Civil Engineering

Bachelor of Science (BS)
The Department of Civil and Environmental Engineering's (CEE) undergraduate program offers opportunities for rigorous academic learning, fellowship, hands-on experience, and leadership. Classes are relatively small, so students get to know both the faculty and fellow students.

The program in civil and environmental engineering, which is top-ranked nationally, provides students with a strong fundamental background in engineering science, design, and practice. Students learn to solve societal problems—in California, the United States, and the world—such as:

• Improving civil infrastructure
• Protecting resources
• Mitigating hazards
• Creating efficient and sustainable civil systems

CEE's four-year curriculum leads to an ABET-accredited Bachelor of Science (BS) degree in Civil Engineering. Undergraduates at Berkeley have opportunities for professional interactions and community service. CEE has active student chapters of the American Society of Civil Engineers and the national honor society of Chi Epsilon as well as seven competition teams.

Areas of Emphasis
Students with a specific interest within civil engineering may choose to emphasize one of the following areas: engineering and project management; environmental engineering; geosystems; structural engineering, mechanics and materials; or transportation engineering. See suggestions (http://www.ce.berkeley.edu/undergrad/curriculum/) for elective courses and the capstone design project.

Selection of an area of emphasis is optional. A BS in Civil Engineering is awarded whether or not a student follows the broad and general program or chooses an area of emphasis.

Accreditation
The BS program in Civil Engineering is accredited by the Engineering Accreditation Commission of the ABET, Inc. (http://www.abet.org/accreditation/)

Admission to the Major
Prospective undergraduates to the College of Engineering will apply for admission to a specific program in the college. For further information, see the College of Engineering’s website (http://coe.berkeley.edu/students/prospective-students/admissions.html).

Admission to Engineering via a Change of College application for current UC Berkeley students is highly unlikely and very competitive as there are few (if any) spaces that open in the college each year to students admitted to other colleges at UC Berkeley. For further information regarding a Change of College to Engineering, see the college's website (http://coe.berkeley.edu/students/current-undergraduates/change-of-college/).

Minor Programs
CEE does not offer a minor in Civil Engineering. Instead, the department offers the following specialized minors:
Environmental Engineering (http://guide.berkeley.edu/undergraduate/degree-programs/environmental-engineering/)
Geotechnical Engineering (https://ce.berkeley.edu/undergrad/curriculum/minors/)
Structural Engineering (http://guide.berkeley.edu/undergraduate/degree-programs/structural-engineering/)

In addition to the University, campus, and college requirements, students must fulfill the below requirements specific to their major program.

General Guidelines
1. All technical courses taken in satisfaction of major requirements must be taken for a letter grade.
2. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.
3. A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.
4. A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.

For information regarding residence requirements and unit requirements, see the College Requirements tab.

For a detailed plan of study by year and semester, see the Plan of Study tab.

Lower Division Foundation Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1A</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1B</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 53</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 54</td>
<td>Linear Algebra and Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1A</td>
<td>General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 7A</td>
<td>Physics for Scientists and Engineers</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 7B</td>
<td>Physics for Scientists and Engineers</td>
<td>4</td>
</tr>
<tr>
<td>ENGIN 7</td>
<td>Introduction to Computer Programming for Scientists and Engineers</td>
<td>4</td>
</tr>
<tr>
<td>CIV ENG 11</td>
<td>Engineered Systems and Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG C30/MEC ENG C85</td>
<td>Introduction to Solid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 60</td>
<td>Structure and Properties of Civil Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG 92A</td>
<td>Design for Future Infrastructure Systems (recommended)</td>
<td>2</td>
</tr>
<tr>
<td>CIV ENG 92B</td>
<td>Cornerstone Structural Design (recommended)</td>
<td>2</td>
</tr>
<tr>
<td>CIV ENG 93</td>
<td>Engineering Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>DATA C8</td>
<td>Foundations of Data Science</td>
<td>4</td>
</tr>
<tr>
<td>CIV ENG 70</td>
<td>Engineering Geology</td>
<td>3-4</td>
</tr>
<tr>
<td>or CIV ENG 74</td>
<td>General Biology Lecture and Laboratory</td>
<td>3-4</td>
</tr>
<tr>
<td>or CHEM 1B</td>
<td>General Chemistry</td>
<td></td>
</tr>
<tr>
<td>or BIOLOGY 1B</td>
<td>General Biology Lecture and Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

•

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 70</td>
<td>Engineering Geology</td>
<td>3-4</td>
</tr>
<tr>
<td>or CHEM 1B</td>
<td>General Chemistry</td>
<td></td>
</tr>
<tr>
<td>or BIOLOGY 1B</td>
<td>General Biology Lecture and Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

...
Subject Matter Requirements

Students with a specific interest within civil engineering may choose to emphasize one of the following areas in their choice of electives: engineering and project management, environmental engineering, geosystems (geoengineering), structural engineering, or transportation engineering. See suggested courses (http://www.ce.berkeley.edu/undergrad/curriculum/) for each area of interest.

Fundamentals

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 100</td>
<td>Elementary Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>or CIV ENG 13:Applied Structural Mechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Fundamentals Elective - Complete one of the following:</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 126</td>
<td>Engineering Dynamics and Vibrations [3]</td>
<td></td>
</tr>
<tr>
<td>ENGIN 40</td>
<td>Engineering Thermodynamics [4]</td>
<td></td>
</tr>
<tr>
<td>MEC ENG 40</td>
<td>Thermodynamics [3]</td>
<td></td>
</tr>
<tr>
<td>MEC ENG 104</td>
<td>Engineering Mechanics II [3]</td>
<td></td>
</tr>
<tr>
<td>COMPSCI/ DATA/STAT C100</td>
<td>Principles & Techniques of Data Science [4]</td>
<td></td>
</tr>
<tr>
<td>EECS 127</td>
<td>Optimization Models in Engineering [4]</td>
<td></td>
</tr>
</tbody>
</table>

CEE Applications - Complete three of the following (9 units):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG</td>
<td>Terrestrial Hydrology [4]</td>
<td>3</td>
</tr>
<tr>
<td>C103N/ESPM C130/GEOG C136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIV ENG 111</td>
<td>Environmental Engineering [3]</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 120</td>
<td>Structural Engineering [3]</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 155</td>
<td>Transportation Systems Engineering [3]</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 175</td>
<td>Geotechnical and Geoenvironmental Engineering [3]</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 191</td>
<td>Civil and Environmental Engineering Systems Analysis [3]</td>
<td></td>
</tr>
</tbody>
</table>

Professional Preparation

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 167</td>
<td>Engineering Project Management</td>
<td>3</td>
</tr>
<tr>
<td>Capstone Design - Complete one of the following:</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 105</td>
<td>Design for Global Transformation [3]</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 112</td>
<td>Water & Wastewater Systems Design and Operation [3]</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 122</td>
<td>Design of Steel Structures [3]</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 123</td>
<td>Design of Reinforced Concrete Structures [3]</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 153</td>
<td>Transportation Facility Design [3]</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 179</td>
<td>Geosystems Engineering Design [3]</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 180</td>
<td>Life-Cycle Design and Construction [4]</td>
<td></td>
</tr>
<tr>
<td>CIV ENG 186</td>
<td>Design of Internet-of-Things for Smart Cities [3]</td>
<td></td>
</tr>
</tbody>
</table>

CEE Extensions: Complete nine units of additional CIV ENG courses

1. Basic Science Elective cannot be fulfilled by an exam score.
2. CEE Extensions-Nine letter-graded units chosen from upper division CIV ENG courses not being counted toward other major requirements. Students may use up to three units of CIV ENG graduate courses numbered 200-295, taken Fall 2017 or later, toward their CEE Extensions units. Students must have a technical GPA of 3.0 or higher to obtain permission to enroll in CIV ENG graduate courses. Students may receive up to three units of credit toward their CEE Extensions units for work on a research project in CIV ENG H194 (Honors Undergraduate Research).

Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions:

1. Completion of the requirements of one engineering major program (https://engineering.berkeley.edu/students/undergraduate-guide/degree-requirements/major-programs/) of study.
2. A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
3. The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
4. All technical courses (math, science, and engineering) that can fulfill requirements for the student's major must be taken on a letter graded basis (unless they are only offered P/NP).
5. Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed five semesters to complete their degree requirements. Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters.
6. Adhere to all college policies and procedures (https://engineering.berkeley.edu/students/undergraduate-guide/policies-procedures/) as they complete degree requirements.
7. Complete lower division technical courses before enrolling in upper division technical courses.

Humanities and Social Sciences (H/SS) Requirement

To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement (http://engineering.berkeley.edu/student-services/degree-requirements/humanities-and-social-sciences/), which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two Reading and Composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. See the humanities and social sciences (https://engineering.berkeley.edu/students/undergraduate-guide/degree-requirements/humanities-and-social-sciences/) section of our website for details.

Class Schedule Requirements

- Minimum units per semester: 12.0
- Maximum units per semester: 20.5
- Minimum technical courses: College of Engineering undergraduates must include at least two letter graded technical courses (of at least 3 units each) in their semester program. Every semester students are expected to make satisfactory progress in their declared major. Satisfactory progress is determined by the student’s Engineering Student Services Advisor. (Note: For most majors, normal progress (https://engineering.berkeley.edu/academics/undergraduate-guide/policies-procedures/scholarship-progress/#ac12282) will require enrolling in 3-4 technical courses required of your current major each semester.) Students who are not in compliance with this policy by
the end of the fifth week of the semester are subject to a registration block that will delay enrollment for the following semester.

- All technical courses (math, science, engineering) that satisfy requirements for the major must be taken on a letter-graded basis (unless only offered as P/NP).

Minimum Academic Requirements

- Students must have a minimum overall and semester grade point average of 2.00 (C average). Students will be subject to dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00.
- Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester.
- A minimum overall grade point average of 2.00 and a minimum 2.00 grade point average in upper division technical course work required for the major are required to earn a Bachelor of Science in the College of Engineering.
- Students must make normal degree progress toward the Bachelor of Science degree and their officially declared major.

Unit Requirements

To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:

- Completion of the requirements of one engineering major program (https://engineering.berkeley.edu/students/undergraduate-guide/degree-requirements/major-programs/) of study.
- A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed to count towards the B.S. degree, and no more than 4 units in any single term can be counted.
- A maximum of 4 units of physical education from any school attended will count towards the 120 units.
- Passed (P) grades may account for no more than one third of the total units completed at UC Berkeley. Fall Program for Freshmen (FPF), UC Education Abroad Program (UCEAP), or UC Berkeley Washington Program (UCDC) toward the 120 overall minimum unit requirement. Transfer credit is not factored into the limit. This includes transfer units from outside of the UC system, other UC campuses, credit-bearing exams, as well as UC Berkeley Extension XB units.

Normal Progress

Students in the College of Engineering must enroll in a full-time program and make normal progress (https://engineering.berkeley.edu/students/undergraduate-guide/policies-procedures/scholarship-progress/#ac12282) each semester toward their declared major. Students who fail to achieve normal academic progress shall be subject to dismissal. (Note: Students with official accommodations established by the Disabled Students’ Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.)

University of California Requirements

Entry Level Writing (http://guide.berkeley.edu/undergraduate/education/#earningyourdegreetext)

All students who will enter the University of California as freshmen must demonstrate their command of the English language by satisfying the Entry Level Writing Requirement (ELWR). The UC Entry Level Writing Requirement website (https://admission.universityofcalifornia.edu/elwr/) provides information on how to satisfy the requirement.

American History and American Institutions (http://guide.berkeley.edu/undergraduate/education/#earningyourdegreetext)

The American History and Institutions (AH&I) requirements are based on the principle that a US resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.

Campus Requirement

American Cultures (http://guide.berkeley.edu/undergraduate/education/#earningyourdegreetext)

The American Cultures requirement is a Berkeley campus requirement, one that all undergraduate students at Berkeley need to pass in order to graduate. You satisfy the requirement by passing, with a grade not lower than C- or P, an American Cultures course. You may take an American Cultures course any time during your undergraduate career at Berkeley. The requirement was instituted in 1991 to introduce students to the diverse cultures of the United States through a comparative framework. Courses are offered in more than fifty departments in many different disciplines at both the lower and upper division level.

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), see the College Requirements and Major Requirements tabs.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 11</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MATH 1A</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>DATA C8</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Reading and Composition Course Part A <sup>6</sup></td>
<td>4</td>
<td>PHYSICS 7A</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIV ENG 92A</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or 92B</td>
<td><sup>1</sup></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 60</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 53</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Basic Science Elective<sup>2</sup></td>
<td>3-4</td>
<td>MATH 54</td>
<td>4</td>
</tr>
<tr>
<td>Reading and Composition Course Part B <sup>6</sup></td>
<td>4</td>
<td>Humanities/</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Science Course <sup>6</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14-15</td>
<td>14-15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 100 or 132</td>
<td>3-4</td>
<td>CEE Applications Electives<sup>3</sup></td>
<td>6</td>
</tr>
<tr>
<td>CEE Applications Elective<sup>3</sup></td>
<td>3</td>
<td>CIV ENG 126,</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEC ENG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40, MEC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG 104,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EECS 127,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>or COMPSCI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C100</td>
<td></td>
</tr>
</tbody>
</table>
are achieved by:

- Systems in California, the United States, and the world. These objectives and the efficient and sustainable functioning of engineered and natural civil infrastructure, resource protection, natural hazard mitigation, and the leaders who will contribute to solving societal problems by improving engineering knowledge to have a significant and positive long-term impact on the field of civil and environmental engineering.
- Inspiring students and preparing them for successful professional careers, for further studies in high-quality graduate programs in engineering or other professional fields, and for a lifetime of learning.
- Emphasizing the importance of professional and personal ethics, business and management leadership, and service to society.

Learning Goals for the Major

1. Ability to apply knowledge of mathematics, science, and engineering.
2. Ability to design and conduct experiments, as well as to analyze and interpret data.
3. Ability to design a system, component, or process to meet desired needs.
4. Ability to function on multidisciplinary teams.
5. Ability to identify, formulate, and solve engineering problems.
6. Understanding of professional and ethical responsibility.
7. Ability to communicate effectively.
8. Understand the impact of engineering solutions in a global and societal context.
9. Recognition of the need for, and an ability to engage in life-long learning.
10. Knowledge of contemporary issues.
11. Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Major Maps help undergraduate students discover academic, co-curricular, and discovery opportunities at UC Berkeley based on intended major or field of interest. Developed by the Division of Undergraduate Education in collaboration with academic departments, these experience maps will help you:

- **Explore** your major and gain a better understanding of your field of study
- **Connect** with people and programs that inspire and sustain your creativity, drive, curiosity and success
- **Discover** opportunities for independent inquiry, enterprise, and creative expression
- **Engage** locally and globally to broaden your perspectives and change the world
- **Reflect** on your academic career and prepare for life after Berkeley

Use the major map below as a guide to planning your undergraduate journey and designing your own unique Berkeley experience.

View the Civil Engineering Major Map PDF. (https://ue.berkeley.edu/sites/default/files/civil_engineering.pdf)

Faculty Advisers

Students in CEE are encouraged to seek mentoring from CEE faculty advisers.

Faculty advisers (and, indeed, all faculty members) hold office hours throughout the school year to help students with course content; to advise on courses, career objectives and graduate school; to provide guidance about summer internships; to mentor students researchers;
and to write letters of recommendation as appropriate. They also can be contacted (by e-mail or phone) to schedule an appointment.

CEE students should meet with a faculty advisor of their choice at least twice a year for academic advising. The department hosts Academic Advising Forums each semester to facilitate advising. The faculty advisor reviews the student's proposed academic schedule, suggests coursework based on the student's interest and offers mentoring for career development. If a student struggles academically, as evidenced by their GPA, the department will require academic advising prior to enrollment in classes the following semester.

College of Engineering Advising

Students are also assigned an engineering student services (ESS) adviser in the College of Engineering. ESS advisers help with a wide range of issues by assisting with course selection and academic decision-making, suggesting enrichment opportunities, explaining graduation requirements and college policies, monitoring progress towards the degree, and providing support or referrals to campus resources to help students reach their academic and personal goals. Explore the ESS website (http://engineering.berkeley.edu/student-services/advising/) for detailed information on advising services.

Departmental Advising

CEE’s undergraduate adviser answers registration questions, assists with course selection and academic decision-making, describes courses, interprets departmental policy, and makes referrals to resources on campus. The department’s undergraduate adviser is located in the CEE Academic Affairs Office, 750 Davis Hall.

Further Information

See CEE Advising (http://www.ce.berkeley.edu/undergrad/advising/) for more advising resources.

Student Organizations

Join one or more of the active student organizations with CEE and the College of Engineering. Learn to apply CEE knowledge outside of the classroom, get leadership and teamwork experience, meet students with similar interests, go on tours and field trips, and participate in community service projects.

CEE organizations

- ASCE Student Chapter (https://www.asce.berkeley.edu/) has a membership of over 230 students.
- Chi Epsilon (http://www.ocf.berkeley.edu/%7Echiep/) is the undergraduate honor society in CEE (invitation only).
- Institute of Transportation Engineers Student Chapter (https://ite.berkeley.edu/).

COE organizations

- Society of Women Engineers (http://swe.berkeley.edu/) (SWE)
- Engineers Without Borders (http://ewb.berkeley.edu/) (EWB)
- Engineers for a Sustainable World (https://esw.berkeley.edu/) (ESW)
- Pioneers in Engineering (https://pioneers.berkeley.edu/) (PIE)

Undergraduate Participation in Research

Gain hands-on research experience while at Berkeley. Research experience adds to the quality of the undergraduate program and introduces students to the importance of graduate study.

Research opportunities

- COE’s u (http://coe.berkeley.edu/students/current-undergraduates/student-research/) undergraduate research opportunities (http://coe.berkeley.edu/students/current-undergraduates/student-research/)
- Undergraduate Research at Berkeley (http://research.berkeley.edu/)
- Berkeley Undergraduate Research Apprentice Program (http://research.berkeley.edu/urap/)
- Supervised independent study (http://www.ce.berkeley.edu/undergrad/curriculum/) CIV ENG 99, CIV ENG 199, and CIV ENG H194. Receive course credit.
- Competition teams (see list above)
- Laboratory volunteer

Study Abroad

Civil and environmental engineering is a profession that depends on collaboration with colleagues nationally and internationally. Thus, the department strongly encourages its students to expand their horizons through an international educational experience. See the CEE Department Study Abroad page (https://ce.berkeley.edu/undergrad/abroad/) for policy details, sample study plans and a list of pre-approved courses for the major. Also read Berkeley's extensive Education Abroad Program (http://eap.ucop.edu/Pages/index-new.html).

Civil Engineering

Expand all course descriptions [+]Collapse all course descriptions [-]
CIV ENG 11 Engineered Systems and Sustainability 3 Units
Terms offered: Spring 2024, Fall 2023, Spring 2023
An introduction to key engineered systems (e.g., energy, water supply, buildings, transportation) and their environmental impacts. Basic principles of environmental science needed to understand natural processes as they are influenced by human activities. Overview of concepts and methods of sustainability analysis. Critical evaluation of engineering approaches to address sustainability.
Engineered Systems and Sustainability: Read More [+]
Rules & Requirements
Prerequisites: CHEM 1A and MATH 1A
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Summer: 8 weeks - 6 hours of lecture per week
Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Harley, Horvath, Nelson
Engineered Systems and Sustainability: Read Less [-]

CIV ENG 24 Freshman Seminars 1 Unit
Terms offered: Spring 2020, Fall 2019, Spring 2019
The Berkeley Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Berkeley seminars are offered in all campus departments, and topics vary from department to department and semester to semester.
Freshman Seminars: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week
Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Harley, Horvath, Nelson
Engineered Systems and Sustainability: Read Less [-]

CIV ENG C30 Introduction to Solid Mechanics 3 Units
Terms offered: Spring 2024, Fall 2023, Summer 2023 10 Week Session
Introduction to Solid Mechanics: Read More [+]
Rules & Requirements
Prerequisites: Mathematics 53 and 54 (may be taken concurrently); Physics 7A
Credit Restrictions: Students will receive no credit for Mechanical Engineering C85/Civil and Environmental Engineering C30 after completing Mechanical Engineering W85. A deficient grade in Mechanical Engineering W85 may be removed by taking Mechanical Engineering C85/Civil and Environmental Engineering C30.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer:
6 weeks - 7.5 hours of lecture and 2.5 hours of discussion per week
10 weeks - 4.5 hours of lecture and 1.5 hours of discussion per week
Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Armero, Papadopoulos, Zohdi, Johnson
Also listed as: MEC ENG C85
Introduction to Solid Mechanics: Read Less [-]
CIV ENG W30 Introduction to Solid Mechanics 3 Units
Terms offered: Summer 2021 8 Week Session, Summer 2020 8 Week Session, Summer 2019 8 Week Session
Introduction to Solid Mechanics: Read More [+]

Objectives & Outcomes
Course Objectives: To learn statics and mechanics of materials
Student Learning Outcomes: -
- Correctly draw free-body
- Apply the equations of equilibrium to two and three-dimensional solids
- Understand the concepts of stress and strain
- Ability to calculate deflections in engineered systems
- Solve simple boundary value problems in linear elastostatics (tension, torsion, beam bending)

Rules & Requirements
Prerequisites: MATH 53 and MATH 54 (may be taken concurrently); PHYSICS 7A
Credit Restrictions: Students will receive no credit for MEC ENG W85 after completing MEC ENG C85. A deficient grade in MEC ENG W85 may be removed by taking MEC ENG C85.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of web-based lecture and 1 hour of web-based discussion per week
Summer:
- 6 weeks - 7.5 hours of web-based lecture and 2.5 hours of web-based discussion per week
- 8 weeks - 6 hours of web-based lecture and 2 hours of web-based discussion per week
- 10 weeks - 4.5 hours of web-based lecture and 1.5 hours of web-based discussion per week
Online: This is an online course.

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Govindjee
Also listed as: MEC ENG W85

CIV ENG 60 Structure and Properties of Civil Engineering Materials 3 Units
Terms offered: Spring 2024, Fall 2023, Spring 2023
Introduction to structure and properties of civil engineering materials such as asphalt, cements, concrete, geological materials (e.g. soil and rocks), steel, polymers, and wood. The properties range from elastic, plastic and fracture properties to porosity and thermal and environmental responses. Laboratory tests include evaluation of behavior of these materials under a wide range of conditions.
Structure and Properties of Civil Engineering Materials: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Summer:
- 6 weeks - 7.5 hours of lecture and 2 hours of laboratory per week
- 8 weeks - 6 hours of lecture and 4 hours of laboratory per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Monteiro, Ostertag

CIV ENG 70 Engineering Geology 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Principles of physical and structural geology; the influence of geological factors on engineering works and the environment. Field trip.
Engineering Geology: Read More [+]

Rules & Requirements
Prerequisites: CHEM 1A (may be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week
Summer:
- 8 weeks - 6 hours of lecture and 4 hours of laboratory per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Glaser, Sitar
Engineering Geology: Read Less [-]
CIV ENG 88B Time Series Analysis: Sea Level Rise and Coastal Flooding 2 Units
Terms offered: Spring 2017
In this course, we will pursue analysis of long-term records of coastal water levels in the context of sea level rise. We will cover the collection, evaluation, visualization and analysis of time series data using long-term records of sea levels from coastal sites around the world. Specific topics will include extreme events and distributions, frequency-based descriptions, averaging, filtering, harmonic analysis, trend identification, extrapolations, and decision-making under uncertainty.

Time Series Analysis: Sea Level Rise and Coastal Flooding: Read More [+]

Rules & Requirements
Prerequisites: Concurrent or prior enrollment in Foundations of Data Science (COMPSCI C8 / INFO C8 / STAT C8) and MATH 1A

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 1 hour of laboratory per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Stacey

Time Series Analysis: Sea Level Rise and Coastal Flooding: Read Less [-]

CIV ENG C88 Data Science for Smart Cities 2 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022
Cities become more dependent on the data flows that connect infrastructures between themselves, and users to infrastructures. Design and operation of smart, efficient, and resilient cities nowadays require data science skills. This course provides an introduction to working with data generated within transportation systems, power grids, communication networks, as well as collected via crowd-sensing and remote sensing technologies, to build demand- and supply-side urban services based on data analytics.

Data Science for Smart Cities: Read More [+]

Objectives & Outcomes
Course Objectives: Become familiar with urban big data and sensor data collection techniques.

Develop intuition in various machine learning classification algorithms, as well as regression modelling.

Develop intuition in various machine learning classification algorithms, as well as regression modelling.

Foster critical thinking about real-world actionability from analytics.

Learn how to use data science techniques in urban decision-making and scenario generation.

Student Learning Outcomes: Develop capabilities in a range of data science techniques.
Gain the ability to solve problems in smart city research and practice. Think critically about how to assess analytics for cities. Use data analytics in the smart city domain.

Rules & Requirements
Prerequisites: This course is a Data Science connector course and is meant to be taken concurrent with or after Foundations of Data Science COMPSCI C8/INFO C8/STAT C8. Students may take more than one Data Science connector course if they wish, concurrently or after taking the C8 course

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Gonzalez
Formerly known as: Civil and Environmental Engineering 88
Also listed as: CY PLAN C88

Data Science for Smart Cities: Read Less [-]
CIV ENG 92 Introduction to Civil and Environmental Engineering 1 Unit
Terms offered: Fall 2019, Fall 2018, Fall 2017
A course designed to familiarize the entering student with the nature and scope of civil and environmental engineering and its component specialty areas.

Introduction to Civil and Environmental Engineering: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Introduction to Civil and Environmental Engineering: Read Less [-]

CIV ENG 92A Design for Future Infrastructure Systems 2 Units
Terms offered: Spring 2022, Fall 2020
Hands-on engineering design experience for creating future infrastructure systems. Intelligent infrastructure systems leverage data and computational to enhance sustainability and resilience for smart cities of the future. Student teams identify a challenge with current transportation, energy, water, waste, and/or the built infrastructure. Student teams design and prototype an innovation that solves this problem using maker resources, e.g. 3D printing, laser cutters, and open-source electronics. The project will be executing via the "Design Sprint" process, which is popular in agile development and Silicon Valley. Students present projects to guest judges from industry. Course is an introductory design experience for first-year students.

Design for Future Infrastructure Systems: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Alternative to final exam.
Instructor: DeJong

Design for Future Infrastructure Systems: Read Less [-]

CIV ENG 92B Cornerstone Structural Design 2 Units
Terms offered: Fall 2023, Spring 2023, Spring 2022
This course introduces students to conceptual structural design, fabrication, and testing. The course aims to provide a hands-on structural engineering design experience and to inspire creativity. Students will learn the design process as well as fundamental principles of structural analysis. Student teams will be given a design challenge with performance objectives and practical constraints that emphasize sustainable design practices. Student teams will use maker space resources (e.g. 3D printing, laser cutting, CNC router, woodshop) to fabricate their structures, which will be tested to failure in the Structural Engineering Lab in Davis Hall.

Cornerstone Structural Design: Read More [+]

Objectives & Outcomes
Student Learning Outcomes:
- Explain basic concepts of statics and equilibrium.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Moura

Cornerstone Structural Design: Read Less [-]
CIV ENG 93 Engineering Data Analysis 3 Units
Terms offered: Spring 2024, Fall 2023, Summer 2023 First 6 Week Session
Application of the concepts and methods of probability theory and statistical inference to CEE problems and data; graphical data analysis and sampling; elements of set theory; elements of probability theory; random variables and expectation; simulation; statistical inference. Use of computer programming languages for analysis of CEE-related data and problems. The course also introduces the student to various domains of uncertainty analysis in CEE.

Engineering Data Analysis: Read More [+]

Rules & Requirements
Prerequisites: ENGIN 7 or COMPSCI C8 / INFO C8 / STAT C8. Student should consult instructor prior to enrolling

Credit Restrictions: Students will receive no credit after taking Statistics 25.

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Summer: 6 weeks - 5 hours of lecture and 7.5 hours of laboratory per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Hansen, Rubin, Walker

Engineering Data Analysis: Read Less [-]

CIV ENG 98 Supervised Group Study and Research 1 - 3 Units
Terms offered: Spring 2024, Fall 2023, Spring 2023
Supervised group study and research by lower division students.

Supervised Group Study and Research: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor
Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of directed group study per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Supervised Group Study and Research: Read Less [-]

CIV ENG 99 Supervised Independent Study and Research 1 - 4 Units
Terms offered: Spring 2024, Spring 2023, Fall 2022
Supervised independent study by lower division students.

Supervised Independent Study and Research: Read More [+]

Rules & Requirements
Prerequisites: Freshman or sophomore standing and consent of instructor. Minimum grade point average of 3.3 required
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer: 8 weeks - 2-7.5 hours of independent study per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Supervised Independent Study and Research: Read Less [-]
CIV ENG 100 Elementary Fluid Mechanics 4 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Fluid statics and dynamics, including laboratory experiments with technical reports. Fundamentals: integral and differential formulations of the conservation laws are solved in special cases such as boundary layers and pipe flow. Flow visualization and computation techniques are introduced using Matlab. Empirical equations are used for turbulent flows, drag, pumps, and open channels. Principles of empirical equations are also discussed: dimensional analysis, regression, and uncertainty.

Elementary Fluid Mechanics: Read More [+]

Rules & Requirements
Prerequisites: PHYSICS 7A, MATH 53, and ENGIN 7 (may be taken concurrently); and CIV ENG C30 / MEC ENG C85 recommended

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of laboratory per week
Summer: 8 weeks - 6 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Chow, Stacey, Variano
Elementary Fluid Mechanics: Read Less [-]

CIV ENG C103N Terrestrial Hydrology 4 Units
Terms offered: Fall 2023, Fall 2022, Spring 2021
A quantitative introduction to the hydrology of the terrestrial environment including lower atmosphere, watersheds, lakes, and streams. All aspects of the hydrologic cycle, including precipitation, infiltration, evapotranspiration, overland flow, streamflow, and groundwater flow. Chemistry and dating of groundwater and surface water. Development of quantitative insights through problem solving and use of simple models. This course requires one field experiment and several group computer lab assignments.

Terrestrial Hydrology: Read More [+]

Rules & Requirements
Prerequisites: CHEM 1A, MATH 1A, MATH 1B, and PHYSICS 7A; or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Larsen
Also listed as: ESPM C130/GEOG C136
Terrestrial Hydrology: Read Less [-]
CIV ENG 104 Planetary Boundaries and the Anthropocene 1 Unit
Terms offered: Fall 2022, Fall 2021, Spring 1998
This course aims to introduce students to the debates and discussions about the impact of increasing human resource consumption, increasing population, and increasing human prosperity on the planet's environmental systems that support human societies.

Objectives & Outcomes

Course Objectives:
- Explain the major arguments on the sides of "planetary boundaries" and "cornucopia"
- Understand the basic system dynamics view of planetary systems
- Understand the main features of several of planetary boundaries that have scientific consensus

Rules & Requirements

Prerequisites: Upper division undergraduate standing
Credit Restrictions: Students will receive no credit for CIV ENG 104 after completing CIV ENG 104. A deficient grade in CIV ENG 104 may be removed by taking CIV ENG 104.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructors: Chow, Gadgil

Planetary Boundaries and the Anthropocene: Read Less [-]

CIV ENG 105 Design for Global Transformation 3 Units
Terms offered: Spring 2024, Spring 2022, Spring 2021
Student teams will design strategies to address critical global challenges, such as climate change, biodiversity loss, pollution, and related issues, with the potential for transformational change. Project topics will vary. Students will explore global to local scales using principles and practices from design science, systems thinking, regenerative design, circular economy, environmental justice, science communication, data visualization, and numerical modeling, among other disciplines.

Objectives & Outcomes

Course Objectives:
- Create a multi-media exhibit to clearly communicate your findings and strategy
- Iteratively design a comprehensive strategy to address your team’s global challenge
- To gain familiarity with relevant design and engineering tools, including data visualization and simulation and modeling
- Work strategically and collaboratively with fellow students in a design team

Rules & Requirements

Prerequisites: At least one of the following courses: CIV ENG C103N / ESPM C130 / GEOG C136, CIV ENG 111, CIV ENG 120, CIV ENG 155, CIV ENG 175, or CIV ENG 191; or instructor's permission

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Chow

Design for Global Transformation: Read Less [-]
CIV ENG C106 Air Pollution 3 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022
This course is an introduction to air pollution and the chemistry of earth's atmosphere. We will focus on the fundamental natural processes controlling trace gas and aerosol concentrations in the atmosphere, and how anthropogenic activity has affected those processes at the local, regional, and global scales. Specific topics include stratospheric ozone depletion, increasing concentrations of greenhouse gases, smog, and changes in the oxidation capacity of the troposphere.

Read More [+]

Rules & Requirements

Prerequisites: CHEM 1A, CHEM 1B, and PHYSICS 8A or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Goldstein

Also listed as: EPS C180/ESPM C180

Air Pollution: Read Less [-]

CIV ENG 107 Climate Change Mitigation 3 Units
Terms offered: Spring 2024, Spring 2023, Spring 2021

Read More [+]

Rules & Requirements

Prerequisites: Upper division or graduate standing in engineering or physical science, or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Instructor: Stacey

Climate Change Mitigation: Read Less [-]

CIV ENG 108 Climate Change Adaptation 3 Units
Terms offered: Fall 2023, Spring 2022, Fall 2009
In this course, we will examine the local manifestation of global climate change and consider interventions and responses that anticipate long-term change in communities. The course will integrate environmental sciences, civil and environmental engineering, and the social sciences to both understand the impacts of global change and to quantitatively evaluate possible adaptation interventions. Upon completing the course, you will have a holistic perspective on the challenges associated with climate change adaptation, an understanding of the wide range of potential solutions and interventions that may be possible, and an awareness of the strengths and weaknesses of those solutions.

Read More [+]

Rules & Requirements

Prerequisites: CIV ENG 11 or introductory climate science course, or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Instructor: Stacey

Climate Change Adaptation: Read Less [-]
CIV ENG 110 Water Systems of the Future 3 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022
This course will familiarize students with the complex infrastructure used to meet human water demands; competing uses and demands; water and wastewater infrastructure; technologies to enable recovery of water, energy, and other resources from wastewater; supply planning; trends and forecasting; costs, pricing and financing; environmental justice; methods to assess sustainability; regulatory, policy and institutional challenges; and water's contribution to other sectors (e.g., energy, food, buildings). Innovation, both barriers and opportunities, will be highlighted. California and the U.S. will be emphasized but global challenges will be discussed. Students will study, critique, and recommend improvements for a real-world system.

Water Systems of the Future: Read More [+]

Objectives & Outcomes

Course Objectives: Consider costs and tradeoffs in water supply planning under uncertainty for real-world water systems
Critically evaluate water planning and innovation potential for real-world utilities given future uncertainties and competing priorities.
Explore the innovation ecosystem in the water sector, its opportunities and challenges, and analyze case studies
Introduce the technologies that are currently in use for treating and managing water and wastewater, as well as innovations that have the potential to dramatically change water infrastructure.
Provide overview and examples of concepts and methods for analyzing the sustainability of water systems
Provide overview of the complex infrastructure systems that supply and manage water and wastewater.

Student Learning Outcomes: Ability to apply knowledge of mathematics, science, and engineering. MODERATE
Ability to communicate effectively. EXTENSIVE
Ability to design a system, component, or process to meet desired needs. MODERATE
Ability to function on multi-disciplinary teams. EXTENSIVE
Ability to identify, formulate and solve engineering problems. MODERATE
Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. MODERATE
Knowledge of contemporary issues. EXTENSIVE
Recognition of the need for, and an ability to engage in life-long learning. EXTENSIVE
Understand the impact of engineering solutions in a global and societal context. EXTENSIVE
Understanding of professional and ethical responsibility. EXTENSIVE

Rules & Requirements

Prerequisites: Upper division status or consent of the instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Nelson

Water Systems of the Future: Read Less [-]

CIV ENG 111 Environmental Engineering 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Quantitative overview of air and water contaminants and their engineering control. Elementary environmental chemistry and transport. Reactor models. Applications of fundamentals to selected current issues in water quality engineering, air quality engineering, air quality engineering, and hazardous waste management.

Environmental Engineering: Read More [+]

Rules & Requirements

Prerequisites: Upper division standing in engineering or physical sciences, or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Alvarez-Cohen, Nelson, Sedlak

Environmental Engineering: Read Less [-]

CIV ENG 111L Water and Air Quality Laboratory 1 Unit
Terms offered: Fall 2023, Fall 2022, Fall 2021
This laboratory course is designed to accompany the lecture topics in Civil Engineering 111. Each laboratory activity will provide an opportunity to understand key concepts in water and air quality through hands-on experimentation. Laboratory topics include phase partitioning, acid/base reactions, redox reactions, biochemical oxygen demand, absorption, gas transfer, reactor hydraulics, particle destabilization, disinfection, and combustion emissions.

Water and Air Quality Laboratory: Read More [+]

Rules & Requirements

Prerequisites: CIV ENG 111 (may be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Alvarez-Cohen, Nelson, Sedlak

Water and Air Quality Laboratory: Read Less [-]
CIV ENG 112 Water & Wastewater Systems Design and Operation 3 Units
Terms offered: Fall 2023, Fall 2022, Spring 2017
Water and wastewater systems serving communities are complex, large, and were built and expanded over many decades. The infrastructure includes a network of reservoirs, pipelines, pump stations, treatment plants, and other facilities that are connected to natural systems such as watersheds, rivers, groundwater basins, and bay and ocean environments. The planning, design, operation, and maintenance of urban water and wastewater systems require balancing many factors including aging infrastructure, changing regulations, climate change, costs, and community impacts.
One of the greatest challenges facing civil engineers in the 21st century is the stewardship of the infrastructure to protect public health and the environment. Existing systems require Water & Wastewater Systems Design and Operation: Read More [+]

Rules & Requirements
Prerequisites: CIV ENG 100 and CIV ENG 111

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Soga

Water & Wastewater Systems Design and Operation: Read Less [-]

CIV ENG 113 Ecological Engineering for Water Quality Improvement 3 Units
Terms offered: Spring 2021, Spring 2019, Spring 2017
Ecological engineering approaches for treating contaminated water using natural processes to improve water quality. Emphasis on combining basic science and engineering approaches to understand the fundamental processes that govern the effectiveness of complex natural treatment systems. Applications include constructed wetlands, waste stabilization ponds, stormwater bioretention, decentralized wastewater management, ecological sanitation. Laboratory sessions will consist of design and monitoring of laboratory and full-scale natural treatment systems, including a range of water quality measurements.

Ecological Engineering for Water Quality Improvement: Read More [+]
Objectives & Outcomes
Course Objectives:
- Become familiar with common applications of natural treatment systems through lectures, reading materials, laboratory activities, and field trips
- Develop a solid understanding of the fundamental processes in ecological engineering approaches to natural treatment systems that govern the removal or transformation of contaminants in water
- Learn common design approaches for waste stabilization ponds and wetlands, as well as their necessary operation and maintenance activities
- Measure key water quality parameters and evaluate the performance of mesocosm ponds and wetlands based on the data collected throughout the semester
- Understand and appreciate the complexity of these systems compared to mechanical treatment systems

Student Learning Outcomes:
- Ability to apply knowledge of mathematics, science, and engineering. EXTENSIVE
- Ability to communicate effectively. MODERATE
- Ability to design a system, component, or process to meet desired needs. EXTENSIVE
- Ability to design and conduct experiments, as well as to analyze and interpret data. EXTENSIVE
- Ability to function on multi-disciplinary teams. MODERATE
- Ability to identify, formulate and solve engineering problems. EXTENSIVE
- Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. EXTENSIVE
- Knowledge of contemporary issues. MODERATE
- Recognition of the need for, and an ability to engage in life-long learning. MODERATE
- Understand the impact of engineering solutions in a global and societal context. MODERATE
- Understanding of professional and ethical responsibility. MODERATE

Rules & Requirements
Prerequisites: CIV ENG 111 or consent of instructor
Credit Restrictions: Civ Eng 113N

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Nelson
Formerly known as: Civil and Environmental Engineering 113N
CIV ENG 114 Environmental Microbiology 3 Units
Terms offered: Spring 2016, Spring 2015, Fall 2014
The scope of modern environmental engineering requires a fundamental knowledge of microbial processes with specific application to water, wastewater and the environmental fate of pollutants. This course will cover basic microbial physiology, biochemistry, metabolism, growth energetics and kinetics, ecology, pathogenicity, and genetics for application to both engineered and natural environmental systems.
Environmental Microbiology: Read More [+]

Rules & Requirements
Prerequisites: CHEM 1A and CHEM 1B

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Alvarez-Cohen

Environmental Microbiology: Read Less [-]

CIV ENG 115 Water Chemistry 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
The application of principles of inorganic, physical, and dilute solution equilibrium chemistry to aquatic systems, both in the aquatic environment and in water and wastewater treatment processes.
Water Chemistry: Read More [+]

Rules & Requirements
Prerequisites: Upper division or graduate standing in engineering or physical science, or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Sedlak

Water Chemistry: Read Less [-]

CIV ENG C116 Chemistry of Soils 3 Units
Terms offered: Fall 2021, Fall 2020, Spring 2018
Chemical mechanisms of reactions controlling the fate and mobility of nutrients and pollutants in soils. Role of soil minerals and humus in geochemical pathways of nutrient bioavailability and pollutant detoxification. Chemical modeling of nutrient and pollutant soil chemistry. Applications to soil acidity and salinity.
Chemistry of Soils: Read More [+]

Rules & Requirements
Prerequisites: CIV ENG 111

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Also listed as: ESPM C128
Chemistry of Soils: Read Less [-]

CIV ENG 120 Structural Engineering 3 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022
Structural Engineering: Read More [+]

Rules & Requirements
Prerequisites: CIV ENG C30 / MEC ENG C85 and CIV ENG 60 (may be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Moehle
Structural Engineering: Read Less [-]
CIV ENG 122 Design of Steel Structures 3 Units

Terms offered: Fall 2023, Fall 2022, Fall 2021

A first course in steel design focusing on basic principles. Introduction to materials and methods of steel construction; behavior and design of tension members, compression members, flexural members and beam-columns; design of welds, bolts, shear connections, and moment connections. Includes laboratory sessions to illustrate member behavior. By the end of the course students should be able to design simple steel structures subjected to static gravity and lateral loads. Design teams will conceive, determine design loads, and conduct a preliminary and final design of a structural system and its foundation. Teams will prepare a report containing project description, design criteria, structural drawings, and supporting calculations.

Design of Steel Structures: Read More [+]

Rules & Requirements

Prerequisites: CIV ENG 120

Credit Restrictions: Students will receive no credit for CIV ENG 122 after completing CIV ENG 122N, or CIV ENG 122. A deficient grade in CIV ENG 122 may be removed by taking CIV ENG 122N, or CIV ENG 122.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Becker

Design of Steel Structures: Read Less [-]

CIV ENG 123 Design of Reinforced Concrete Structures 3 Units

Terms offered: Spring 2024, Spring 2023, Spring 2022

Introduction to materials and methods of reinforced concrete design and construction; behavior and design of reinforced concrete beams and one-way slabs considering deflections, moment, shear, and reinforcement development requirements; behavior and design of columns; design of spread footings; design of earthquake-resistant structures; laboratory sessions to illustrate member behavior, to solve problem sets, and to develop and present the preliminary designs for a design project.

Design of Reinforced Concrete Structures: Read More [+]

Rules & Requirements

Prerequisites: CIV ENG 120

Credit Restrictions: Students will receive no credit for CIV ENG 123 after completing CIV ENG 123N, or CIV ENG 123. A deficient grade in CIV ENG 123 may be removed by taking CIV ENG 123N, or CIV ENG 123.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Moehle

Design of Reinforced Concrete Structures: Read Less [-]

CIV ENG 124 Structural Design in Timber 3 Units

Terms offered: Fall 2023, Fall 2022, Fall 2021

Characteristics and properties of wood as a structural material; design and detailing of structural elements and entire structures of wood. Topics include allowable stresses, design and detailing of solid sawn and glulam beams and columns, nailed and bolted connections, plywood diaphragms and shear walls. Case studies.

Structural Design in Timber: Read More [+]

Rules & Requirements

Prerequisites: CIV ENG 120

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Becker

Structural Design in Timber: Read Less [-]
CIV ENG 126 Engineering Dynamics and Vibrations 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Rules & Requirements
Prerequisites: CIV ENG C30 / MEC ENG C85 and ENGIN 7; or consent of instructor
Credit Restrictions: Students will receive no credit for CIV ENG 126 after completing MEC ENG 104. A deficient grade in CIV ENG 126 may be removed by taking MEC ENG 104, or MEC ENG 104.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Konstantinidis, DeJong
Engineering Dynamics and Vibrations: Read Less [-]

CIV ENG 132 Applied Structural Mechanics 3 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022
Concepts of theory of solid mechanics: three dimensional stress, strain, and material response; elastic and inelastic boundary value problems; fracture, fatigue, and geometric instability. Problems in advanced strength of materials; thin plate and axis-symmetric shell theory.
Applied Structural Mechanics: Read More [+]
Rules & Requirements
Prerequisites: CIV ENG C30 / MEC ENG C85, MATH 53 and MATH 54
Credit Restrictions: Students will receive no credit for CivEng 132 after CivEng 130N.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 8 weeks - 6 hours of lecture and 2 hours of discussion per week
Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Govindjee, Li, Konstantinidis
Applied Structural Mechanics: Read Less [-]
CIV ENG C133 Engineering Analysis Using the Finite Element Method 3 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022
This is an introductory course on the finite element method and is intended for seniors in engineering and applied science disciplines. The course covers the basic topics of finite element technology, including domain discretization, polynomial interpolation, application of boundary conditions, assembly of global arrays, and solution of the resulting algebraic systems. Finite element formulations for several important field equations are introduced using both direct and integral approaches. Particular emphasis is placed on computer simulation and analysis of realistic engineering problems from solid and fluid mechanics, heat transfer, and electromagnetism. The course uses FEMLAB, a multiphysics MATLAB-based finite element program that possesses a wide array of modeling capabilities and is ideally suited for instruction. Assignments will involve both paper- and computer-based exercises. Computer-based assignments will emphasize the practical aspects of finite element model construction and analysis.

Rules & Requirements
Prerequisites: Engineering 7 or 77 or Computer Science 61A; Mathematics 53 and 54; senior status in engineering or applied science

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Also listed as: MEC ENG C180

Engineering Analysis Using the Finite Element Method: Read More [+]

CIV ENG C138 Flight Vehicle Structures and Aeroelasticity 3 Units
Terms offered: Prior to 2007
This course introduces engineering students to the analysis and design of load-bearing components of flight structures, ranging from subsonic aircraft to rockets. Emphasis is placed on the quasi-static and dynamic analysis of structural components which are prevalent in aerospace engineering. Attention is also devoted to a comprehensive design roadmap of flight vehicle structures from the full system- to the individual component-level.

Objectives & Outcomes
Course Objectives: 1. Familiarize students with the different load-bearing components and loads encountered in flight vehicles.
2. Sharpen the students’ skills in the statics and dynamics of thin-walled structures.
3. Enhance the students’ aerospace engineering design skills by leveraging the use of the finite element method as a tool for both global and local analysis.

Student Learning Outcomes: Ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
(g) A knowledge of contemporary issues.
Ability to apply knowledge of mathematics, science, and engineering.
Ability to design and conduct experiments, as well as to analyze and interpret data
Ability to identify, formulate, and solve engineering problems.
Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
Understanding of professional and ethical responsibility.

Rules & Requirements
Prerequisites: CIV ENG C30 / MEC ENG C85, and MEC ENG 104 or CIV ENG 126

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of laboratory per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Papadopoulos
Formerly known as: Mechanical Engineering 184
Also listed as: AERO ENG C184/MEC ENG C184

Flight Vehicle Structures and Aeroelasticity: Read Less [-]
CIV ENG 140 Failure Mechanisms in Civil Engineering Materials 3 Units
Terms offered: Spring 2013, Spring 2010, Spring 2009
The failure mechanisms in civil engineering materials (cement-based materials, metallic- and polymer-based materials) are associated with processing, microstructure, stress states, and environmental changes. Fracture mechanics of brittle, quasi-brittle, and ductile materials; cracking processes in monolithic, particulate, and fiber reinforced materials; examples of ductile/brittle failure transitions in civil engineering structures; retrofitting of existing structures; non-destructive techniques for damage detection.
Failure Mechanisms in Civil Engineering Materials: Read More [+]
Rules & Requirements
Prerequisites: CIV ENG 60

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Ostertag

Failure Mechanisms in Civil Engineering Materials: Read Less [-]

CIV ENG 153 Transportation Facility Design 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
A capstone class with the objective to design transportation facilities based on operational capacity, site constraints, and environmental design considerations. Emphasis on airports, including landside and airside elements, and environmental assessment and mitigation techniques.
Transportation Facility Design: Read More [+]
Rules & Requirements
Prerequisites: CIV ENG 155

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Hansen

Transportation Facility Design: Read Less [-]

CIV ENG 155 Transportation Systems Engineering 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Transportation Systems Engineering: Read More [+]
Rules & Requirements
Prerequisites: Sophomore standing in engineering or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Cassidy, Daganzo, Hansen, Kanafani, Madanat
Transportation Systems Engineering: Read Less [-]

CIV ENG 160D Data Science in Aviation 3 Units
Terms offered: Spring 2023
The course will be centered around analyses of a set of aviation data sets and will enable the students to become familiar with data science applications to aviation. Aviation topics to be covered include fundamentals of air traffic control, models of aviation operations, aircraft trajectory prediction and optimization, data sources in aviation, overview of data science methods, role of data science in solving problems in aviation operations such as conflict detection and resolution, traffic flow management, arrivals management and surface operations, airline operations, fuel efficiency, global aviation.
Data Science in Aviation: Read More [+]
Rules & Requirements
Prerequisites: DATA C8 and CIV ENG 93

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Data Science in Aviation: Read Less [-]
CIV ENG 165 Concrete Materials, Construction, and Sustainability 3 Units
Terms offered: Spring 2023, Spring 2021, Spring 2020

Concrete Materials, Construction, and Sustainability: Read More [+]

Rules & Requirements
Prerequisites: CIV ENG 60

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/ Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Monteiro

Concrete Materials, Construction, and Sustainability: Read Less [-]

CIV ENG 166 Construction Engineering 3 Units
Terms offered: Spring 2024, Spring 2023, Fall 2021
Introduction to construction engineering and field operations. The construction industry, construction methods and practice, productivity improvement, equipment selection, site layout formwork, erection of steel and concrete structures. Labs demonstrate the concepts covered. Field trips to local construction projects.

Construction Engineering: Read More [+]

Rules & Requirements
Prerequisites: Upper division standing; CIV ENG 167 recommended

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/ Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Horvath

CIV ENG 167 Engineering Project Management 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Principles of economics, decision making, and law applied to company and project management. Business ownership, liability and insurance, cash flow analysis, and financial management. Project life-cycle, design-construction interface, contracts, estimating, scheduling, cost control.

Engineering Project Management: Read More [+]

Rules & Requirements
Prerequisites: CIV ENG 93 (can be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/ Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Ibbs, Tommelein

Engineering Project Management: Read Less [-]

CIV ENG 170A Infrastructure Sensing and Modeling 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Introduction to sensing and modeling of infrastructure system; Imagery analysis (point clouds, lidar, structure for motion, satellite); Geophysics (Synthetic-aperture radar analysis, time histories analyses); Sensor systems (distributed fiber optics, wireless sensor network, MEMS, conventional); Structural health monitoring and analysis; Infrastructure network analysis (graph theory, GIS, simulations); entrepreneurship in infrastructure and smart cities industry.

Infrastructure Sensing and Modeling: Read More [+]

Rules & Requirements
Prerequisites: ENGIN 7, CIV ENG C30, and CIV ENG 93 or equivalents

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Civil and Environmental Engineering/ Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Instructors: Soga , Zekkos, Kayen

Infrastructure Sensing and Modeling: Read Less [-]
CIV ENG 171 Rock Mechanics 3 Units
Terms offered: Spring 2024, Spring 2022, Spring 2020
Geological and geophysical exploration for structures in rock; properties and behavior of rock masses; rock slope stability; geological engineering of underground openings; evaluation of rock foundations, including dams.
Rock Mechanics: Read More [+]

Rules & Requirements

Prerequisites: CIV ENG 70 or an introductory course in physical geology; and upper division standing in engineering

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Glaser

CIV ENG C172 Remote Sensing of the Environment 4 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020
The course will introduce junior/senior undergraduate students to the basic physical concepts of remote sensing as they relate to different earth surface processes. It will introduce students to a variety of recently developed ground, airborne, and satellite instruments and their applications to monitor and analyze environmental processes. These include active (e.g., Lidar), and passive (radiometers) sensors, optical (e.g., Landsat, MODIS), microwave (e.g., SMAP), and gravitational (e.g., GRACE) satellites.
Remote Sensing of the Environment: Read More [+]

Rules & Requirements

Credit Restrictions: Students will receive no credit for ESPM C172 after completing CIV ENG 172, or ESPM 172. A deficient grade in ESPM C172 may be removed by taking CIV ENG 172, or ESPM 172.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Girotto

Also listed as: ESPM C172

Remote Sensing of the Environment: Read Less [-]

CIV ENG 173 Groundwater and Seepage 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Introduction to principles of groundwater flow, including steady and transient flow through porous media, numerical analysis, pumping tests, groundwater geology, contaminant transport, and design of waste containment systems.
Groundwater and Seepage: Read More [+]

Rules & Requirements

Prerequisites: Senior standing in engineering or science; CIV ENG 100 recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Rubin, Sitar

CIV ENG 174 Engineering Geomatics 3 Units
Terms offered: Summer 2015 First 6 Week Session, Summer 2014 10 Week Session, Summer 2014 First 6 Week Session
Engineering Geomatics is a field that integrates collections, processing, and analysis of digital geospatial data. This new field is anchored in the established field of geodetics that describes the complex shape of the Earth, elements and usage of topographic data and maps. Basic and advanced GPS satellite mapping. Digital globe technology. Advanced laser-LIDAR mapping. Quantitative terrain modeling, change detection, and analysis. Hydrogeomatics-seafloor mapping.
Engineering Geomatics: Read More [+]

Hours & Format

Summer: 6 weeks - 6 hours of lecture and 5 hours of laboratory per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Engineering Geomatics: Read Less [-]
CIV ENG 175 Geotechnical and Geoenvironmental Engineering 3 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022
Soil formation and identification. Engineering properties of soils. Fundamental aspects of soil characterization and response, including soil mineralogy, soil-water movement, effective stress, consolidation, soil strength, and soil compaction. Use of soils and geosynthetics in geotechnical and geoenvironmental applications. Introduction to site investigation techniques. Laboratory testing and evaluation of soil composition and properties.

Geotechnical and Geoenvironmental Engineering: Read More [+]

Rules & Requirements
Prerequisites: CIV ENG C30 / MEC ENG C85 (may be taken concurrently); CIV ENG 100 recommended

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

CIV ENG C178 Applied Geophysics 3 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020, Fall 2019
The theory and practice of geophysical methods for determining the subsurface distribution of physical rock and soil properties. Measurements of gravity and magnetic fields, electrical and electromagnetic fields, and seismic velocity are interpreted to map the subsurface distribution of density, magnetic susceptibility, electrical conductivity, and mechanical properties.

Applied Geophysics: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

CIV ENG 176 Environmental Geotechnics 3 Units
Terms offered: Spring 2021, Spring 2016, Spring 2015
Principles of environmental geotechnics applied to waste encapsulation and remediation of contaminated sites. Characterization of soils and wastes, engineering properties of soils and geosynthetics and their use in typical applications. Fate and transport of contaminants. Fundamental principles and practices in groundwater remediation. Application of environmental geotechnics in the design and construction of waste containment systems. Discussion of soil remediation and emerging technologies.

Environmental Geotechnics: Read More [+]

Rules & Requirements
Prerequisites: CIV ENG 175 or consent of instructor; CIV ENG 111 and CIV ENG 173 recommended

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

CIV ENG 179 Geosystems Engineering Design 3 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020
Geosystem engineering design principles and concepts. Fundamental aspects of the geomechanical and geoenvironmental responses of soil are applied to analyze and design civil systems, such as earth dams and levees, earth retention systems, building and bridge foundations, solid-waste fills, and tailings dams. Students form teams to design geotechnical aspects of a civil project and prepare/present a design document. Field trip to a project site.

Geosystems Engineering Design: Read More [+]

Rules & Requirements
Prerequisites: CIV ENG 175

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

CIV ENG 178 Environmental Geotechnics 3 Units
Terms offered: Spring 2021, Spring 2016, Spring 2015
Principles of environmental geotechnics applied to waste encapsulation and remediation of contaminated sites. Characterization of soils and wastes, engineering properties of soils and geosynthetics and their use in typical applications. Fate and transport of contaminants. Fundamental principles and practices in groundwater remediation. Application of environmental geotechnics in the design and construction of waste containment systems. Discussion of soil remediation and emerging technologies.

Environmental Geotechnics: Read More [+]

Rules & Requirements
Prerequisites: CIV ENG 175 or consent of instructor; CIV ENG 111 and CIV ENG 173 recommended

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

CIV ENG 179 Geosystems Engineering Design 3 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020
Geosystem engineering design principles and concepts. Fundamental aspects of the geomechanical and geoenvironmental responses of soil are applied to analyze and design civil systems, such as earth dams and levees, earth retention systems, building and bridge foundations, solid-waste fills, and tailings dams. Students form teams to design geotechnical aspects of a civil project and prepare/present a design document. Field trip to a project site.

Geosystems Engineering Design: Read More [+]

Rules & Requirements
Prerequisites: CIV ENG 175

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Instructors: Bray, Sitar, Soga

Environmental Geotechnics: Read Less [-]
CIV ENG 180 Life-Cycle Design and Construction 4 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022
Course encompasses two design aspects of a civil and environmental engineering system: 1) Design of whole system, component, or life-cycle phase, subject to engineering standards and constraints, and 2) production system design (e.g., cost estimation and control, scheduling, commercial and legal terms, site layout design). Students form teams to address real-life projects and prepare project documentation and a final presentation.

Life-Cycle Design and Construction: Read More [+]

Rules & Requirements

Prerequisites: CIV ENG 167

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam not required.

Life-Cycle Design and Construction: Read Less [-]

CIV ENG 186 Design of Internet-of-Things for Smart Cities 3 Units
Terms offered: Spring 2023, Spring 2022, Fall 2019
Hands-on engineering design experience for creating cyber-physical systems, or more colloquially, “internet-of-things (IoT) systems” for smart cities. Projects overlay a software layer onto physical infrastructure to produce one integrated system. Student teams will identify a challenge with current urban systems, e.g. mobility, energy & environment, water, waste, health, security, and the built environment. Student teams design and prototype an innovation that addresses this challenge using maker resources, e.g. 3D printing, laser cutters, and open-source electronics. The project will be executing via the “Design Sprint” process, which is popular in agile development and Silicon Valley. Students present projects to industry judges.

Design of Internet-of-Things for Smart Cities: Read More [+]

Rules & Requirements

Prerequisites: CIV ENG 191

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Letter grade. Alternate method of final assessment during regularly scheduled final exam group (e.g., presentation, final project, etc.).

Instructors: Moura, Sengupta

Design of Internet-of-Things for Smart Cities: Read Less [-]
CIV ENG 188 Carbon Capture and Storage 3 Units
Terms offered: Spring 2024

Carbon Capture and Storage: Read More [+]

Rules & Requirements
Prerequisites: Upper division standing or consent of instructor
Credit Restrictions: Students will receive no credit for CIV ENG 188 after completing CIV ENG 188. A deficient grade in CIV ENG 188 may be removed by taking CIV ENG 188.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Rector

CIV ENG 190 Special Topics in Civil and Environmental Engineering 1 - 4 Units
Terms offered: Spring 2024, Fall 2023, Spring 2023
This course covers current topics of interest in civil and environmental engineering. The course content may vary from semester to semester depending upon the instructor.

Special Topics in Civil and Environmental Engineering: Read More [+]

Rules & Requirements
Prerequisites: CIV ENG 93 (or equivalent) and DATA 8 (or equivalent)
Repeat rules: Course may be repeated for credit with instructor consent.

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 2 hours of laboratory per week
Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Sengupta

CIV ENG 191 Civil and Environmental Engineering Systems Analysis 3 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022
This course is organized around five real-world large-scale CEE systems problems. The problems provide the motivation for the study of quantitative tools that are used for planning or managing these systems. The problems include design of a public transportation system for an urban area, resource allocation for the maintenance of a water supply system, development of repair and replacement policies for reinforced concrete bridge decks, traffic signal control for an arterial street, scheduling in a large-scale construction project.

Civil and Environmental Engineering Systems Analysis: Read More [+]

Rules & Requirements
Prerequisites: CIV ENG 93 and ENGIN 7
Repeat rules: Course may be repeated for credit without restriction. Students may enroll in multiple sections of this course within the same semester.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of lecture per week
Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Variano

Special Topics in Civil and Environmental Engineering: Read Less [-]
CIV ENG 192 The Art and Science of Civil and Environmental Engineering Practice 1 Unit
Terms offered: Fall 2017, Fall 2016, Fall 2015
A series of lectures by distinguished professionals designed to provide an appreciation of the role of science, technology, and the needs of society in conceiving projects, balancing the interplay of conflicting demands, and utilizing a variety of disciplines to produce unified and efficient systems. The Art and Science of Civil and Environmental Engineering Practice:
Rules & Requirements
Prerequisites: Senior standing in Civil Engineering
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week
Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
The Art and Science of Civil and Environmental Engineering Practice:
Read More [+]

CIV ENG 193 Engineering Risk Analysis 3 Units
Terms offered: Fall 2023, Spring 2023, Fall 2021
Applications of probability theory and statistics in planning, analysis, and design of civil engineering systems. Development of probabilistic models for risk and reliability evaluation. Occurrence models; extreme value distributions. Analysis of uncertainties. Introduction to Bayesian statistical decision theory and its application in engineering decision-making.
Engineering Risk Analysis:
Rules & Requirements
Prerequisites: Upper division standing
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Li
Engineering Risk Analysis:
Read More [-]

CIV ENG H194 Honors Undergraduate Research 3 - 4 Units
Terms offered: Spring 2024, Fall 2023, Spring 2023
Supervised research. Students who have completed 3 or more upper division courses may pursue original research under the direction of one of the members of the staff. A final report or presentation is required. A maximum of 4 units of H194 may be used to fulfill the technical elective requirement.
Honors Undergraduate Research:
Rules & Requirements
Prerequisites: Upper division technical GPA 3.3, consent of instructor and faculty advisor
Repeat rules: Course may be repeated for credit up to a total of 8 units.
Hours & Format
Fall and/or spring: 15 weeks - 3-4 hours of independent study per week
Summer:
6 weeks - 7.5-10 hours of independent study per week
8 weeks - 6-7.5 hours of independent study per week
Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Honors Undergraduate Research:
Read Less [-]

CIV ENG 197 Field Studies in Civil Engineering 1 - 4 Units
Terms offered: Summer 2024, Summer 2024 10 Week Session, Spring 2024
Supervised experience in off-campus companies or tutoring/mentoring relevant to specific aspects and applications of civil engineering on or off campus. Written report required at the end of the semester.
Field Studies in Civil Engineering:
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of fieldwork per week
Summer:
6 weeks - 2.5-10 hours of fieldwork per week
8 weeks - 1.5-7.5 hours of fieldwork per week
10 weeks - 1.5-6 hours of fieldwork per week
Additional Details
Subject/Course Level: Civil and Environmental Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Field Studies in Civil Engineering:
Read Less [-]
CIV ENG 198 Directed Group Study for Advanced Undergraduates 1 - 4 Units
Terms offered: Spring 2024, Fall 2023, Spring 2023
Group study of a selected topic or topics in civil engineering.
Directed Group Study for Advanced Undergraduates: Read More [+]

Rules & Requirements

Prerequisites: Senior standing in engineering

Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Directed Group Study for Advanced Undergraduates: Read Less [-]

CIV ENG 199 Supervised Independent Study 1 - 4 Units
Terms offered: Summer 2024 10 Week Session, Spring 2024, Fall 2023
Supervised independent study.
Supervised Independent Study: Read More [+]

Rules & Requirements

Prerequisites: Consent of instructor and major adviser. Enrollment is restricted; see the Course Number Guide for details

Credit Restrictions: Course may be repeated for a maximum of four units per semester.

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-4 hours of independent study per week

Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week
10 weeks - 1-4 hours of independent study per week

Additional Details

Subject/Course Level: Civil and Environmental Engineering/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Supervised Independent Study: Read Less [-]