Chemistry (CHEM)

Courses

CHEM 1A General Chemistry 3 Units
Terms offered: Fall 2023, Summer 2023 8 Week Session, Spring 2023
Stoichiometry of chemical reactions, quantum mechanical description of atoms, the elements and periodic table, chemical bonding, real and ideal gases, thermochemistry, introduction to thermodynamics and equilibrium, acid-base and solubility equilibria, introduction to oxidation-reduction reactions, introduction to chemical kinetics.

General Chemistry: Read More [+]

Rules & Requirements

Prerequisites: High school chemistry recommended

Credit Restrictions: Students will receive no credit for CHEM 1A after completing CHEM 1AD or CHEM 4A. A deficient grade in CHEM 1A may be removed by taking CHEM 1AD.

Hours & Format

Fall and/or spring: 15 weeks - 3-3 hours of lecture, 1-1 hours of discussion, and 0-2 hours of voluntary per week
Summer: 8 weeks - 6-6 hours of lecture, 2-2 hours of discussion, and 0-2 hours of voluntary per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

General Chemistry: Read Less [-]

CHEM 1AD General Chemistry (Digital) 3 Units
Terms offered: Spring 2016
An interactive general chemistry course that uses modern digital technology, offered in a smaller classroom setting to facilitate student participation and foster an engaging learning environment. Topics cover the Chemistry 1A curriculum, ranging from quantum mechanics and interactions of atoms and molecules to properties and equilibria of bulk materials. The course involves a blend of classroom lectures and peer learning with substantial web-based assignments and resources including web access to lecture videos. Lecture time is also devoted to ChemQuiz peer discussions and live demos of chemical properties and processes, which students generally find to be illuminating and valuable learning experiences.

General Chemistry (Digital): Read More [+]

Rules & Requirements

Prerequisites: High school chemistry recommended

Credit Restrictions: Students will receive no credit for Chemistry 1AD after completing Chemistry 1A or 4A. A deficient grade in Chemistry 1A may be removed by taking Chemistry 1AD.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 8 weeks - 6 hours of lecture and 2 hours of discussion per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Pines, Slack

General Chemistry (Digital): Read Less [-]
CHEM 1AL General Chemistry Laboratory 2 Units
Terms offered: Fall 2023, Summer 2023 8 Week Session, Spring 2023
An experimental approach to chemical sciences with emphasis on developing fundamental, reproducible laboratory technique and a goal of understanding and achieving precision and accuracy in laboratory experiments. Proper use of laboratory equipment and standard wet chemical methods are practiced. Areas of investigations include chemical equilibria, spectroscopy, nanotechnology, green chemistry, and thermochemistry. Completion of, or concurrent enrollment in 1A is required.
General Chemistry Laboratory: Read More [+]

Rules & Requirements
Prerequisites: CHEM 1A, with min grade of C-; or co-enrollment in CHEM 1A; or AP CHEM with min score of 4; or CHEM HL IB with min score of 5; or GCE A-Level CHEM with min grade of C
Credit Restrictions: Students will receive no credit for 1AL after taking 4A.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture, 3 hours of laboratory, and 0 hours of voluntary per week
Summer: 8 weeks - 2 hours of lecture, 6 hours of laboratory, and 0 hours of voluntary per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
General Chemistry Laboratory: Read Less [-]

CHEM 1B General Chemistry 4 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Introduction to chemical kinetics, electrochemistry, properties of the states of matter, binary mixtures, thermodynamic efficiency and the direction of chemical change, quantum mechanical description of bonding introduction to spectroscopy. Special topics: Research topics in modern chemistry and biochemistry, chemical engineering.
General Chemistry: Read More [+]

Rules & Requirements
Prerequisites: CHEM 1A and CHEM 1AL with min grades of C-; or CHEM 4A with min grade of C-; or AP CHEM with min score of 4; or CHEM HL IB with min score of 5; or GCE A-Level CHEM with min grade of C
Credit Restrictions: Students will receive no credit for Chemistry 1B after completing Chemistry 4B.

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture, 4 hours of laboratory, and 0 hours of voluntary per week
Summer: 8 weeks - 6 hours of lecture, 8 hours of laboratory, and 0 hours of voluntary per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
General Chemistry: Read Less [-]
CHEM W1A General Chemistry 3 Units
Terms offered: Summer 2013 10 Week Session, Summer 2013 8 Week Session, Summer 2012 8 Week Session
Stoichiometry of chemical reactions, quantum mechanical description of atoms, the elements and periodic table, chemical bonding, real and ideal gases, thermochemistry, introduction to thermodynamics and equilibrium, acid-base and solubility equilibria, introduction to oxidation-reduction reactions, introduction to chemical kinetics. This course is web-based.

Rules & Requirements

Prerequisites: High school chemistry is recommended
Credit Restrictions: Students will receive no credit for CHEM W1A after passing CHEM 1A or CHEM 4A. A deficiency in CHEM 1A may be removed by taking CHEM W1A.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of web-based lecture and 1 hour of web-based discussion per week
Summer: 8 weeks - 6 hours of web-based lecture and 2 hours of web-based discussion per week

Online: This is an online course.

Additional Details

Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

General Chemistry: Read More [+]

CHEM 3A Chemical Structure and Reactivity 3 Units
Terms offered: Fall 2023, Summer 2023 8 Week Session, Spring 2023
Introduction to organic chemical structures, bonding, and chemical reactivity. The organic chemistry of alkanes, alkyl halides, alcohols, alkenes, alkynes, and organometallics.

Rules & Requirements

Prerequisites: CHEM 1A with min grade of C-; or AP Chem with min score of 4; or Chem HL IB with min score of 5; or GCE A-Level Chem with min grade of C
Credit Restrictions: Students will receive no credit for CHEM 3A after completing CHEM 12A; a deficient grade in CHEM 12A may be removed by taking CHEM 3A- will restrict credit if completed before Chemistry 3A.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 0 hours of voluntary per week
Summer: 8 weeks - 6 hours of lecture, 2 hours of discussion, and 0 hours of voluntary per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Chemical Structure and Reactivity: Read Less [-]
CHEM 3AL Organic Chemistry Laboratory 2

Units
Terms offered: Fall 2023, Summer 2023 8 Week Session, Spring 2023

Introduction to the theory and practice of methods used in the organic chemistry laboratory. An emphasis is placed on the separation and purification of organic compounds. Techniques covered will include extraction, distillation, sublimation, recrystallization, and chromatography. Detailed discussions and applications of infrared and nuclear magnetic resonance spectroscopy will be included.

Organic Chemistry Laboratory: Read More [+]

Rules & Requirements

Prerequisites: CHEM 1A and CHEM 1AL with min grades of C-; or CHEM 4A with min grade of C-; or AP CHEM with min score of 4; or CHEM HL IB with min score of 5; or GCE A-Level CHEM with min grade of C. Co-requisite: CHEM 3A with min grade of C- or coenrollment in CHEM 3A

Credit Restrictions: Students will receive no credit for CHEM 3AL after taking CHEM 12A.

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of lecture and 4 hours of laboratory per week
Summer: 8 weeks - 2 hours of lecture and 8 hours of laboratory per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.

Organic Chemistry Laboratory: Read Less [-]

CHEM 3B Chemical Structure and Reactivity

3 Units
Terms offered: Fall 2023, Summer 2023 8 Week Session, Spring 2023

Conjugation, aromatic chemistry, carbonyl compounds, carbohydrates, amines, carboxylic acids, amino acids, peptides, proteins, and nucleic acid chemistry. Ultraviolet spectroscopy and mass spectrometry will be introduced.

Chemical Structure and Reactivity: Read More [+]

Rules & Requirements

Prerequisites: CHEM 3A with min grade of C-

Credit Restrictions: Students will receive no credit for 3B after taking 12B.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 0 hours of voluntary per week
Summer: 8 weeks - 6 hours of lecture, 2 hours of discussion, and 0 hours of voluntary per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Chemical Structure and Reactivity: Read Less [-]

CHEM 3BL Organic Chemistry Laboratory 2

Units
Terms offered: Fall 2023, Summer 2023 8 Week Session, Spring 2023

The synthesis and purification of organic compounds will be explored. Natural product chemistry will be introduced. Advanced spectroscopic methods including infrared, ultraviolet, and nuclear magnetic resonance spectroscopy and mass spectrometry will be used to analyze products prepared and/or isolated. Qualitative analysis of organic compounds will be covered.

Organic Chemistry Laboratory: Read More [+]

Rules & Requirements

Prerequisites: CHEM 3AL with min grade of C-. Co-requisite: CHEM 3B with min grade of C- or co-enrollment in CHEM 3B

Credit Restrictions: Students will receive no credit for CHEM 3BL after taking CHEM 12B.

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of lecture and 4 hours of laboratory per week
Summer: 8 weeks - 2 hours of lecture and 8 hours of laboratory per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.

Organic Chemistry Laboratory: Read Less [-]
CHEM N3AL Organic Chemistry Laboratory 2
Units
Terms offered: Summer 2018 8 Week Session, Summer 2017 8 Week Session, Summer 2015 8 Week Session
Introduction to the theory and practice of methods used in the organic chemistry laboratory. An emphasis is placed on the separation and purification of organic compounds. Techniques covered will include extraction, distillation, sublimation, recrystallization, and chromatography. Detailed discussions and applications of infrared and nuclear magnetic resonance spectroscopy will be included.

Organic Chemistry Laboratory: Read More [+]

Rules & Requirements

Prerequisites: CHEM 1A and CHEM 1AL with min grades of C-; or CHEM 4A with min grade of C-; or AP CHEM with min score of 4; or CHEM HL IB with min score of 5; or GCE A-Level CHEM with min grade of C. Co-requisite: CHEM 3A with min grade of C- or co-enrollment in CHEM 3A. CHEM 4A with approval of instructor

Credit Restrictions: Students will receive no credit for CHEM N3AL after taking CHEM 12A.

Hours & Format

Summer: 8 weeks - 2 hours of web-based lecture and 8 hours of laboratory per week
Online: This is an online course.

Additional Details

Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructor: Pedersen

Organic Chemistry Laboratory: Read Less [-]

CHEM 4A General Chemistry and Quantitative Analysis 5 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Series is intended for majors in physical, biological sciences, and engineering. It presents the foundation principles of chemistry, including stoichiometry, ideal and real gases, acid-base and solubility equilibria, oxidation-reduction reactions, thermochemistry, entropy, nuclear chemistry and radioactivity, the atoms and elements, the periodic table, quantum theory, chemical bonding, molecular structure, chemical kinetics, and descriptive chemistry. Examples and applications will be drawn from diverse areas of interest such as atmospheric, environmental, materials, polymer and computational chemistry, and biochemistry. Laboratory emphasizes quantitative work. Equivalent to 1A-1B plus 15 as prerequisite for further courses in chemistry.

General Chemistry and Quantitative Analysis: Read More [+]

Rules & Requirements

Prerequisites: High school chemistry; calculus (may be taken concurrently); high school physics is recommended

Credit Restrictions: Students will receive no credit for 4A after taking 1A. Deficiency in 4A may be removed by successfully completing 1A and 1AL together in the same semester.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 4 hours of laboratory, and 0 hours of voluntary per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

General Chemistry and Quantitative Analysis: Read Less [-]
CHEM 4B General Chemistry and Quantitative Analysis 5 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Series is intended for majors in physical, biological sciences, and engineering. It presents the foundation principles of chemistry, including stoichiometry, ideal and real gases, acid-base and solubility equilibria, oxidation-reduction reactions, thermochemistry, entropy, nuclear chemistry and radioactivity, the atoms and elements, the periodic table, quantum theory, chemical bonding, molecular structure, chemical kinetics, and descriptive chemistry. Examples and applications will be drawn from diverse areas of interest such as atmospheric, environmental, materials, polymer and computational chemistry, and biochemistry. Laboratory emphasizes quantitative work. Equivalent to 1A-1B plus 15 as prerequisite for further courses in chemistry.

General Chemistry and Quantitative Analysis: Read More [+]

Rules & Requirements
Prerequisites: High school chemistry; calculus (may be taken concurrently); high school physics is recommended

Credit Restrictions: Deficiency in 4B may be removed by successfully completing 15.

Hours & Format
Fall and/or spring: 15 weeks - 3-3 hours of lecture, 4-4 hours of laboratory, and 0-2 hours of voluntary per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

General Chemistry and Quantitative Analysis: Read Less [-]

CHEM 12A Organic Chemistry 5 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
A study of all aspects of fundamental organic chemistry, including nomenclature, chemical and physical properties, reactions and syntheses of the major classes of organic compounds. The study includes theoretical aspects, reaction mechanisms, multistep syntheses, and the chemistry of polycyclic and heterocyclic compounds. This course is more extensive and intensive than 3A-3B and includes a greater emphasis on reaction mechanisms and multistep syntheses. 12A (F); 12B (SP)

Organic Chemistry: Read More [+]

Rules & Requirements
Prerequisites: 12A: 1B or 4B with grade of C- or higher; 12B: 12A with grade of C- or higher. For students majoring in chemistry or a closely related field such as chemical engineering or molecular and cell biology

Credit Restrictions: Students will receive no credit for 12A after taking both 3A and 3AL. Deficiency in 12A may be removed by successfully completing 3A and 3AL in the same semester. Students will receive no credit for 12A after taking 112A. Chem 12A is formerly known as Chem 112A.

Hours & Format
Fall and/or spring: 15 weeks - 3-3 hours of lecture, 1-1 hours of discussion, 5-5 hours of laboratory, and 0-2 hours of voluntary per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: Chemistry 112A

Organic Chemistry: Read Less [-]
CHEM 12B Organic Chemistry 5 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
A study of all aspects of fundamental organic chemistry, including nomenclature, chemical and physical properties, reactions and syntheses of the major classes of organic compounds. The study includes theoretical aspects, reaction mechanisms, multistep syntheses, and the chemistry of polycyclic and heterocyclic compounds. This course is more extensive and intensive than 3A-3B and includes a greater emphasis on reaction mechanisms and multistep syntheses. 12A (F); 12B (SP)

Organic Chemistry: Read More [+]

Rules & Requirements

Prerequisites: 12A: 1B or 4B with grade of C- or higher. 12B: 12A with grade of C- or higher. For students majoring in chemistry or a closely related field such as chemical engineering or molecular and cell biology

Credit Restrictions: Students will receive no credit for 12B after taking both 3B and 3BL. Deficiency in 12B may be removed by successfully completing 3B and 3BL in the same semester. Students will receive no credit for 12B after taking 112B. Chem 12B is formerly known as Chem 112B.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, 5 hours of laboratory, and 0 hours of voluntary per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: Chemistry 112B

Organic Chemistry: Read Less [-]

CHEM 15 Analytical and Bioanalytical Chemistry 3 Units
Terms offered: Fall 2018, Fall 2017, Fall 2016
An introduction to analytical and bioanalytical chemistry including background in statistical analysis of data, acid-base equilibria, electrochemical, spectrometric, and chromatographic methods of analysis and some advanced topics in bioanalytical chemistry such as microfluidics, bioassay techniques, and enzymatic biosensors.

Analytical and Bioanalytical Chemistry: Read More [+]

Rules & Requirements

Prerequisites: 1A and 1AL or equivalent

Credit Restrictions: Deficiency in 15 may be removed by successfully completing 4B.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture and 4 hours of laboratory per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Analytical and Bioanalytical Chemistry: Read Less [-]

CHEM 24 Freshman Seminar 1 Unit
Terms offered: Fall 2023, Fall 2022, Fall 2021
The Freshman Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments, and topics may vary from department to department and semester to semester. Enrollment limited to 15 freshmen.

Freshman Seminar: Read More [+]

Rules & Requirements

Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of seminar per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate

Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final Exam To be decided by the instructor when the class is offered.

Freshman Seminar: Read Less [-]

CHEM 32 Preparation for General Chemistry 2 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Foundation and preparation for General Chemistry. Topics and concepts include elements, atoms, molecules, chemical reactions, chemical calculations, properties of gases and gas laws; thermodynamics, acid/base chemical equilibrium, and periodic trends. In addition, by practicing learning as a process, students will cultivate the habits, strategies, and mindset necessary to succeed in the sciences. Through rigorous practice and guided reflection, students will grow in their ability to master the subject matter and hone their disposition toward scientific learning.

Preparation for General Chemistry: Read More [+]

Rules & Requirements

Credit Restrictions: Students will receive no credit for CHEM 32 after taking and passing any other Chemistry course.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week

Summer:
6 weeks - 5 hours of lecture and 2 hours of discussion per week
10 weeks - 3 hours of lecture and 3 hours of discussion per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam required, with common exam group.

Preparation for General Chemistry: Read Less [-]
CHEM 32L Preparation for General Chemistry Laboratory 1 Unit
Terms offered: Prior to 2007
An introduction to the experimental nature of chemistry. An emphasis is placed on gaining familiarity with equipment and experience with the rigorous approaches used in Chemistry laboratory courses. Areas of investigation include scientific calculations and statistical analysis, analytical measurements, acid-base chemistry, titration, equilibrium, solubility, and green chemistry.
Preparation for General Chemistry Laboratory:

Rules & Requirements
Prerequisites: Must be concurrently enrolled in Chem 32
Credit Restrictions: Students will receive no credit for CHEM 32L after completing CHEM 1AL. A deficient grade in CHEM 32L may be removed by taking CHEM 1AL.

Hours & Format
Summer: 6 weeks - 6 hours of laboratory per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Preparation for General Chemistry Laboratory:

CHEM 34 Preparation for General Chemistry for CoC Majors 4 Units
Terms offered: Summer 2022 Second 6 Week Session
This course is designed to help develop fundamental laboratory techniques, study habits, chemical vocabulary, and knowledge of chemistry concepts needed to succeed in CHEM 4A. Students in the course will also come to know and belong to the larger College of Chemistry community, through panel discussions with CoC faculty, students, and staff, and immersion in current research via weekly lab tours and research talks from professors and graduate students. After completing the course, you will understand essential chemistry concepts relevant to CHEM 4A, including chemical calculations, statistics, quantitative analysis, models of atoms, the periodic table, molecules and chemical bonds, acid-base chemistry, thermochemistry, and equilibrium.
Preparation for General Chemistry for CoC Majors:

Rules & Requirements
Prerequisites: Students must be enrolled in a College of Chemistry major (Chemistry, Chemical Biology, or Chemical Engineering) to take CHEM 34. Nonmajors should enroll in CHEM 32

Hours & Format
Summer: 6 weeks - 8 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Preparation for General Chemistry for CoC Majors:

CHEM 49 Supplementary Work in Lower Division Chemistry 1 - 4 Units
Terms offered: Fall 2023, Fall 2017, Fall 2016
Students with partial credit in lower division chemistry courses may, with consent of instructor, complete the credit under this heading.
Supplementary Work in Lower Division Chemistry:

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer:
6 weeks - 1-6 hours of independent study per week
8 weeks - 1-4 hours of independent study per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Supplementary Work in Lower Division Chemistry:

CHEM 96 Introduction to Research and Study in the College of Chemistry 1 Unit
Terms offered: Fall 2023, Fall 2022, Fall 2021
Introduces sophomores and new transfer students to research activities and programs of study in the College of Chemistry. Includes lectures by faculty, an introduction to college library and computer facilities, the opportunity to meet alumni and advanced undergraduates in an informal atmosphere, and discussion of college and campus resources.
Introduction to Research and Study in the College of Chemistry:

Rules & Requirements
Prerequisites: Sophomore or junior standing in the College of Chemistry, or consent of instructor
Credit Restrictions: Students will receive no credit for CHEM 96 after completing CHEM C96.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam required.
Introduction to Research and Study in the College of Chemistry:

Preparation for General Chemistry Laboratory: Read More [+]
Preparation for General Chemistry for CoC Majors: Read More [+]
Introduction to Research and Study in the College of Chemistry: Read More [+]
Supplementary Work in Lower Division Chemistry: Read More [+]
Supplementary Work in Lower Division Chemistry: Read Less [-]
Introduction to Research and Study in the College of Chemistry: Read Less [-]
CHEM 98 Supervised Group Study 1 - 4 Units
Terms offered: Spring 2023, Spring 2022, Fall 2021
Group study of selected topics.
Supervised Group Study: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Supervised Group Study: Read Less [-]

CHEM 98W Directed Group Study 1 Unit
Terms offered: Fall 2020, Fall 2019, Fall 2018
Topics vary with instructor. Enrollment restrictions apply.
Directed Group Study: Read More [+]
Rules & Requirements
Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of directed group study per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Study: Read Less [-]

CHEM 100 Communicating Chemistry 2 Units
Terms offered: Spring 2011, Spring 2010, Spring 2009
For undergraduate and graduate students interested in improving their ability to communicate their scientific knowledge by teaching chemistry in elementary schools. The course will combine instruction in inquiry-based chemistry teaching methods and learning pedagogy with 10 weeks of supervised teaching experience in a local school classroom. Thus, students will practice communicating scientific knowledge and receive mentoring on how to improve their presentations. Approximately three hours per week, including time spent in school classrooms.
Communicating Chemistry: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of fieldwork per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: 20
Communicating Chemistry: Read Less [-]
CHEM 101 Greener Solutions: A Safer Design Partnership 3 Units
Terms offered: Prior to 2007
Green chemistry seeks to promote the design and adoption of safer chemicals and materials. Their development and adoption depends on solving a number of design and selection challenges. The Greener Solutions course guides interdisciplinary teams of undergraduate students to solve these challenges in a specific application.

Objectives & Outcomes
Course Objectives:
1. Understand the principles of green chemistry and bio-inspired design and be able to apply them in developing safer alternatives to a hazardous chemical or material in a specific application;
2. Understand principles of chemical exposure, hazard and risk and be able to apply them in the process of evaluating alternatives to a chemical of concern;
3. Effectively access information and use tools to evaluate and compare the hazard profiles of chemicals and materials;
4. Frame research questions and propose solutions, working in the applied setting of a partner company’s challenge; and
5. Communicate complex technical ideas clearly and effectively in written and oral form.

Student Learning Outcomes: Student teams complete interim assignments during the six-week, session-long research project, which culminates in a final report and presentation. While class lectures, discussion and assignments support the technical aspects of the project, significant emphasis is also placed on developing the requisite process-oriented skills: gathering information, working in teams, and communicating effectively in both written and oral forms.

Rules & Requirements
Prerequisites: Advanced undergraduate; general chemistry or equivalent knowledge. Recommended: General Chemistry (CHEM 1A, 1B, 4A, 4B)
Repeat rules: Course may be repeated for credit with instructor consent.

CHEM 102 Foundations of Discovery Learning for College of Chemistry Transfer Students 1 Unit
Terms offered: Fall 2023, Fall 2022
This course is offered to incoming junior transfer students majoring in chemistry, chemical biology, or chemical and biomolecular engineering within the College of Chemistry (CoC) at UC Berkeley. The course is designed to assist transfer students with their transition into the CoC through: 1) discussions around best learning practices, stress management, CoC coursework, and careers, 2) interactions with the CoC community, including personalized mentorship from graduate students and faculty, and 3) rigorous preparation for creating and participating in discovery learning experiences, such as research or industrial internships. Students in the course will complete assignments relating to professional development and discovery learning.

Rules & Requirements
Prerequisites: Students must be junior transfers enrolled in a College of Chemistry major (Chemistry, Chemical Biology, or Chemical Engineering)

CHEM 103 Inorganic Chemistry in Living Systems 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
The basic principles of metal ions and coordination chemistry applied to the study of biological systems.

Rules & Requirements
Prerequisites: Chemistry 3A or 112A. Chemistry majors can only count 2 of the 3 units towards their Allied Subject requirement

CHEM 101 Greener Solutions: A Safer Design Partnership 3 Units
Terms offered: Prior to 2007
Green chemistry seeks to promote the design and adoption of safer chemicals and materials. Their development and adoption depends on solving a number of design and selection challenges. The Greener Solutions course guides interdisciplinary teams of undergraduate students to solve these challenges in a specific application.

Objectives & Outcomes
Course Objectives:
1. Understand the principles of green chemistry and bio-inspired design and be able to apply them in developing safer alternatives to a hazardous chemical or material in a specific application;
2. Understand principles of chemical exposure, hazard and risk and be able to apply them in the process of evaluating alternatives to a chemical of concern;
3. Effectively access information and use tools to evaluate and compare the hazard profiles of chemicals and materials;
4. Frame research questions and propose solutions, working in the applied setting of a partner company’s challenge; and
5. Communicate complex technical ideas clearly and effectively in written and oral form.

Student Learning Outcomes: Student teams complete interim assignments during the six-week, session-long research project, which culminates in a final report and presentation. While class lectures, discussion and assignments support the technical aspects of the project, significant emphasis is also placed on developing the requisite process-oriented skills: gathering information, working in teams, and communicating effectively in both written and oral forms.

Rules & Requirements
Prerequisites: Advanced undergraduate; general chemistry or equivalent knowledge. Recommended: General Chemistry (CHEM 1A, 1B, 4A, 4B)
Repeat rules: Course may be repeated for credit with instructor consent.
CHEM 104A Advanced Inorganic Chemistry 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
The chemistry of metals and nonmetals including the application of physical chemical principles.
Advanced Inorganic Chemistry: Read More [+]

Rules & Requirements

Prerequisites: 1B, 4B, or 3A; 104A is prerequisite to 104B

Credit Restrictions: 104A: No restrictions; 104B: Chemical Biology majors can only count 2 of the 3 units towards their Allied Subject requirement for 104B after taking 103.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 0 hours of voluntary per week

Summer: 8 weeks - 6 hours of lecture and 0 hours of voluntary per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Advanced Inorganic Chemistry: Read Less [-]

CHEM 104B Advanced Inorganic Chemistry 3 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
The chemistry of metals and nonmetals including the application of physical chemical principles.
Advanced Inorganic Chemistry: Read More [+]

Rules & Requirements

Prerequisites: 104A or consent of instructor. Chemical Biology majors can only count 2 of the 3 units towards their Allied Subject requirement for 104B after taking 103

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Summer: 8 weeks - 6 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Advanced Inorganic Chemistry: Read Less [-]

CHEM 105 Instrumental Methods in Analytical Chemistry 4 Units
Terms offered: Fall 2023, Spring 2023, Fall 2022
Principles, instrumentation and analytical applications of atomic spectroscopies, mass spectrometry, separations, electrochemistry and micro-characterization. Discussion of instrument design and capabilities as well as real-world problem solving with an emphasis on bioanalytical, environmental, and forensic applications. Hands-on laboratory work using modern instrumentation, emphasizing independent projects involving real-life samples and problem solving.
Instrumental Methods in Analytical Chemistry: Read More [+]

Rules & Requirements

Prerequisites: 4B; or 1B and 15; or 1B and a UC GPA of 3.3 or higher

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture and 8 hours of laboratory per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instrumental Methods in Analytical Chemistry: Read Less [-]

CHEM 108 Inorganic Synthesis and Reactions 4 Units
Terms offered: Fall 2022, Spring 2022, Fall 2019
The preparation of inorganic compounds using vacuum line, air- and moisture-exclusion, electrochemical, high-pressure, and other synthetic techniques. Kinetic and mechanistic studies of inorganic compounds.
Inorganic Synthesis and Reactions: Read More [+]

Rules & Requirements

Prerequisites: 4B or 15; 104B with grade of C- or higher, or 103

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture and 8 hours of laboratory per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Inorganic Synthesis and Reactions: Read Less [-]
CHEM C110L General Biochemistry and Molecular Biology Laboratory 4 Units
Terms offered: Fall 2023, Spring 2023, Fall 2022
Experimental techniques of biochemistry and molecular biology, designed to accompany the lectures in Molecular and Cell Biology 100B and 110. General Biochemistry and Molecular Biology Laboratory: Read More [+]
Rules & Requirements
Prerequisites: 110 (may be taken concurrently)
Hours & Format
Fall and/or spring: 15 weeks - 2-2 hours of lecture and 6-8 hours of laboratory per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Also listed as: MCELLBI C110L
General Biochemistry and Molecular Biology Laboratory: Read Less [-]

CHEM 113 Advanced Mechanistic Organic Chemistry 3 Units
Terms offered: Fall 2022, Fall 2020, Fall 2018
Advanced topics in mechanistic and physical organic chemistry typically including kinetics, reactive intermediates, substitution reactions, linear free energy relationships, orbital interactions and orbital symmetry control of reactions, isotope effects, and photochemistry. Advanced Mechanistic Organic Chemistry: Read More [+]
Rules & Requirements
Prerequisites: 3B or 112B with a minimum grade of B- or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Advanced Mechanistic Organic Chemistry: Read Less [-]

CHEM 114 Advanced Synthetic Organic Chemistry 3 Units
Terms offered: Spring 2022, Spring 2020, Spring 2018
Advanced topics in synthetic organic chemistry with a focus on selectivity. Topics include reductions, oxidations, enolate chemistry and the aldol reaction, reactions of non-stabilized anions, olefination reactions, pericyclic reactions and application to the synthesis of complex structures. Advanced Synthetic Organic Chemistry: Read More [+]
Rules & Requirements
Prerequisites: 3B or 112B with a minimum grade of B- or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Advanced Synthetic Organic Chemistry: Read Less [-]

CHEM 115 Organic Chemistry--Advanced Laboratory Methods 4 Units
Terms offered: Fall 2023, Summer 2023 First 6 Week Session, Spring 2023
Advanced synthetic methods, chemical and spectroscopic structural methods, designed as a preparation for experimental research. Organic Chemistry--Advanced Laboratory Methods: Read More [+]
Rules & Requirements
Prerequisites: 112B with a grade of C- or higher
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 11 hours of laboratory per week
Summer:
6 weeks - 2.5 hours of lecture and 27.5 hours of laboratory per week
8 weeks - 2 hours of lecture and 20.5 hours of laboratory per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Organic Chemistry--Advanced Laboratory Methods: Read Less [-]
CHEM 120A Physical Chemistry 3 Units
Terms offered: Fall 2023, Spring 2023, Fall 2022
Kinetic, potential, and total energy of particles and forces between them; principles of quantum theory, including one-electron and many-electron atoms and its applications to chemical bonding, intermolecular interactions, and elementary spectroscopy.

Physical Chemistry: Read More [+]

Rules & Requirements
Prerequisites: 4B or equivalent; Physics 7B or 8B; Mathematics 53; Mathematics 54 or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 0 hours of voluntary per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

CHEM 120B Physical Chemistry 3 Units
Terms offered: Fall 2023, Fall 2022, Spring 2022
Statistical mechanics, thermodynamics, equilibrium and applications to chemical systems: states of matter, solutions and solvation, chemical kinetics, molecular dynamics, and molecular transport.

Physical Chemistry: Read More [+]

Rules & Requirements
Prerequisites: 120A (or may be taken concurrently); 4B or equivalent; Mathematics 53; Mathematics 54 (may be taken concurrently); Physics 7B or 8B

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 0 hours of voluntary per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

CHEM 121 Introduction to Computational Chemistry 3 Units
Terms offered: Spring 2023, Fall 2021, Fall 2020
This course demonstrates how computers are used to solve modern problems in physical chemistry. It focuses first on methods of electronic structure theory that reveal details of molecular structure and energetics, and secondly on simulation methods that explore fluctuations and dynamics of complex systems comprising many molecules. Students will use MATLAB to implement these numerical approaches for illustrative problems. No prior programming experience is required.

Introduction to Computational Chemistry: Read More [+]

Rules & Requirements
Prerequisites: Chem 120A and Chem 120B are very strongly recommended as prerequisites, or co-requisites

Hours & Format
Fall and/or spring: 15 weeks - 3-3 hours of lecture and 1-2 hours of voluntary per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.

CHEM 122 Quantum Mechanics and Spectroscopy 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Postulates and methods of quantum mechanics and group theory applied to molecular structure and spectra.

Quantum Mechanics and Spectroscopy: Read More [+]

Rules & Requirements
Prerequisites: 120A

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Quantum Mechanics and Spectroscopy: Read Less [-]
CHEM 125 Physical Chemistry Laboratory 3 Units
Terms offered: Fall 2023, Spring 2023, Fall 2022
Experiments in thermodynamics, kinetics, molecular structure, and general physical chemistry.
Physical Chemistry Laboratory: Read More [+]

Rules & Requirements
Prerequisites: Two of the following: 120A, 120B, C130, or 130B with grades of C- or higher (one of which may be taken concurrently)
Credit Restrictions: Deficiency in 125 may be removed by successfully completing C182. Consent of instructor is required to enroll in 125 after completing C182 or EPS C182.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 5 hours of laboratory per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Physical Chemistry Laboratory: Read Less [-]

CHEM 130B Biophysical Chemistry 3 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
The weekly one-hour discussion is for problem solving and the application of calculus in physical chemistry. Molecular structure, intermolecular forces and interactions, biomolecular spectroscopy, high-resolution structure determinations.
Biophysical Chemistry: Read More [+]

Rules & Requirements
Prerequisites: Chemistry C130 or Molecular and Cell Biology C100A, or consent of instructor. Chemistry and Chemical Biology majors can only count 2 of the 3 units towards their Allied Subject requirement

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Biophysical Chemistry: Read Less [-]

CHEM C130 Biophysical Chemistry: Physical Principles and the Molecules of Life 4 Units
Terms offered: Fall 2023, Spring 2023, Fall 2022
Thermodynamic and kinetic concepts applied to understanding the chemistry and structure of biomolecules (proteins, DNA, and RNA). Molecular distributions, reaction kinetics, enzyme kinetics. Bioenergetics, energy transduction, and motor proteins. Electrochemical potential, membranes, and ion channels.
Biophysical Chemistry: Physical Principles and the Molecules of Life: Read More [+]

Rules & Requirements
Prerequisites: Chemistry 3A or 112A, Mathematics 1A, Biology 1A and 1AL; Chemistry 3B or 112B recommended

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 8 weeks - 5.5 hours of lecture and 2 hours of discussion per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Also listed as: MCELLBI C100A
Biophysical Chemistry: Physical Principles and the Molecules of Life: Read Less [-]

CHEM 135 Chemical Biology 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
One-semester introduction to biochemistry, aimed toward chemistry and chemical biology majors.
Chemical Biology: Read More [+]

Rules & Requirements
Prerequisites: 3B or 112B; Biology 1A; or consent of instructor
Credit Restrictions: Students will receive no credit for 135 after taking Molecular and Cell Biology 100B or 102.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Chemical Biology: Read Less [-]
CHEM C138 The Berkeley Lectures on Energy: Energy from Biomass 3 Units
Terms offered: Fall 2015, Fall 2014, Fall 2013
After an introduction to the different aspects of our global energy consumption, the course will focus on the role of biomass. The course will illustrate how the global scale of energy guides the biomass research. Emphasis will be placed on the integration of the biological aspects (crop selection, harvesting, storage and distribution, and chemical composition of biomass) with the chemical aspects to convert biomass to energy. The course aims to engage students in state-of-the-art research.

Rules & Requirements
Prerequisites: Chemistry 1B or Chemistry 4B, Mathematics 1B, Biology 1A
Repeat rules: Course may be repeated for credit under special circumstances: Repeatable when topic changes with consent of instructor.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Bell, Blanch, Clark, Smit, C. Somerville
Also listed as: BIO ENG C181/CHM ENG C195A/PLANTBI C124

The Berkeley Lectures on Energy: Energy from Biomass: Read More [+]

CHEM C142 Machine Learning, Statistical Models, and Optimization for Molecular Problems 4 Units
Terms offered: Spring 2023
An introduction to mathematical optimization, statistical models, and advances in machine learning for the physical sciences. Machine learning prerequisites are introduced including local and global optimization, various statistical and clustering models, and early meta-heuristic methods such as genetic algorithms and artificial neural networks. Building on this foundation, current machine learning techniques are covered including deep learning artificial neural networks, Convolutional neural networks, Recurrent and long short term memory (LSTM) networks, graph neural networks, decision trees.

Objectives & Outcomes
Course Objectives: To build on optimization and statistical modeling to the field of machine learning techniques
To introduce the basics of optimization and statistical modeling techniques relevant to chemistry students
To utilize these concepts on problems relevant to the chemical sciences.

Student Learning Outcomes: Students will be able to understand the landscape and connections between numerical optimization, stand-alone statistical models, and machine learning techniques, and its relevance for chemical problems

Rules & Requirements
Prerequisites: MATH 53 and MATH 54; CHEM 120A or CHEM 120B or BIO ENG 103
Credit Restrictions: Students will receive no credit for BIO ENG C142 after completing BIO ENG 142. A deficient grade in BIO ENG C142 may be removed by taking BIO ENG 142.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Alternate method of final assessment during regularly scheduled final exam group (e.g., presentation, final project, etc.).
Instructor: Teresa Head-Gordon
Formerly known as: Bioengineering C142/Chemistry C142
Also listed as: BIO ENG C142

Machine Learning, Statistical Models, and Optimization for Molecular Problems: Read Less [-]
CHEM 143 Nuclear Chemistry 2 Units
Terms offered: Fall 2019, Fall 2018, Fall 2017
Radioactivity, fission, nuclear models and reactions, nuclear processes in nature. Computer methods will be introduced.
Nuclear Chemistry: Read More [+]

Rules & Requirements

Prerequisites: Physics 7B or equivalent

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Nuclear Chemistry: Read Less [-]

CHEM C146 Radiochemical Methods in Nuclear Technology and Forensics 3 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Experimental illustrations of the interrelation between chemical and nuclear science and technology and nuclear forensics; radioactive decay and counting techniques; nuclear spectroscopy; fundamental radiochemical techniques; radiochemical separations techniques; tracers; activation analysis; forensic applications of radiochemistry; fusion, fission and nuclear reactors.

Radiochemical Methods in Nuclear Technology and Forensics: Read More [+]

Objectives & Outcomes

Course Objectives: Familiarize students with principles of nuclear and radiochemistry and its many important applications in our daily lives; provide hands-on training.

Student Learning Outcomes: A solid understanding of nuclear and radiochemistry; proficiency in safe handling of radioactive materials in the laboratory, and appreciation for the wide application of radiochemical techniques in chemistry, nuclear technology, and nuclear forensics.

Rules & Requirements

Prerequisites: CHEM 4B or CHEM 15; and CHEM 143 is recommended

Credit Restrictions: Students will receive no credit for CHEM 146 after completing CHEM 144, or CHEM C144.

Hours & Format

Fall and/or spring: 15 weeks - 1.5 hours of lecture and 4.5 hours of laboratory per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: Chemistry 146

Also listed as: NUC ENG C146

Radiochemical Methods in Nuclear Technology and Forensics: Read Less [-]
CHEM 149 Supplementary Work in Upper Division Chemistry 1 - 4 Units
Terms offered: Spring 2016, Spring 2015, Spring 2014
Students with partial credit in upper division chemistry courses may, with consent of instructor, complete the credit under this heading.
Supplementary Work in Upper Division Chemistry: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer:
6 weeks - 2.5-10 hours of independent study per week
8 weeks - 1.5-7.5 hours of independent study per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

CHEM C150 Introduction to Materials Chemistry 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021, Spring 2021
The application of basic chemical principles to problems in materials discovery, design, and characterization will be discussed. Topics covered will include inorganic solids, nanoscale materials, polymers, and biological materials, with specific focus on the ways in which atomic-level interactions dictate the bulk properties of matter.
Introduction to Materials Chemistry: Read More [+]
Rules & Requirements
Prerequisites: CHEM 104A. CHEM 104B recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Also listed as: MAT SCI C150
Introduction to Materials Chemistry: Read Less [-]

CHEM C170L Biochemical Engineering Laboratory 3 Units
Terms offered: Fall 2023, Spring 2023, Fall 2022, Fall 2018, Spring 2014, Spring 2013
Laboratory techniques for the cultivation of microorganisms in batch and continuous reactions. Enzymatic conversion processes. Recovery of biological products.
Biochemical Engineering Laboratory: Read More [+]
Rules & Requirements
Prerequisites: Chemical Engineering 170A (may be taken concurrently) or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 7 hours of laboratory and 1 hour of lecture per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Also listed as: CHM ENG C170L
Biochemical Engineering Laboratory: Read Less [-]

CHEM 171H Berkeley Changemaker: The Green Materials Innovation Challenge 3 Units
Terms offered: Spring 2023
Project-based course partnering students with companies, government, and non-profits interested in adopting safer green chemistry for their products. Students will learn the principles of green chemistry by identifying solutions to a real-world green chemistry challenge provided by the external partner. After completing the course students will understand essential concepts related to green chemistry, hazard assessment, bio-inspired design, and life cycle analysis, and how to apply these concepts to evaluate alternatives to a hazardous chemical. Students will know how to read and think critically about a scientific article, collaborate effectively, and hone their communication skills.
Berkeley Changemaker: The Green Materials Innovation Challenge: Read More [+]
Rules & Requirements
Prerequisites: 1 semester of Chemistry 1A or Biology 1A
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Berkeley Changemaker: The Green Materials Innovation Challenge: Read Less [-]
CHEM C178 Polymer Science and Technology 3 Units
Terms offered: Spring 2023, Fall 2021, Fall 2020, Spring 2016, Spring 2015
An interdisciplinary course on the synthesis, characterization, and properties of polymer materials. Emphasis on the molecular origin of properties of polymeric materials and technological applications. Topics include single molecule properties, polymer mixtures and solutions, melts, glasses, elastomers, and crystals. Experiments in polymer synthesis, characterization, and physical properties.

Prerequisites: Junior standing

Rules & Requirements

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Also listed as: CHM ENG C178

Polymer Science and Technology: Read Less [-]

CHEM 179 Numerical Algorithms applied to Computational Quantum Chemistry 3 Units
Terms offered: Not yet offered
Introduction to numerical algorithms, their application to computational quantum chemistry, and best practices for software implementation and reuse. This course covers a toolbox of useful algorithms from applied mathematics that are used in physical simulations. Illustrated via computer implementation of density functional theory for modeling chemical reaction mechanisms from quantum mechanics. Topics covered include local optimization, numerical derivatives and integration, dense linear algebra the symmetric eigenvalue problem, the singular value decomposition, and the fast Fourier transform. Students are guided through principles of procedural and object-oriented programming C++ and usage of efficient numerical libraries.

Prerequisites: (1) Computing: Either (a) both CHEM 274A and CHEM 274B OR (b) CS 61A or CS/DATA C88C AND CS 9F; (2) Math: MATH 53 and MATH 54 or equivalent; (3) Familiarity with UNIX/Linux command line, and (4) An undergraduate physical chemistry course or permission of instructor

Rules & Requirements

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of discussion per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.

Numerical Algorithms applied to Computational Quantum Chemistry: Read Less [-]
CHEM C182 Atmospheric Chemistry and Physics Laboratory 3 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Fluid dynamics, radiative transfer, and the kinetics, spectroscopy, and measurement of atmospherically relevant species are explored through laboratory experiments, numerical simulations, and field observations.
Atmospheric Chemistry and Physics Laboratory: Read More [+]

Rules & Requirements

Prerequisites: Earth and Planetary Science 50 and 102 with grades of C- or higher (one of which may be taken concurrently) or two of the following: Chemistry 120A, 120B, C130, or 130B with grades of C- or higher (one of which may be taken concurrently)

Credit Restrictions: Deficiency in C182 may be removed by successfully completing 125. Consent of instructor is required to enroll in C182 after completing 125.

Hours & Format

Fall and/or spring: 15 weeks - 1.5 hours of lecture and 5 hours of laboratory per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: Chemistry C182/Earth and Planetary Science C182
Also listed as: EPS C182

Atmospheric Chemistry and Physics Laboratory: Read Less [-]

CHEM C191 Introduction to Quantum Computing 4 Units
Terms offered: Fall 2023, Spring 2023, Fall 2021
This multidisciplinary course provides an introduction to fundamental conceptual aspects of quantum mechanics from a computational and informational theoretic perspective, as well as physical implementations and technological applications of quantum information science. Basic sections of quantum algorithms, complexity, and cryptography, will be touched upon, as well as pertinent physical realizations from nanoscale science and engineering.
Introduction to Quantum Computing: Read More [+]

Rules & Requirements

Prerequisites: Linear Algebra (EECS 16A or PHYSICS 89 or MATH 54) AND either discrete mathematics (COMPSCI 70 or MATH 55), or quantum mechanics (PHYSICS 7C or PHYSICS 137A or CHEM 120A)

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Also listed as: COMPSCI C191/PHYSICS C191

Introduction to Quantum Computing: Read Less [-]

CHEM 192 Individual Study for Advanced Undergraduates 1 - 3 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
All properly qualified students who wish to pursue a problem of their own choice, through reading or nonlaboratory study, may do so if their proposed project is acceptable to the member of the staff with whom they wish to work.
Individual Study for Advanced Undergraduates: Read More [+]

Rules & Requirements

Prerequisites: Consent of instructor and adviser
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 0 hours of independent study per week

Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week

Additional Details

Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Individual Study for Advanced Undergraduates: Read Less [-]
CHEM H193 Senior Honors Thesis 3 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
A senior honors thesis is written in consultation with the student’s faculty research advisor. This is a required course for students wishing to graduate with honors in Chemistry or Chemical Biology.
Senior Honors Thesis: Read More [+]

Rules & Requirements
Prerequisites: Senior standing, approval of faculty research advisor, overall GPA of 3.4 or higher at Berkeley
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 9-0 hours of independent study per week
Summer: 8 weeks - 16.5 hours of independent study per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Senior Honors Thesis: Read Less [-]

CHEM H194 Research for Advanced Undergraduates 2 - 6 Units
Terms offered: Spring 2023, Fall 2022, Summer 2022 Second 6 Week Session
Students may pursue original research under the direction of one of the members of the staff.
Research for Advanced Undergraduates: Read More [+]

Rules & Requirements
Prerequisites: Minimum GPA of 3.4 overall at Berkeley and consent of instructor and adviser
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 0-6 hours of independent study and 0-6 hours of laboratory per week
Summer:
6 weeks - 0-15 hours of independent study and 0-15 hours of laboratory per week
8 weeks - 0-11.5 hours of independent study and 0-11.5 hours of laboratory per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Research for Advanced Undergraduates: Read Less [-]

CHEM 195 Special Topics 3 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Special topics will be offered from time to time. Examples are: photochemical air pollution, computers in chemistry.
Special Topics: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Summer: 10 weeks - 4.5 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Special Topics: Read Less [-]

CHEM 196 Special Laboratory Study 2 - 6 Units
Terms offered: Fall 2023, Fall 2022, Spring 2021
Special laboratory work for advanced undergraduates.
Special Laboratory Study: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor and adviser
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study and 0-1 hours of laboratory per week
Summer:
6 weeks - 2.5-10 hours of independent study and 0-2.5 hours of laboratory per week
8 weeks - 2-7.5 hours of independent study and 0-2 hours of laboratory per week
10 weeks - 1.5-6 hours of independent study and 0-1.5 hours of laboratory per week

Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Special Laboratory Study: Read Less [-]
CHEM 197 Field Study in Chemistry 1 - 4 Units
Terms offered: Spring 2021, Spring 2020, Summer 2016 8 Week Session
Supervised experience in off-campus organizations relevant to specific aspects and applications of chemistry. Written report required at the end of the term. Course does not satisfy unit or residence requirements for the bachelor's degree.
Field Study in Chemistry: Read More [+]
Rules & Requirements
Prerequisites: Upper division standing and consent of instructor
Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of fieldwork per week
Summer: 8 weeks - 6 hours of fieldwork per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Field Study in Chemistry: Read Less [-]

CHEM 198 Directed Group Study 1 - 4 Units
Terms offered: Fall 2022, Spring 2022, Fall 2021
Group study of selected topics.
Directed Group Study: Read More [+]
Rules & Requirements
Prerequisites: Completion of 60 units of undergraduate study and in good standing
Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Study: Read Less [-]

CHEM 199 Supervised Independent Study and Research 1 - 4 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Enrollment is restricted by regulations listed in the . Supervised Independent Study and Research: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week
Additional Details
Subject/Course Level: Chemistry/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Supervised Independent Study and Research: Read Less [-]

CHEM 200 Chemistry Fundamentals 1 Unit
Terms offered: Fall 2023, Fall 2022, Fall 2021
Review of bonding, structure, stereochemistry, conformation, thermodynamics and kinetics, and arrow-pushing formalisms.
Chemistry Fundamentals: Read More [+]
Rules & Requirements
Prerequisites: Graduate standing or consent of instructor
Hours & Format
Fall and/or spring: 6 weeks - 3 hours of lecture and 0 hours of voluntary per week
Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.
Chemistry Fundamentals: Read Less [-]
CHEM 201 Fundamentals of Inorganic Chemistry 1 Unit
Terms offered: Fall 2023, Fall 2022, Fall 2021
Review of bonding, structure, MO theory, thermodynamics, and kinetics.
Fundamentals of Inorganic Chemistry: Read More [+]

Rules & Requirements
Prerequisites: Graduate standing or consent of instructor

Hours & Format
Fall and/or spring: 6 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

Fundamentals of Inorganic Chemistry: Read Less [-]

CHEM 208 Structure Analysis by X-Ray Diffraction 4 Units
Terms offered: Spring 2023, Spring 2022, Spring 2020
The theory and practice of modern, single-crystal X-ray diffraction. Groups of four students determine the crystal and molecular structure of newly synthesized materials from the College of Chemistry. The laboratory work involves the mounting of crystals and initial evaluation by X-ray diffraction film techniques, the collection of intensity data by automated diffractometer procedures, and structure analysis and refinement.
Structure Analysis by X-Ray Diffraction: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 8 hours of laboratory per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.
Structure Analysis by X-Ray Diffraction: Read Less [-]

CHEM 214 Heterocyclic Chemistry 3 Units
Terms offered: Spring 2022, Spring 2020, Spring 2018
Advanced topics in organic chemistry with a focus on the reactivity and synthesis of aromatic heterocycles. Classic and modern methods for the synthesis of indoles, pyridines, furans, pyroles, and quinolines will be covered, as well as complex, multi-heteroatom ring systems. Applications to medicinal and bioorganic chemistry will be included where appropriate.
Heterocyclic Chemistry: Read More [+]

Rules & Requirements
Prerequisites: Graduate student standing or consent of instructor. A year of organic chemistry with a grade of B- or better is required for undergraduate enrollment

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Instructor: Maimone
Heterocyclic Chemistry: Read Less [-]

CHEM 220A Thermodynamics and Statistical Mechanics 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
A rigorous presentation of classical thermodynamics followed by an introduction to statistical mechanics with the application to real systems.
Thermodynamics and Statistical Mechanics: Read More [+]

Rules & Requirements
Prerequisites: 120B

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 0 hours of voluntary per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.
Thermodynamics and Statistical Mechanics: Read Less [-]
CHEM 220B Statistical Mechanics 3 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Principles of statistical mechanics and applications to complex systems.
Statistical Mechanics: Read More [+]
Rules & Requirements
Prerequisites: 220A

CHEM 221A Advanced Quantum Mechanics 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Basic principles/postulates of quantum mechanics, Hilbert space and representation theory, quantum theory of measurements, advanced descriptions of harmonic oscillator and theory of angular momentum, time independent and time dependent approximation methods, applications to quantum mechanics of atoms and molecules.
Advanced Quantum Mechanics: Read More [+]
Rules & Requirements
Prerequisites: Chem120A or Physics137A, Chem120B and Chem122, or equivalents

CHEM 221B Advanced Quantum Mechanics 3 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Time dependence, interaction of matter with radiation, scattering theory. Molecular and many-body quantum mechanics.
Advanced Quantum Mechanics: Read More [+]
Rules & Requirements
Prerequisites: 221A

CHEM 222 Spectroscopy 3 Units
Terms offered: Fall 2017, Spring 2017, Spring 2015
This course presents a survey of experimental and theoretical methods of spectroscopy, and group theory as used in modern chemical research. The course topics include experimental methods, classical and quantum descriptions of the interaction of radiation and matter. Qualitative and quantitative aspects of the subject are illustrated with examples including application of linear and nonlinear spectroscopies to the study of molecular structure and dynamics and to quantitative analysis. This course is offered jointly with 122.
Spectroscopy: Read More [+]
Rules & Requirements
Prerequisites: Graduate standing or consent of instructor

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.
Advanced Quantum Mechanics: Read Less [-]
Spectroscopy: Read Less [-]
CHEM 223A Chemical Kinetics 3 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020
Chemical Kinetics: Read More [+]

Rules & Requirements

Prerequisites: 220A (may be taken concurrently)

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Chemical Kinetics: Read Less [-]

CHEM C230 Protein Chemistry, Enzymology, and Bio-organic Chemistry 2 Units
Terms offered: Spring 2020, Spring 2015, Spring 2014, Spring 2013
The topics covered will be chosen from the following: protein structure; protein-protein interactions; enzyme kinetics and mechanism; enzyme design. Intended for graduate students in chemistry, biochemistry, and molecular and cell biology.
Protein Chemistry, Enzymology, and Bio-organic Chemistry: Read More [+]

Rules & Requirements

Prerequisites: Graduate standing or consent of instructor

Hours & Format

Fall and/or spring: 10 weeks - 3 hours of lecture per week
15 weeks - 2 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Instructors: Arnold, Bergman, Guth, Iles, Kokai, Mulvihill, Schwarzman, Wilson

Also listed as: ESPM C234/PB HLTH C234

Protein Chemistry, Enzymology, and Bio-organic Chemistry: Read Less [-]

CHEM C234 Green Chemistry: An Interdisciplinary Approach to Sustainability 3 Units
Terms offered: Spring 2016, Spring 2015, Spring 2014, Spring 2013
Meeting the challenge of global sustainability will require interdisciplinary approaches to research and education, as well as the integration of this new knowledge into society, policymaking, and business. Green Chemistry is an intellectual framework created to meet these challenges and guide technological development. It encourages the design and production of safer and more sustainable chemicals and products.
Green Chemistry: An Interdisciplinary Approach to Sustainability: Read More [+]

Rules & Requirements

Prerequisites: One year of chemistry, including a semester of organic chemistry, or consent of instructors based on previous experience

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Summer: 6 weeks - 20 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Instructors: Arnold, Bergman, Guth, Iles, Kokai, Mulvihill, Schwarzman, Wilson

Also listed as: ESPM C234/PB HLTH C234

Green Chemistry: An Interdisciplinary Approach to Sustainability: Read Less [-]
CHEM C236 Energy Solutions: Carbon Capture and Sequestration 3 Units
After a brief overview of the chemistry of carbon dioxide in the land, ocean, and atmosphere, the course will survey the capture and sequestration of CO2 from anthropogenic sources. Emphasis will be placed on the integration of materials synthesis and unit operation design, including the chemistry and engineering aspects of sequestration. The course primarily addresses scientific and engineering challenges and aims to engage students in state-of-the-art research in global energy challenges.
Energy Solutions: Carbon Capture and Sequestration: Read More [+]

Rules & Requirements
Prerequisites: Chemistry 4B or 1B, Mathematics 1B, and Physics 7B, or equivalents

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.
Instructors: Bourg, DePaolo, Long, Reimer, Smit
Also listed as: CHM ENG C295Z/EPS C295Z

Energy Solutions: Carbon Capture and Sequestration: Read Less [-]

CHEM C238 The Berkeley Lectures on Energy: Energy from Biomass 3 Units
Terms offered: Fall 2015, Fall 2014, Fall 2013
After an introduction to the different aspects of our global energy consumption, the course will focus on the role of biomass. The course will illustrate how the global scale of energy guides the biomass research. Emphasis will be placed on the integration of the biological aspects (crop selection, harvesting, storage, and distribution, and chemical composition of biomass) with the chemical aspects to convert biomass to energy. The course aims to engage students in state-of-art research.

The Berkeley Lectures on Energy: Energy from Biomass: Read More [+]

Rules & Requirements
Prerequisites: Biology 1A; Chemistry 1B or 4B, Mathematics 1B
Repeat rules: Course may be repeated for credit under special circumstances: Repeatable when topic changes with consent of instructor.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.
Instructors: Bell, Blanch, Clark, Smit, C. Somerville
Also listed as: BIO ENG C281/CHM ENG C295A/PLANTBI C224

The Berkeley Lectures on Energy: Energy from Biomass: Read Less [-]
CHEM C242 Machine Learning, Statistical Models, and Optimization for Molecular Problems 4 Units
Terms offered: Spring 2023
An introduction to mathematical optimization, statistical models, and advances in machine learning for the physical sciences. Machine learning prerequisites are introduced including local and global optimization, various statistical and clustering models, and early meta-heuristic methods such as genetic algorithms and artificial neural networks. Building on this foundation, current machine learning techniques are covered including deep learning artificial neural networks, Convolutional neural networks, Recurrent and long short term memory (LSTM) networks, graph neural networks, decision trees. Machine Learning, Statistical Models, and Optimization for Molecular Problems: Read More [+]

Objectives & Outcomes

Course Objectives: To build on optimization and statistical modeling to the field of machine learning techniques
To introduce the basics of optimization and statistical modeling techniques relevant to chemistry students
To utilize these concepts on problems relevant to the chemical sciences.

Student Learning Outcomes: Students will be able to understand the landscape and connections between numerical optimization, stand-alone statistical models, and machine learning techniques, and its relevance for chemical problems.

Rules & Requirements

Prerequisites: Math 53 and Math 54; Chem 120A or 120B or BioE 103; or consent of instructor

Credit Restrictions: Students will receive no credit for BIO ENG C242 after completing BIO ENG 242. A deficient grade in BIO ENG C242 may be removed by taking BIO ENG 242.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

Advanced Nuclear Structure and Reactions: Read Less [-]

CHEM 243 Advanced Nuclear Structure and Reactions 3 Units
Terms offered: Spring 2013, Fall 2009, Fall 2008
Selected topics on nuclear structure and nuclear reactions.
Advanced Nuclear Structure and Reactions: Read More [+]

Rules & Requirements

Prerequisites: 143 or equivalent and introductory quantum mechanics

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

Advanced Nuclear Structure and Reactions: Read Less [-]

CHEM 250A Introduction to Bonding Theory 1 Unit
Terms offered: Fall 2023, Fall 2022, Fall 2021
An introduction to group theory, symmetry, and representations as applied to chemical bonding.
Introduction to Bonding Theory: Read More [+]

Rules & Requirements

Prerequisites: 200 or 201 or consent of instructor and background in the use of matrices and linear algebra

Hours & Format

Fall and/or spring: 6 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

Introduction to Bonding Theory: Read Less [-]

CHEM 250B Inorganic Spectroscopy 1 Unit
Terms offered: Spring 2015, Spring 2014, Spring 2013
The theory of vibrational analysis and spectroscopy as applied to inorganic compounds.
Inorganic Spectroscopy: Read More [+]

Rules & Requirements

Prerequisites: 250A or consent of instructor

Hours & Format

Fall and/or spring:
6 weeks - 3 hours of lecture per week
15 weeks - 0 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

Inorganic Spectroscopy: Read Less [-]
CHEM 251A Coordination Chemistry I 1 Unit
Terms offered: Fall 2018, Fall 2017, Fall 2016
Structure and bonding, synthesis, and reactions of the d-transition metals and their compounds.
Coordination Chemistry I: Read More [+]

Rules & Requirements

Prerequisites: 250A or consent of instructor

Hours & Format

Fall and/or spring: 6 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Coordination Chemistry I: Read Less [-]

CHEM 251B Coordination Chemistry II 1 Unit
Terms offered: Spring 2019, Spring 2018, Spring 2014
Synthesis, structure analysis, and reactivity patterns in terms of symmetry orbitals.
Coordination Chemistry II: Read More [+]

Rules & Requirements

Prerequisites: 251A or consent of instructor

Hours & Format

Fall and/or spring: 6 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Coordination Chemistry II: Read Less [-]

CHEM 252A Organometallic Chemistry I 1 Unit
Terms offered: Fall 2022, Fall 2021, Fall 2020
An introduction to organometallics, focusing on structure, bonding, and reactivity.
Organometallic Chemistry I: Read More [+]

Rules & Requirements

Prerequisites: 200 or 201 or consent of instructor

Hours & Format

Fall and/or spring: 6 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Organometallic Chemistry I: Read Less [-]

CHEM 252B Organometallic Chemistry II 1 Unit
Terms offered: Fall 2022, Fall 2021, Fall 2020
Applications of organometallic compounds in synthesis with an emphasis on catalysis.
Organometallic Chemistry II: Read More [+]

Rules & Requirements

Prerequisites: 252A or consent of instructor

Hours & Format

Fall and/or spring: 6 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Organometallic Chemistry II: Read Less [-]

CHEM 253A Materials Chemistry I 1 Unit
Terms offered: Spring 2023, Spring 2022, Fall 2019
Introduction to the descriptive crystal chemistry and electronic band structures of extended solids.
Materials Chemistry I: Read More [+]

Rules & Requirements

Prerequisites: 200 or 201, and 250A, or consent of instructor

Hours & Format

Fall and/or spring: 6 weeks - 3 hours of lecture per week
15 weeks - 0 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Materials Chemistry I: Read Less [-]
CHEM 253B Materials Chemistry II 1 Unit
Terms offered: Spring 2023, Spring 2022, Fall 2019
General solid state synthesis and characterization techniques as well as a survey of important physical phenomena including optical, electrical, and magnetic properties.
Materials Chemistry II: Read More [+]

Rules & Requirements
Prerequisites: 253A or consent of instructor

Hours & Format
Fall and/or spring:
6 weeks - 3 hours of lecture per week
15 weeks - 0 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

Materials Chemistry II: Read Less [-]

CHEM 253C Materials Chemistry III 1 Unit
Terms offered: Spring 2023, Spring 2022, Fall 2019
Introduction to surface catalysis, organic solids, and nanoscience. Thermodynamics and kinetics of solid state diffusion and reaction will be covered.
Materials Chemistry III: Read More [+]

Rules & Requirements
Prerequisites: 253A or consent of instructor

Hours & Format
Fall and/or spring: 5 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

Instructors: Somorjai, Yang

Materials Chemistry III: Read Less [-]

CHEM 254 Bioinorganic Chemistry 1 Unit
Terms offered: Spring 2015, Spring 2014, Spring 2013
A survey of the roles of metals in biology, taught as a tutorial involving class presentations.
Bioinorganic Chemistry: Read More [+]

Hours & Format
Fall and/or spring:
6 weeks - 3 hours of lecture per week
15 weeks - 0 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

Bioinorganic Chemistry: Read Less [-]

CHEM 260 Reaction Mechanisms 2 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Advanced methods for studying organic reaction mechanisms. Topics include kinetic isotope effects, behavior of reactive intermediates, chain reactions, concerted reactions, molecular orbital theory and aromaticity, solvent and substituent effects, linear free energy relationships, photochemistry.
Reaction Mechanisms: Read More [+]

Rules & Requirements
Prerequisites: 200 or consent of instructor

Hours & Format
Fall and/or spring: 10 weeks - 3 hours of lecture and 0 hours of voluntary per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

Formerly known as: 260A-260B

Reaction Mechanisms: Read Less [-]

CHEM 261A Organic Reactions I 1 Unit
Terms offered: Fall 2023, Fall 2022, Fall 2021
Features of the reactions that comprise the vocabulary of synthetic organic chemistry.
Organic Reactions I: Read More [+]

Rules & Requirements
Prerequisites: 200 or 201 or consent of instructor

Hours & Format
Fall and/or spring: 6 weeks - 3 hours of lecture and 0 hours of voluntary per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

Organic Reactions I: Read Less [-]
CHEM 261B Organic Reaction II 1 Unit
Terms offered: Fall 2023, Fall 2022, Fall 2021
More reactions that are useful to the practice of synthetic organic chemistry.
Organic Reaction II: Read More [+]

Rules & Requirements

Prerequisites: 261A or consent of instructor

Hours & Format

Fall and/or spring: 6 weeks - 3 hours of lecture and 0 hours of voluntary per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Organic Reaction II: Read Less [-]

CHEM 261C Organic Reactions III 1 Unit
Terms offered: Fall 2013, Fall 2012, Fall 2011
This course will consider further reactions with an emphasis on pericyclic reactions such as cycloadditions, electrocyclizations, and sigmatropic rearrangements.
Organic Reactions III: Read More [+]

Rules & Requirements

Prerequisites: 261B or consent of instructor

Hours & Format

Fall and/or spring: 6 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Organic Reactions III: Read Less [-]

CHEM 262 Metals in Organic Synthesis 1 Unit
Terms offered: Spring 2023, Spring 2022, Spring 2021
Transition metal-mediated reactions occupy a central role in asymmetric catalysis and the synthesis of complex molecules. This course will describe the general principles of transition metal reactivity, coordination chemistry, and stereoselection. This module will also emphasize useful methods for the analysis of these reactions.
Metals in Organic Synthesis: Read More [+]

Rules & Requirements

Prerequisites: 261B or consent of instructor

Hours & Format

Fall and/or spring: 6 weeks - 3 hours of lecture per week
15 weeks - 0 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Metals in Organic Synthesis: Read Less [-]

CHEM 263A Synthetic Design I 1 Unit
Terms offered: Spring 2023, Spring 2022, Spring 2021
This course will provide an exposure to the range of catalytic reactions of organometallic systems, the identity of the catalysts for these reactions, and the scope and limitations of these reactions. Emphasis will be placed on understanding the mechanisms of homogeneous catalytic processes. Students will see the types of molecular fragments generated by catalytic organometallic chemistry and see the synthetic disconnections made possible by these reactions. The scope of transformations will encompass those forming commodity chemicals on large scale, pharmaceuticals on small scale, and both commodity and specialty polymers.
Synthetic Design I: Read More [+]

Rules & Requirements

Prerequisites: 262 or consent of instructor

Hours & Format

Fall and/or spring: 5 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Synthetic Design I: Read Less [-]
CHEM 263B Synthetic Design II 1 Unit
Terms offered: Spring 2023, Spring 2022, Spring 2021
This course will provide an exposure to the range of catalytic reactions of organometallic systems, the identity of the catalysts for these reactions, and the scope and limitations of these reactions. Emphasis will be placed on understanding the mechanisms of homogeneous catalytic processes. Students will see the types of molecular fragments generated by catalytic organometallic chemistry and see the synthetic disconnections made possible by these reactions. The scope of transformations will encompass those forming commodity chemicals on large scale, pharmaceuticals on small scale, and both commodity and specialty polymers.

Synthetic Design II: Read More [+]

Rules & Requirements
Prerequisites: 263A or consent of instructor

Hours & Format
Fall and/or spring: 5 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

CHEM 265 Nuclear Magnetic Resonance Theory and Application 1 Unit
Terms offered: Spring 2023, Spring 2022, Fall 2020
The theory behind practical nuclear magnetic resonance spectroscopy and a survey of its applications to chemical research.

Nuclear Magnetic Resonance Theory and Application: Read More [+]

Rules & Requirements
Prerequisites: 200 or 201 or consent of instructor

Hours & Format
Fall and/or spring:
6 weeks - 3 hours of lecture per week
15 weeks - 0 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

CHEM 268 Mass Spectrometry 2 Units
Terms offered: Spring 2023, Spring 2022, Spring 2019
Principles, instrumentation, and application in mass spectrometry, including ionization methods, mass analyzers, spectral interpretation, multidimensional methods (GC/MS, HPLC/MS, MS/MS), with emphasis on small organic molecules and biochemical applications (proteins, peptides, nucleic acids, carbohydrates, noncovalent complexes); this will include the opportunity to be trained and checked out on several open-access mass spectrometers.

Mass Spectrometry: Read More [+]

Rules & Requirements
Prerequisites: Graduate standing or consent of instructor

Hours & Format
Fall and/or spring: 10 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

CHEM 270A Advanced Biophysical Chemistry I 1 Unit
Terms offered: Spring 2023, Spring 2022, Spring 2021
Underlying principles and applications of methods for biophysical analysis of biological macromolecules.

Advanced Biophysical Chemistry I: Read More [+]

Rules & Requirements
Prerequisites: 200 or consent of instructor

Hours & Format
Fall and/or spring: 7.5 weeks - 2 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

Advanced Biophysical Chemistry I: Read Less [-]
CHEM 270B Advanced Biophysical Chemistry II 1 Unit
Terms offered: Spring 2023, Spring 2022, Spring 2021
More applications of methods for biophysical analysis of biological macromolecules.
Advanced Biophysical Chemistry II: Read More [+]

Rules & Requirements
Prerequisites: 270A or consent of instructor

Hours & Format
Fall and/or spring: 7.5 weeks - 2 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.
Advanced Biophysical Chemistry II: Read Less [-]

CHEM C271A Chemical Biology I - Structure, Synthesis and Function of Biomolecules 1 Unit
Terms offered: Spring 2023, Spring 2022, Spring 2021
This course will present the structure of proteins, nucleic acids, and oligosaccharides from the perspective of organic chemistry. Modern methods for the synthesis and purification of these molecules will also be presented.
Chemical Biology I - Structure, Synthesis and Function of Biomolecules: Read More [+]

Hours & Format
Fall and/or spring: 5 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.
Also listed as: MCELLBI C212A
Chemical Biology I - Structure, Synthesis and Function of Biomolecules: Read Less [-]

CHEM C271B Chemical Biology II - Enzyme Reaction Mechanisms 1 Unit
Terms offered: Spring 2023, Spring 2022, Spring 2021
This course will focus on the principles of enzyme catalysis. The course will begin with an introduction of the general concepts of enzyme catalysis which will be followed by detailed examples that will examine the chemistry behind the reactions and the three-dimensional structures that carry out the transformations.
Chemical Biology II - Enzyme Reaction Mechanisms: Read More [+]

Hours & Format
Fall and/or spring: 5 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.
Also listed as: MCELLBI C212B
Chemical Biology II - Enzyme Reaction Mechanisms: Read Less [-]

CHEM C271C Chemical Biology III - Contemporary Topics in Chemical Biology 1 Unit
Terms offered: Spring 2023, Spring 2022, Spring 2021
This course will build on the principles discussed in Chemical Biology I and II. The focus will consist of case studies where rigorous chemical approaches have been brought to bear on biological questions. Potential subject areas will include signal transduction, photosynthesis, immunology, virology, and cancer. For each topic, the appropriate bioanalytical techniques will be emphasized.
Chemical Biology III - Contemporary Topics in Chemical Biology: Read More [+]

Hours & Format
Fall and/or spring: 5 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.
Also listed as: MCELLBI C212C
Chemical Biology III - Contemporary Topics in Chemical Biology: Read Less [-]
CHEM 274A Programming Languages for Molecular Sciences: Python and C++ 3 Units

Terms offered: Fall 2023, Fall 2022, Fall 2021

Course provides in-depth coverage of programming concepts and techniques required for scientific computing, data science, and high-performance computing using C++ and Python. Course will compare and contrast the functionalities of the two languages. Topics include classes, overloading, data abstraction, information hiding, encapsulation, file processing, exceptions, and low-level language features. Exercises based on molecular science problems will provide hands-on experience needed to learn these languages. Course serves as a prerequisite to later MSSE courses: Data Science, Machine Learning Algorithms, Software Engineering for Scientific Computing, Numerical Algorithms Applied to Computational Quantum Chemistry, and Applications of Parallel Computers.

Programming Languages for Molecular Sciences: Python and C++: Read More [+]

Rules & Requirements

Prerequisites: Prior exposure to basic programming methodology or the consent of the instructor.

Hours & Format

Fall and/or spring: 15 weeks - 3-3 hours of lecture, 2-2 hours of discussion, and 0-2 hours of laboratory per week.

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

CHEM 274B Software Engineering Fundamentals for Molecular Sciences 3 Units

Terms offered: Fall 2023, Fall 2022

Course will advance students' understanding of fundamental knowledge and techniques for developing complex software. Students will gain an in-depth view of computer system architecture as well as abstraction techniques as means to manage program complexity. Students will collaboratively develop a software engineering package, gaining experience in all aspects of the software development process. Course serves as a prerequisite to later MSSE courses: Data Science, Machine Learning Algorithms, Software Engineering for Scientific Computing, Numerical Algorithms Applied to Computational Quantum Chemistry, and Applications of Parallel Computers.

Software Engineering Fundamentals for Molecular Sciences: Read More [+]

Rules & Requirements

Prerequisites: Chem 274A - MSSE's Introduction to Programming Languages – C++ and Python -

Hours & Format

Fall and/or spring: 15 weeks - 3-3 hours of lecture, 2-2 hours of discussion, and 0-2 hours of laboratory per week.

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.
CHEM 275A Introduction to Programming Languages C++ and Python 3 Units
Terms offered: Fall 2021, Fall 2020
This course provides in-depth coverage of programming concepts and techniques required for scientific computing, data science, and high-performance computing using C++ and Python. The course will compare and contrast the functionalities of the two languages. Topics include classes, overloading, data abstraction, information hiding, encapsulation, inheritance, polymorphism, file processing, templates, exceptions, container classes, and low-level language features. Numerous exercises based on molecular science problems will provide the hands-on experience needed to learn these languages.

Introduction to Programming Languages C++ and Python: Read More [+]

Objectives & Outcomes

Student Learning Outcomes: Upon successfully completing this course, students will be able to
A. Develop the necessary skills to effectively interact with machine learning environments.
B. Acquire the skills needed to develop high-performance computing software.

Rules & Requirements

Prerequisites: Prior exposure to basic programming methodology or the consent of the instructor

Hours & Format

Fall and/or spring: 8 weeks - 5 hours of web-based lecture and 6 hours of web-based discussion per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Introduction to Programming Languages C++ and Python: Read Less [-]

CHEM 275B Introduction to Software Engineering Best Practices 3 Units
Terms offered: Fall 2021, Fall 2020
This course will advance students' understanding of the different steps involved in software design. Students will acquire hands-on experience in practical problems such as specifying, designing, building, testing, and delivering reliable software systems for scientific computing. Students will collaboratively develop a software engineering package, thus gaining experience in all aspects of the software development process from the feasibility study to the final delivery of the product. This course is a prerequisite to MSSE courses in Software Engineering for Scientific Computing, Computational Chemistry and Materials Science, and Parallel Computing.

Introduction to Software Engineering Best Practices: Read More [+]

Objectives & Outcomes

Student Learning Outcomes: Upon successfully completing this course, students will have the skills needed to develop high-performance computing software.

Rules & Requirements

Prerequisites: Chem 275 - MSSE’s Introduction to Programming Languages – C++ and Python

Hours & Format

Fall and/or spring: 8 weeks - 5 hours of web-based lecture and 6 hours of web-based discussion per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Introduction to Software Engineering Best Practices: Read Less [-]
CHEM 277B Machine Learning Algorithms 3 Units
Terms offered: Fall 2023, Spring 2023, Spring 2022
An introduction to mathematical optimization and statistics and "non-algorithmic" computation using machine learning. Machine learning prerequisites are introduced including local and global optimization, various statistical and clustering models, and early meta-heuristic methods such as genetic algorithms and artificial neural networks. Building on this foundation, current machine learning techniques are covered including Deep Learning networks, Convolutional neural networks, Recurrent and long short term memory (LSTM) networks, and support vector machines and Gaussian ridge regression. Various case studies in applying optimization, statistical modeling, and machine learning methods as classification and regression task

Objectives & Outcomes
Student Learning Outcomes:
A. To introduce the basics of optimization and statistical modeling techniques relevant to machine learning
B. To build on optimization and statistical modeling to the recent field of machine learning techniques.
C. To understand data and algorithms relevant to machine learning

Rules & Requirements
Prerequisites: The students will have had MSSE courses (1) Chem 270 - Intro to Programming, (2) Chem 271 - Software Best Practices, and (3) DS100 courses

Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture and 2 hours of discussion per week
Summer: 8 weeks - 4.5 hours of lecture and 5.5 hours of discussion per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

CHEM 278 Ethical Topics for Professional Software Engineering 1 Unit
Terms offered: Fall 2023, Fall 2022, Spring 2022
This course will expose students to applied ethics in professional ethics, information technology, intellectual property, and corporate ethics that are topic relevant to the MSSE degree.

Rules & Requirements
Prerequisites: Acceptance into the MSSE program

Hours & Format
Fall and/or spring: 5 weeks - 1 hour of web-based lecture and 1 hour of web-based discussion per week

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.
CHEM 279 Numerical Algorithms applied to Computational Quantum Chemistry 3 Units

Terms offered: Fall 2023, Fall 2022, Fall 2021

Introduction to numerical algorithms, their application to computational quantum chemistry, and best practices for software implementation and reuse. This course covers a toolbox of useful algorithms from applied mathematics that are used in physical simulations. Illustrated via computer implementation of density functional theory for modeling chemical reaction mechanisms from quantum mechanics. Topics covered include local optimization, numerical derivatives and integration, dense linear algebra the symmetric eigenvalue problem, the singular value decomposition, and the fast Fourier transform. Students are guided through principles of procedural and object-oriented programming C++ and usage of efficient numerical libraries.

Numerical Algorithms applied to Computational Quantum Chemistry: Read More [+]

Objectives & Outcomes

Course Objectives:
1. To introduce computer-based physical simulation via computational quantum chemistry.
2. To develop the core numerical algorithms needed to efficiently implement computational quantum chemistry methods, as well as other physical simulations.
3. To reinforce programming skills directed to sustainable software as well as intelligent use of optimized libraries to implement numerical kernels.

Rules & Requirements

Prerequisites: Students will have had MSSE courses (1) Chem 275A Intro to Programming, (2) Chem 275B Software Best Practices, and (3) Data Science 100 courses. In addition, undergraduate physical chemistry (Chem 120A or equivalent) or permission of instructor is required

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of discussion per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

FOUNDATIONS OF PROGRAMMING AND SOFTWARE ENGINEERING FOR MOLECULAR SCIENCES

CHEM 280 Foundations of Programming and Software Engineering for Molecular Sciences 2 Units

Terms offered: Fall 2023, Fall 2022, Fall 2021

This course provides an overview of topics relevant to programming and creating software projects. The course will be taught in collaboration with members of the Molecular Sciences Software Institute (MoSII). Students will learn basic syntax, use cases, and ecosystems for Python and C++. Students will become familiar with tools and practices commonly used in software development such as version control, documentation, and testing. Central to this course is a hands on molecular simulation project where students work in groups to create a software package using concepts taught in the course.

Foundations of Programming and Software Engineering for Molecular Sciences: Read Less [-]

Rules & Requirements

Prerequisites: Acceptance to MSSE program

Hours & Format

Fall and/or spring: 2 weeks - 20 hours of lecture per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Foundations of Programming and Software Engineering for Molecular Sciences: Read More [+]

Objectives & Outcomes

Course Objectives:
1. To introduce computer-based physical simulation via computational quantum chemistry.
2. To develop the core numerical algorithms needed to efficiently implement computational quantum chemistry methods, as well as other physical simulations.
3. To reinforce programming skills directed to sustainable software as well as intelligent use of optimized libraries to implement numerical kernels.

Rules & Requirements

Prerequisites: Acceptance to MSSE program

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of discussion per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Numerical Algorithms applied to Computational Quantum Chemistry: Read Less [-]
CHEM 281 Software Engineering for Scientific Computing 3 Units

Terms offered: Fall 2023, Fall 2022

The course covers computer architecture and software features that have the greatest impact on performance. It addresses debugging and performance tuning, detecting memory and stack overwrites, malloc corruption, hotspot, paging, cache misses. A toolbox with common algorithms: sorting, searching, hashing, trees, graph traversing, is followed by common patterns used in object-oriented design. It describes programming paradigms, dynamic libraries, distributed architectures, and services. Lectures on linear algebra and performance libraries are provided as background for future courses. HPC paradigms and GPU programming are introduced. Software packaging, extensibility, and interactivity is followed by team development, testing and hardening.

Software Engineering for Scientific Computing: Read More [+]

Objectives & Outcomes

Course Objectives: The objective of this recurrent course is to equip students with the skills and tools every software engineer must master for a successful professional career.

Rules & Requirements

Prerequisites: Students will have had MSSE courses (1) C275A Intro to Programming, (2) C275B Software Best Practices. Students are expected to be familiar with programming in C++ and have a basic understanding of LINUX. Additional materials will be provided for students to peruse as necessary

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 1 hour of laboratory per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Software Engineering for Scientific Computing: Read Less [-]

CHEM 282 MSSE Leadership Bootcamp 2 Units

Terms offered: Spring 2023, Spring 2022

This boot camp for the Master of Molecular Science and Software Engineering program is a two-week intensive course that introduces program participants to the leadership, management and entrepreneurial skills necessary in today’s professional environment. Using the capstone project as a baseline, this course aims to provide program participants an understanding of the key aspects of management and leadership disciplines; team and organization dynamics; leading and participating in cross functional teams; engineering economic, finance and accounting concepts; effective communication skills and project management.

MSSE Leadership Bootcamp: Read More [+]

Rules & Requirements

Prerequisites: Concurrent enrollment in Chem 283 Capstone Project Course

Hours & Format

Fall and/or spring: 2 weeks - 17-17 hours of lecture and 25-25 hours of discussion per week

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

MSSE Leadership Bootcamp: Read Less [-]
CHEM 283 MSSE Capstone Project Course 3

3 Units
Terms offered: Spring 2023, Spring 2022
This course provides students with a multifaceted experience managing a project involving the application and development of software for Computational Sciences. Students exercise leadership, team building, and critical thinking skills resulting in a Capstone project deliverables and final report. Capstone projects are an essential part of the MSSE program because students transfer skills learned in other MSSE courses to a real-world application in particular applying several software engineering, algorithmic and scientific concepts. This course is also designed to be tightly integrated with MSSE’s Leadership Bootcamp. Capstone projects are developed with MSSE industrial and academic partners, individually or in cross-functional teams. MSSE Capstone Project Course: Read More [+]

Rules & Requirements
Prerequisites: All courses in the MSSE program curriculum are prerequisite of the Capstone Project course. Concurrent enrollment in Chem 282-MSSE Leadership Bootcamp and CS267-Applications of Parallel Computers is required.

Hours & Format
Fall and/or spring: 15 weeks - 1-1 hours of lecture and 2-2 hours of discussion per week.

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

MSSE Capstone Project Course: Read Less [-]

CHEM 295 Special Topics 1 - 3 Units

Terms offered: Fall 2023, Spring 2023, Fall 2022
Lecture series on topics of current interest. Recently offered topics: Natural products synthesis, molecular dynamics, statistical mechanics, molecular spectroscopy, structural biophysics, organic polymers, electronic structure of molecules and bio-organic chemistry. Special Topics: Read More [+]

Rules & Requirements
Prerequisites: Graduate standing or consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture per week.

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

Special Topics: Read Less [-]

CHEM 298 Seminars for Graduate Students 1 - 3 Units

Terms offered: Fall 2023, Spring 2023, Fall 2022
In addition to the weekly Graduate Research Conference and weekly seminars on topics of interest in biophysical, organic, physical, nuclear, and inorganic chemistry, there are group seminars on specific fields of research. Seminars will be announced at the beginning of each semester. Seminars for Graduate Students: Read More [+]

Rules & Requirements
Prerequisites: Graduate standing
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of colloquium per week.

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.

Seminars for Graduate Students: Read Less [-]

CHEM 299 Research for Graduate Students 1 - 9 Units

Terms offered: Fall 2023, Spring 2023, Fall 2022
The facilities of the laboratory are available at all times to graduate students pursuing original investigations toward an advanced degree at this University. Such work is ordinarily in collaboration with a member of the staff. Research for Graduate Students: Read More [+]

Rules & Requirements
Prerequisites: Graduate standing
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week.

Additional Details
Subject/Course Level: Chemistry/Graduate
Grading: Letter grade.

Research for Graduate Students: Read Less [-]
CHEM 300 Professional Preparation: Supervised Teaching of Chemistry 2 Units
Terms offered: Fall 2023, Spring 2023, Fall 2022
Discussion, curriculum development, class observation, and practice teaching in chemistry.
Professional Preparation: Supervised Teaching of Chemistry: Read More [+]
Rules & Requirements
Prerequisites: Graduate standing and appointment as a graduate student instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week

Additional Details
Subject/Course Level: Chemistry/Professional course for teachers or prospective teachers
Grading: Letter grade.

Professional Preparation: Supervised Teaching of Chemistry: Read Less [-]

CHEM 301 Pre-High School Chemistry Classroom Immersion 1 Unit
Terms offered: Fall 2023, Spring 2023, Fall 2022
Provides training and opportunity for graduate students to make presentations in local public schools. Training ensures that presenters are aware of scientific information mandated by the State of California for particular grade levels, and that presentations are intellectually stimulating, relevant to the classroom students' interests, and age-appropriate. Time commitment an average of two to three hours/week, but actual time spent is concentrated during preparation and classroom delivery of presentations, which are coordinated between teachers' needs and volunteers' availability.
Pre-High School Chemistry Classroom Immersion: Read More [+]
Rules & Requirements
Prerequisites: Graduate standing
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Details
Subject/Course Level: Chemistry/Professional course for teachers or prospective teachers
Grading: Offered for pass/not pass grade only.
Instructor: Bergman

Pre-High School Chemistry Classroom Immersion: Read Less [-]

CHEM 301A Undergraduate Lab Instruction 2 Units
Terms offered: Fall 2017, Spring 2017, Fall 2016
Tutoring of students in 1A and 1B laboratory. Students attend one hour of the regular GSI preparatory meeting and hold one office hour per week to answer questions about laboratory assignments.
Undergraduate Lab Instruction: Read More [+]
Rules & Requirements
Prerequisites: Junior standing or consent of instructor; 1A, 1AL, and 1B with grades of B- or higher
Repeat rules: Course may be repeated for credit up to a total of 4 units.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 4 hours of tutorial per week

Additional Details
Subject/Course Level: Chemistry/Professional course for teachers or prospective teachers
Grading: Offered for pass/not pass grade only.

Undergraduate Lab Instruction: Read Less [-]

CHEM 301B Undergraduate Chemistry Instruction 2 Units
Terms offered: Fall 2017, Spring 2017, Fall 2016
Tutoring of students in 1A-1B. Students attend a weekly meeting on tutoring methods at the Student Learning Center and attend 1A-1B lectures.
Undergraduate Chemistry Instruction: Read More [+]
Rules & Requirements
Prerequisites: Sophomore standing; 1A, 1AL, and 1B with grades of B- or higher
Repeat rules: Course may be repeated for credit up to a total of 4 units.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 5 hours of tutorial per week

Additional Details
Subject/Course Level: Chemistry/Professional course for teachers or prospective teachers
Grading: Offered for pass/not pass grade only.
Formerly known as: 301
Undergraduate Chemistry Instruction: Read Less [-]
CHEM 301C Chemistry Teacher Scholars 2 Units
Terms offered: Spring 2020, Fall 2019, Spring 2019
The Chemistry Undergraduate Teacher Scholar Program places undergraduate students as apprentice instructors in lower division laboratory and discussion sections. In a weekly meeting with instructors, participants learn about teaching, review chemistry knowledge, and are coached to mentor students.
Chemistry Teacher Scholars: Read More [+]

Rules & Requirements
Prerequisites: Chemistry 1A or Chemistry 4A or equivalent. Consent of instructor required
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1.5-1.5 hours of lecture and 1-1 hours of discussion per week

Additional Details
Subject/Course Level: Chemistry/Professional course for teachers or prospective teachers
Grading: Offered for pass/not pass grade only.

Chemistry Teacher Scholars: Read Less [-]

CHEM 301D Undergraduate Chemistry Course Instruction 1 - 2 Units
Terms offered: Fall 2017, Spring 2017, Fall 2016
Tutoring of students enrolled in an undergraduate chemistry course.
Undergraduate Chemistry Course Instruction: Read More [+]

Rules & Requirements
Prerequisites: Junior standing or consent of instructor; completion of tutored course with a grade of B- or better
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 2-4 hours of tutorial per week

Additional Details
Subject/Course Level: Chemistry/Professional course for teachers or prospective teachers
Grading: Offered for pass/not pass grade only.

Undergraduate Chemistry Course Instruction: Read Less [-]

CHEM 301T Undergraduate Preparation for Teaching or Instruction in Teaching 2 Units
Terms offered: Spring 2015, Spring 2014, Spring 2013
Undergraduate Preparation for Teaching or Instruction in Teaching: Read More [+]

Rules & Requirements
Prerequisites: Junior standing, overall GPA 3.1, and consent of instructor
Repeat rules: Course may be repeated for credit up to a total of 8 units.

Hours & Format
Fall and/or spring: 15 weeks - 2-3 hours of lecture per week

Additional Details
Subject/Course Level: Chemistry/Professional course for teachers or prospective teachers
Grading: Letter grade.

Undergraduate Preparation for Teaching or Instruction in Teaching: Read Less [-]

CHEM 301W Supervised Instruction of Chemistry Scholars 2 Units
Terms offered: Fall 2017, Spring 2017, Fall 2016
Tutoring of students in the College of Chemistry Scholars Program who are enrolled in general or organic chemistry. Students attend a weekly meeting with instructors.
Supervised Instruction of Chemistry Scholars: Read More [+]

Rules & Requirements
Prerequisites: Sophomore standing and consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of independent study and 4-5 hours of tutorial per week

Additional Details
Subject/Course Level: Chemistry/Professional course for teachers or prospective teachers
Grading: Offered for pass/not pass grade only.

Supervised Instruction of Chemistry Scholars: Read Less [-]
CHEM 375 Professional Preparation: Supervised Teaching of Chemistry 2 Units
Terms offered: Fall 2023, Fall 2021
Discussion, curriculum development, class observation, and practice teaching in chemistry.
Professional Preparation: Supervised Teaching of Chemistry: Read More [+]
Rules & Requirements
Prerequisites: Graduate standing and appointment as a graduate student instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Chemistry/Professional course for teachers or prospective teachers
Grading: Letter grade.
Professional Preparation: Supervised Teaching of Chemistry: Read Less [-]

CHEM 602 Individual Study for Doctoral Students 1 - 8 Units
Terms offered: Fall 2017, Spring 2017, Fall 2016
Individual study in consultation with the major field adviser, intended to provide an opportunity for qualified students to prepare themselves for the various examinations required of candidates for the Ph.D. degree. May not be used for unit or residence requirements for the doctoral degree.
Individual Study for Doctoral Students: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-8 hours of independent study per week
Summer: 8 weeks - 1.5-15 hours of independent study per week
Additional Details
Subject/Course Level: Chemistry/Graduate examination preparation
Grading: Offered for satisfactory/unsatisfactory grade only.
Formerly known as: Chemistry 999
Individual Study for Doctoral Students: Read Less [-]

CHEM 700 QB3 Colloquium for Graduate Students 0.0 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Weekly Graduate colloquium on topics of interest in QB3 research.
QB3 Colloquium for Graduate Students: Read More [+]
Rules & Requirements
Prerequisites: Graduate standing
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-2 hours of colloquium per week
Additional Details
Subject/Course Level: Chemistry/Graduate examination preparation
Grading: Offered for satisfactory/unsatisfactory grade only.
Formerly known as: Chemistry 999
QB3 Colloquium for Graduate Students: Read Less [-]