visualizing univariate and bivariate data with bar charts, histograms, plots, and maps. Introduction to statistical concepts including averages and distributions, predicting one variable from another, association and causality, probability and probabilistic simulation. Relationship between numerical functions and graphs. Sampling and introduction to inference.

Introduction to Computational Thinking with Data: Read More [+]

Objectives Outcomes

Course Objectives: C8R also includes quantitative reasoning concepts that aren't covered in Data 8. These include certain topics in: principles of data visualization; simulation of random processes; and understanding numerical functions through their graphs. This will help prepare students for computational and quantitative courses other than Data 8. C8R takes advantage of the complementarity of computing and quantitative reasoning to enliven abstract ideas and build students’ confidence in their ability to solve real problems with quantitative tools. Students learn computer science concepts and immediately apply them to plot functions, visualize data, and simulate random events.

Foundations of Data Science (CS/Info/Stat C8, a.k.a. Data 8) is an increasingly popular class for entering students at Berkeley. Data 8 builds students’ computing skills in the first month of the semester, and students rely on these skills as the course progresses. For some students, particularly those with little prior exposure to computing, developing these skills benefits from further time and practice. C8R is a rapid introduction to Python programming, visualization, and data analysis, which will prepare students for success in Data 8.

Student Learning Outcomes: Students will be able to perform basic computations in Python, including working with tabular data. Students will be able to understand basic probabilistic simulations. Students will be able to understand the syntactic structure of Python code. Students will be able to use good practices in Python programming. Students will be able to use visualizations to understand univariate data and to identify associations or causal relationships in bivariate data.

Rules & Requirements

Credit Restrictions: Students who have taken COMPSCI/INFO/STAT C8 will receive no credit for COMPSCI/STAT C8R.

Hours & Format

Summer: 6 weeks - 4 hours of lecture, 2 hours of discussion, and 4 hours of laboratory per week

Additional Details

Subject/Course Level: Statistics/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Introduction to Computational Thinking with Data: Read Less [-]

STAT 20 Introduction to Probability and Statistics 4 Units
Terms offered: Fall 2017, Summer 2017 8 Week Session, Spring 2017
For students with mathematical background who wish to acquire basic concepts. Relative frequencies, discrete probability, random variables, expectation. Testing hypotheses. Estimation. Illustrations from various fields.

Introduction to Probability and Statistics: Read More [+]

Rules & Requirements

Prerequisites: One semester of calculus

Credit Restrictions: Students who have taken 2, 2X, 5, 21, 21X, or 25 will receive no credit for 20.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Summer: 8 weeks - 6 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Statistics/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Introductory Probability and Statistics for Business: Read Less [-]

STAT 21 Introductory Probability and Statistics for Business 4 Units
Terms offered: Fall 2016, Fall 2015, Fall 2014
Descriptive statistics, probability models and related concepts, sample surveys, estimates, confidence intervals, tests of significance, controlled experiments vs. observational studies, correlation and regression.

Introductory Probability and Statistics for Business: Read More [+]

Rules & Requirements

Prerequisites: One semester of calculus

Credit Restrictions: Students will receive no credit for Statistics 21 after completing Statistics 2, 2X, 5, 20, 21X, N21, W21 or 25 . A deficiency in Statistics 21 may be moved by taking W21.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Summer: 8 weeks - 5 hours of lecture and 4 hours of laboratory per week

Additional Details

Subject/Course Level: Statistics/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Introductory Probability and Statistics for Business: Read Less [-]
STAT W21 Introductory Probability and Statistics for Business 4 Units
Terms offered: Summer 2017 8 Week Session, Spring 2017, Summer 2016 10 Week Session
Reasoning and fallacies, descriptive statistics, probability models and related concepts, combinatorics, sample surveys, estimates, confidence intervals, tests of significance, controlled experiments vs. observational studies, correlation and regression.
Introductory Probability and Statistics for Business: Read More [+]

Rules & Requirements

Prerequisites: One semester of calculus

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of web-based lecture per week
Summer: 8 weeks - 7.5 hours of web-based lecture per week
Online: This is an online course.

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: N21
Introductory Probability and Statistics for Business: Read Less [-]

STAT 24 Freshman Seminars 1 Unit
Terms offered: Fall 2016, Fall 2003, Spring 2001
The Berkeley Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Berkeley seminars are offered in all campus departments, and topics vary from department to department and semester to semester. Enrollment limited to 15 freshmen.
Freshman Seminars: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit as topic varies. Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.
Freshman Seminars: Read Less [-]

STAT 28 Statistical Methods for Data Science 4 Units
Terms offered: Spring 2017
This is a lower-division course that is a follow-up to STAT8/CS8 (Foundations of Data Science). The course will teach a broad range of statistical methods that are used to solve data problems. Topics will include group comparisons and ANOVA, standard parametric statistical models, multivariate data visualization, multiple linear regression and classification, classification and regression trees and random forests. An important focus of the course will be on statistical computing and reproducible statistical analysis. The students will be introduced to the widely used R statistical language and they will obtain hands-on experience in implementing a range of commonly used statistical methods on numerous real world datasets.
Statistical Methods for Data Science: Read More [+]

Rules & Requirements

Prerequisites: Statistics/Information/Computer Science C8 is the only course prerequisite. In addition, mathematical fluency and comfort at the level of precalculus (Math 32) is expected

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Statistical Methods for Data Science: Read Less [-]

STAT 39D Freshman/Sophomore Seminar 2 - 4 Units
Terms offered: Fall 2008, Fall 2007
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester.
Freshman/Sophomore Seminar: Read More [+]

Rules & Requirements

Prerequisites: Priority given to freshmen and sophomores

Hours & Format
Fall and/or spring: 15 weeks - 2-4 hours of seminar per week

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.
Freshman/Sophomore Seminar: Read Less [-]
STAT C79 Societal Risks and the Law 3 Units
Terms offered: Spring 2013
Defining, perceiving, quantifying and measuring risk; identifying risks and estimating their importance; determining whether laws and regulations can protect us from these risks; examining how well existing laws work and how they could be improved; evaluating costs and benefits. Applications may vary by term. This course cannot be used to complete engineering unit or technical elective requirements for students in the College of Engineering.
Societal Risks and the Law: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Also listed as: COMPSCI C79/POL SCI C79

STAT 88 Probability and Mathematical Statistics in Data Science 2 Units
Terms offered: Fall 2017, Spring 2017, Fall 2016
In this connector course we will state precisely and prove results discovered in the foundational data science course through working with data. Topics include: total variation distance between discrete distributions; the mean, standard deviation, and tail bounds; correlation, and the derivation of the regression equation; probabilities, random variables, and the Central Limit Theorem; probabilistic models; symmetries in random permutations; prior and posterior distributions, and Bayes’ rule.
Probability and Mathematical Statistics in Data Science: Read More [+]

Rules & Requirements
Prerequisites: One semester of calculus. This course is meant to be taken concurrently with Computer Science C8/Statistics C8/Information C8. Students may take more than one data science connector course if they wish, ideally concurrently with or after having taken the C8 course

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Introduction to Matrices and Graphs in Data Science: Read Less [-]

STAT 89A Introduction to Matrices and Graphs in Data Science 2 Units
Terms offered: Spring 2017, Spring 2016
This connector will cover introductory topics in the mathematics of data science, focusing on discrete probability and linear algebra and the connections between them that are useful in modern theory and practice. We will focus on matrices and graphs as popular mathematical structures with which to model data. For examples, as models for term-document corpora, high-dimensional regression problems, ranking/classification of web data, adjacency properties of social network data, etc.
Introduction to Matrices and Graphs in Data Science: Read More [+]

Rules & Requirements
Prerequisites: One year of calculus. This course is meant to be taken concurrently with Computer Science C8/Statistics C8/Information C8. Students may take more than one data science connector course if they wish, ideally concurrently with or after having taken the C8 course

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Introduction to Matrices and Graphs in Data Science: Read Less [-]

STAT 94 Special Topics in Probability and Statistics 1 - 4 Units
Terms offered: Fall 2015
Topics will vary semester to semester.
Special Topics in Probability and Statistics: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture and 0-2 hours of discussion per week

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Special Topics in Probability and Statistics: Read Less [-]
STAT 97 Field Study in Statistics 1 - 3 Units
Terms offered: Fall 2015, Spring 2012
Supervised experience relevant to specific aspects of statistics in off-campus settings. Individual and/or group meetings with faculty.
Field Study in Statistics: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit.

Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of fieldwork per week
Summer:
6 weeks - 2.5-7.5 hours of fieldwork per week
8 weeks - 1.5-5.5 hours of fieldwork per week

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Field Study in Statistics: Read Less [-]

STAT 98 Directed Group Study 1 - 3 Units
Terms offered: Fall 2014, Fall 2013, Spring 2013
Must be taken at the same time as either Statistics 2 or 21. This course assists lower division statistics students with structured problem solving, interpretation and making conclusions.
Directed Group Study: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 2-3 hours of directed group study per week
Summer: 8 weeks - 4-6 hours of directed group study per week

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Study: Read Less [-]

STAT C100 Principles & Techniques of Data Science 4 Units
Terms offered: Fall 2017, Spring 2017
In this course, students will explore the data science lifecycle, including question formulation, data collection and cleaning, exploratory data analysis and visualization, statistical inference and prediction, and decision-making. This class will focus on quantitative critical thinking and key principles and techniques needed to carry out this cycle. These include languages for transforming, querying and analyzing data; algorithms for machine learning methods including regression, classification and clustering; principles behind creating informative data visualizations; statistical concepts of measurement error and prediction; and techniques for scalable data processing.
Principles & Techniques of Data Science: Read More [+]

Rules & Requirements
Prerequisites: Computer Science/Information/Statistics C8 or Engineering 7; and either Computer Science 61A or Computer Science 88. Corequisite: Mathematics 54 or Electrical Engineering 16A

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 1 hour of laboratory per week
Summer: 8 weeks - 5 hours of lecture and 4 hours of laboratory per week

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Also listed as: COMPSCI C100
Principles & Techniques of Data Science: Read Less [-]

STAT 131A Introduction to Probability and Statistics for Life Scientists 4 Units
Terms offered: Fall 2017, Spring 2017, Fall 2016
Ideas for estimation and hypothesis testing basic to applications, including an introduction to probability. Linear estimation and normal regression theory.
Introduction to Probability and Statistics for Life Scientists: Read More [+]

Rules & Requirements
Prerequisites: One semester of calculus or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week
Summer: 8 weeks - 5 hours of lecture and 4 hours of laboratory per week

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Introduction to Probability and Statistics for Life Scientists: Read Less [-]
STAT 133 Concepts in Computing with Data 3 Units
Terms offered: Fall 2017, Summer 2017 10 Week Session, Spring 2017
An introduction to computationally intensive applied statistics. Topics will include organization and use of databases, visualization and graphics, statistical learning and data mining, model validation procedures, and the presentation of results.

Concepts in Computing with Data: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week
Summer: 10 weeks - 4 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Concepts in Computing with Data: Read Less [-]

STAT 134 Concepts of Probability 4 Units
Terms offered: Fall 2017, Summer 2017 8 Week Session, Spring 2017
An introduction to probability, emphasizing concepts and applications. Conditional expectation, independence, laws of large numbers. Discrete and continuous random variables. Central limit theorem. Selected topics such as the Poisson process, Markov chains, characteristic functions.

Concepts of Probability: Read More [+]

Rules & Requirements
Prerequisites: One year of calculus
Credit Restrictions: Students will not receive credit for 134 after taking 140 or 201A.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of discussion per week
Summer: 8 weeks - 6 hours of lecture and 4 hours of discussion per week

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Concepts of Probability: Read Less [-]

STAT 135 Concepts of Statistics 4 Units
Terms offered: Fall 2017, Summer 2017 8 Week Session, Spring 2017
A comprehensive survey course in statistical theory and methodology. Topics include descriptive statistics, maximum likelihood estimation, non-parametric methods, introduction to optimality, goodness-of-fit tests, analysis of variance, bootstrap and computer-intensive methods and least squares estimation. The laboratory includes computer-based data-analytic applications to science and engineering.

Concepts of Statistics: Read More [+]

Rules & Requirements
Prerequisites: Statistics 134 and linear algebra (Mathematics 54 or equivalent). Statistics 133 strongly recommended

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week
Summer: 8 weeks - 6 hours of lecture and 4 hours of laboratory per week

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Concepts of Statistics: Read Less [-]
STAT 140 Probability for Data Science 4 Units
Terms offered: Spring 2017
Probability for Data Science: Read More [+]
Objectives Outcomes
Course Objectives: The emphasis on simulation and the bootstrap in Data 8 gives students a concrete sense of randomness and sampling variability. Stat 140 will capitalize on this, abstraction and computation complementing each other throughout. The syllabus has been designed to maintain a mathematical level at least equal to that in Stat 134. So Stat 140 will start faster than Stat 134 (due to the Data 8 prerequisite), avoid approximations that are unnecessary when SciPy is at hand, and replace some of the routine calculus by symbolic math done in SymPy. This will create time for a unit on the convergence and reversibility of Markov Chains as well as added focus on conditioning and Bayes methods. With about a thousand students a year taking Foundations of Data Science (Stat/CS/Info C8, a.k.a. Data 8), there is considerable demand for follow-on courses that build on the skills acquired in that class. Stat 140 is a probability course for Data 8 graduates who have also had a year of calculus and wish to go deeper into data science.
Student Learning Outcomes: Understand the difference between math and simulation, and appreciate the power of both Use a variety of approaches to problem solving Work with probability concepts algebraically, numerically, and graphically
Rules & Requirements
Prerequisites: Stat/CS/Info C8 and one year of calculus
Credit Restrictions: Students who have earned credit for Stat 134 will not receive credit for Stat 140.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week
Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Probability for Data Science: Read Less [-]

STAT 150 Stochastic Processes 3 Units
Terms offered: Fall 2017, Fall 2016, Spring 2016
Random walks, discrete time Markov chains, Poisson processes. Further topics such as: continuous time Markov chains, queueing theory, point processes, branching processes, renewal theory, stationary processes, Gaussian processes.
Stochastic Processes: Read More [+]
Rules & Requirements
Prerequisites: 101 or 103A or 134
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Stochastic Processes: Read Less [-]

STAT 151A Linear Modelling: Theory and Applications 4 Units
Terms offered: Fall 2017, Spring 2017, Fall 2016
A coordinated treatment of linear and generalized linear models and their application. Linear regression, analysis of variance and covariance, random effects, design and analysis of experiments, quality improvement, log-linear models for discrete multivariate data, model selection, robustness, graphical techniques, productive use of computers, in-depth case studies.
Linear Modelling: Theory and Applications: Read More [+]
Rules & Requirements
Prerequisites: 102 or 135. 133 recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week
Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Linear Modelling: Theory and Applications: Read Less [-]
STAT 152 Sampling Surveys 4 Units
Terms offered: Spring 2017, Spring 2016, Spring 2015
Sampling Surveys: Read More [+]

Rules & Requirements

Prerequisites: 101 or 134, 133 and 135 recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Statistics/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Sampling Surveys: Read Less [-]

STAT 153 Introduction to Time Series 4 Units
Terms offered: Fall 2017, Spring 2017, Fall 2016
An introduction to time series analysis in the time domain and spectral domain. Topics will include: estimation of trends and seasonal effects, autoregressive moving average models, forecasting, indicators, harmonic analysis, spectra.
Introduction to Time Series: Read More [+]

Rules & Requirements

Prerequisites: 101, 134 or consent of instructor. 133 or 135 recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Statistics/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Introduction to Time Series: Read Less [-]

STAT 154 Modern Statistical Prediction and Machine Learning 4 Units
Terms offered: Fall 2017, Spring 2017, Fall 2016
Modern Statistical Prediction and Machine Learning: Read More [+]

Rules & Requirements

Prerequisites: Mathematics 53 and 54 or equivalents; Statistics 135 or equivalent; experience with some programming language. Mathematics 55 or equivalent exposure to counting arguments is recommended but not required

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Summer: 10 weeks - 4.5 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Statistics/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Modern Statistical Prediction and Machine Learning: Read Less [-]

STAT 155 Game Theory 3 Units
Terms offered: Fall 2017, Summer 2017 8 Week Session, Spring 2017
General theory of zero-sum, two-person games, including games in extensive form and continuous games, and illustrated by detailed study of examples.
Game Theory: Read More [+]

Rules & Requirements

Prerequisites: 101 or 134

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Summer: 8 weeks - 6 hours of lecture per week

Additional Details

Subject/Course Level: Statistics/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Game Theory: Read Less [-]
STAT 157 Seminar on Topics in Probability and Statistics 3 Units
Terms offered: Fall 2017, Fall 2016, Spring 2016
Substantial student participation required. The topics to be covered each semester that the course may be offered will be announced by the middle of the preceding semester; see departmental bulletins. Recent topics include: Bayesian statistics, statistics and finance, random matrix theory, high-dimensional statistics.
Seminar on Topics in Probability and Statistics: Read More [+]
Rules & Requirements
Prerequisites: Mathematics 53-54, Statistics 134, 135. Knowledge of scientific computing environment (R or Matlab) often required. Prerequisites might vary with instructor and topics
Repeat rules: Course may be repeated for credit with consent of instructor. Course may be repeated for credit when topic changes.

STAT 158 The Design and Analysis of Experiments 4 Units
Terms offered: Spring 2016, Spring 2015, Fall 2013
An introduction to the design and analysis of experiments. This course covers planning, conducting, and analyzing statistically designed experiments with an emphasis on hands-on experience. Standard designs studied include factorial designs, block designs, latin square designs, and repeated measures designs. Other topics covered include the principles of design, randomization, ANOVA, response surface methodology, and computer experiments.
The Design and Analysis of Experiments: Read More [+]
Rules & Requirements
Prerequisites: Statistics 134 and 135 or consent of instructor. Statistics 135 may be taken concurrently. Statistics 133 is recommended

STAT 159 Reproducible and Collaborative Statistical Data Science 4 Units
Terms offered: Fall 2017, Fall 2016, Fall 2015
A project-based introduction to statistical data analysis. Through case studies, computer laboratories, and a term project, students will learn practical techniques and tools for producing statistically sound and appropriate, reproducible, and verifiable computational answers to scientific questions. Course emphasizes version control, testing, process automation, code review, and collaborative programming. Software tools may include Bash, Git, Python, and LaTeX.
Reproducible and Collaborative Statistical Data Science: Read More [+]
Rules & Requirements
Prerequisites: Statistics 133, Statistics 134, and Statistics 135 (or equivalent)

STAT H195 Special Study for Honors Candidates 1 - 4 Units
Terms offered: Spring 2015, Fall 2014, Fall 2010
Special Study for Honors Candidates: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit.

Additional Details
Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Special Study for Honors Candidates: Read Less [-]
STAT 197 Field Study in Statistics 1 - 3 Units
Terms offered: Spring 2017, Fall 2015, Summer 2015 10 Week Session
Supervised experience relevant to specific aspects of statistics in off-campus settings. Individual and/or group meetings with faculty.
Field Study in Statistics: Read More [+]

Rules & Requirements

Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.

Repeat rules: Course may be repeated for credit.

Hours & Format

Fall and/or spring: 15 weeks - 1-3 hours of fieldwork per week
Summer:
6 weeks - 3-8 hours of fieldwork per week
8 weeks - 2-6 hours of fieldwork per week
10 weeks - 1.5-4.5 hours of fieldwork per week

Additional Details

Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Field Study in Statistics: Read Less [-]

STAT 198 Directed Study for Undergraduates 1 - 3 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
Special tutorial or seminar on selected topics.
Directed Study for Undergraduates: Read More [+]

Rules & Requirements

Prerequisites: Consent of instructor

Repeat rules: Course may be repeated for credit.

Hours & Format

Fall and/or spring: 15 weeks - 1-3 hours of directed group study per week
Summer:
6 weeks - 1-4 hours of independent study per week
8 weeks - 1-3 hours of independent study per week
10 weeks - 1-3 hours of independent study per week

Additional Details

Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Directed Study for Undergraduates: Read Less [-]

STAT 199 Supervised Independent Study and Research 1 - 3 Units
Terms offered: Spring 2017, Fall 2015, Spring 2015
Supervised Independent Study and Research: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit.

Hours & Format

Fall and/or spring: 15 weeks - 1-3 hours of independent study per week
Summer:
6 weeks - 1-4 hours of independent study per week
8 weeks - 1-3 hours of independent study per week
10 weeks - 1-3 hours of independent study per week

Additional Details

Subject/Course Level: Statistics/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Supervised Independent Study and Research: Read Less [-]