Computer Science

Choosing a Computer Science Path

There are two ways to study Computer Science (CS) at UC Berkeley:

1. Be admitted to the Electrical Engineering & Computer Sciences (EECS) major in the College of Engineering (COE) as a first year or junior transfer. Admission to the COE, however, is extremely competitive. This option leads to a Bachelor of Science (BS) degree. This path is appropriate for people who want an engineering education.

2. Be admitted to the Computer Science (CS) major in the College of Computing, Data Science, and Society (CDSS) as a first year or junior transfer. Admission to the CS major in the College of CDSS, however, is extremely competitive. This option leads to a Bachelor of Arts (BA) degree. This path is appropriate for people who are interested in a broader education in the sciences and arts.

There is no difference in the CS course content between the BS and BA programs. The difference is in what else you take: mainly engineering, or mainly humanities and social sciences. In particular, an interest in hardware suggests the EECS route.

Note: Beginning Fall 2024, students will no longer be able to apply to the Computer Science major in the College of Letters and Science on the UC Berkeley application. Going forward, students will need to apply to the Computer Science major in the College of CDSS.

Bachelor of Science (BS) in Computer Science

For information regarding the BS degree, please see the Electrical Engineering and Computer Sciences program (https://guide.berkeley.edu/undergraduate/degree-programs/electrical-engineering-computer-sciences/) information in this Guide.

Bachelor of Arts (BA) in Computer Science

This CS major is for students enrolled in the College of Computing, Data Science, and Society (CDSS https://data.berkeley.edu/academics/undergraduate-education/). Berkeley emphasizes the science of computer science, which means much more than just computer programming. It includes the theory of computation, the design and analysis of algorithms, the architecture and logic design of computers, programming languages, compilers, operating systems, scientific computation, computer graphics, databases, artificial intelligence, and natural language processing. Our goal is to prepare students both for a possible research career and long-term technical leadership in industry. We must therefore look beyond today’s technology and give students the primary ideas and the learning skills that will prepare them to teach themselves about tomorrow’s technology.

Five-Year BS/MS Program

This program is geared toward students who would like to pursue an education beyond the BS/BA, allowing them to achieve greater breadth and/or depth of knowledge, and who would like to try their hand at research as well. For information, please see the Five-Year BS/MS Requirements tab on this page.

Honors Program

Computer Science majors with an overall GPA of 3.70 or above are eligible to apply to the EECS honors degree program.

Minor Program

A minor in Computer Science is available to all undergraduate students at Berkeley with a declared major, with the exception of EECS majors. For information regarding minor requirements, please see the Minor Requirements tab on this page.

In addition to the University, campus, and college requirements, listed on the College Requirements tab, students must fulfill the below requirements specific to their major program.

General Guidelines

1. All courses taken to fulfill the major requirements below must be 3 or more units and taken for a letter grade.

2. All courses for the major must be technical in nature. Courses numbered 199, 198, 197, 196, 195, plus select 194, 191, 190, and more seminars do not count. If you are unsure, please check with the CS advisers (cs-advising@cs.berkeley.edu).

3. Only one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs. No more than two upper division courses can overlap between two majors.

4. A minimum grade point average (GPA) of 2.0 must be maintained in both upper and lower division courses used to fulfill the major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

Lower Division Prerequisites

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 61A</td>
<td>The Structure and Interpretation of Computer Programs</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 61B</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 70</td>
<td>Discrete Mathematics and Probability Theory</td>
<td>4</td>
</tr>
</tbody>
</table>

Lower Division Requirement

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1A</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1B</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 54</td>
<td>Linear Algebra and Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>or EECS 16A</td>
<td>Designing Information Devices and Systems I</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 56</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 61C</td>
<td>Great Ideas of Computer Architecture (Machine Structures)</td>
<td>4</td>
</tr>
</tbody>
</table>

Upper Division Requirements

Select one design course from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 152</td>
<td>Computer Architecture and Engineering</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 160</td>
<td>User Interface Design and Development</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 161</td>
<td>Computer Security (effective Spring 2019)</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 162</td>
<td>Operating Systems and System Programming</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 164</td>
<td>Programming Languages and Compilers</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 168</td>
<td>Introduction to the Internet: Architecture and Protocols</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 169</td>
<td>Course Not Available</td>
<td></td>
</tr>
</tbody>
</table>
Approved Non-Computer Science Technical Electives

ANTHRO 107 Evolution of the Human Brain 4
ARCH 122 Principles of Computer Aided Architectural Design 4
ARCH 129 Special Topics in Digital Design Theories and Methods 4
ARCH 222 Principles of Computer Aided Architectural Design 4
ARCH 229 Special Topics in Digital Design Theories and Methods 4
ART 178 Advanced Digital Media: Game Design Methods 4
ASTRON C162 Planetary Astrophysics 4

All technical upper division undergraduate and graduate courses in BIO ENG, except BIO ENG 100, C181, 190, 192, and 196
All technical upper division undergraduate and graduate courses in CHEM
All technical upper division undergraduate and graduate courses in CIV ENG, except CIV ENG 167, CIV ENG 192, CIV ENG 252L, and CIV ENG 290R
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>COG SCI 101</td>
<td>Cognitive Linguistics</td>
<td>4</td>
</tr>
<tr>
<td>COG SCI 131</td>
<td>Computational Models of Cognition</td>
<td>4</td>
</tr>
<tr>
<td>or COG SCI C168</td>
<td>Computational Models of Cognition</td>
<td>4</td>
</tr>
<tr>
<td>DATA C100</td>
<td>Principles & Techniques of Data Science</td>
<td>4</td>
</tr>
<tr>
<td>DATA 101</td>
<td>Course Not Available</td>
<td>4</td>
</tr>
<tr>
<td>DATA C102</td>
<td>Data, Inference, and Decisions</td>
<td>4</td>
</tr>
<tr>
<td>DATA C104</td>
<td>Human Contexts and Ethics of Data - DATA/History/STS</td>
<td>4</td>
</tr>
<tr>
<td>DATA C140</td>
<td>Probability for Data Science</td>
<td>4</td>
</tr>
<tr>
<td>DATA 144</td>
<td>Data Mining and Analytics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 100A</td>
<td>Microeconomics</td>
<td>4</td>
</tr>
<tr>
<td>ECON 100B</td>
<td>Macroeconomics</td>
<td>4</td>
</tr>
<tr>
<td>ECON 101A</td>
<td>Microeconomics (Math Intensive)</td>
<td>4</td>
</tr>
<tr>
<td>ECON 101B</td>
<td>Macroeconomics (Math Intensive)</td>
<td>4</td>
</tr>
<tr>
<td>ECON 136</td>
<td>Financial Economics</td>
<td>4</td>
</tr>
<tr>
<td>ECON 140</td>
<td>Econometrics</td>
<td>4</td>
</tr>
<tr>
<td>ECON 141</td>
<td>Econometrics (Math Intensive)</td>
<td>4</td>
</tr>
<tr>
<td>ECON/DEMOG</td>
<td>Economic Demography</td>
<td>4</td>
</tr>
<tr>
<td>C175</td>
<td>All technical upper division undergraduate and approved graduate courses in EL ENG</td>
<td></td>
</tr>
</tbody>
</table>
Students who have a strong interest in an area of study outside their major often decide to complete a minor program. These programs have set requirements and are noted officially on the diploma and the awards section of the transcript.

General Guidelines

1. All minors must be declared before the first day of classes in your Expected Graduation Term (EGT). For summer graduates, minors must be declared prior to the first day of Summer Session A.
2. All upper-division courses must be taken for a letter grade.
3. A minimum of three of the upper-division courses taken to fulfill the minor requirements must be completed at UC Berkeley.
4. A minimum grade point average (GPA) of 2.0 is required in the upper-division courses to fulfill the minor requirements.
5. Courses used to fulfill the minor requirements may be applied toward the Seven-Course Breadth requirement, for Letters & Science students.
6. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.
7. All minor requirements must be completed prior to the last day of finals during the semester in which the student plans to graduate. If students cannot finish all courses required for the minor by that time, they should see a College of Letters & Science adviser.
8. All minor requirements must be completed within the unit ceiling. (For further information regarding the unit ceiling, please see the College Requirements tab.)

Requirements

Lower Division Prerequisites

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 61A</td>
<td>The Structure and Interpretation of Computer Programs</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 61B</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>or COMPSCI 61B</td>
<td>Data Structures and Programming Methodology</td>
<td></td>
</tr>
<tr>
<td>COMPSCI 61C</td>
<td>Great Ideas of Computer Architecture (Machine Structures)</td>
<td>4</td>
</tr>
<tr>
<td>COMPSCI 70</td>
<td>Discrete Mathematics and Probability Theory</td>
<td>4</td>
</tr>
</tbody>
</table>

Upper Division

Select three upper-division, technical courses in Computer Science or EECS

Essential Skills

Computational Reasoning (https://guide.berkeley.edu/undergraduate/colleges-schools/computing-data-science-society/computational-reasoning-requirement/)
The Computational Reasoning requirement is designed to provide a basic understanding of and competency in concepts such as programming, algorithms, iteration, and data-structures.

Human and Social Dynamics of Data and Technology (https://guide.berkeley.edu/undergraduate/colleges-schools/computing-data-science-society/human-social-data/)
The Human and Social Dynamics of Data and Technology requirement is designed for the purpose of developing an understanding of how technology and data interact with human and societal contexts, including ethical considerations and applications such as education, health, law, natural resources, and public policy.

The Statistical Reasoning requirement is designed to provide basic understanding of and competency in the scientific approach to statistical problem solving, including uncertainty, prediction, and estimation.

Reading and Composition (https://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/reading-composition-requirement/)
The Reading and Composition requirement is the same as for the College of Letters and Science; it requires two semesters of lower division work in composition in sequence. Students must complete parts A & B reading and composition courses in sequential order by the end of their fourth semester.

To see how to satisfy the R&C requirement, visit the College of Letters and Science Reading and Composition Requirement page (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/reading-composition-requirement/)

Breadth Requirements

The undergraduate breadth requirements are the same for CDSS students as for the College of Letters and Science, with the exception that a second semester foreign language course can be used to satisfy the International Studies breadth. To learn more about the L&S Seven-Course Breadth Requirement, visit the L&S Breadth Requirements page. (https://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/#breadthrequirementstext) To learn more about using a foreign language course to satisfy the International Studies breadth, visit the CDSS website page on Satisfying International Studies Breadth with a Foreign Language Course (https://guide.berkeley.edu/undergraduate/colleges-schools/computing-data-science-society/satisfying-international-studies-class/).

The undergraduate major programs in computer science, data science, and statistics have transitioned from the College of Letters & Science to CDSS. Students who were admitted in Spring 2024 or earlier have the option of completing either the L&S College Requirements (https://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/#collegerequirementstext), i.e., the breadth and essential skills requirements, or the CDSS college requirements (above).

All students must meet CDSS general policy (below). The one exception is with time-to-degree. Students admitted Fall 2022 or earlier are subject to the 130 unit maximum, rather than the 8 semester maximum (5 for transfer students).

Class Schedule Requirements

- Minimum units per semester: 12
- Maximum units per semester: 20.5
Academic (Grade) Requirements

• Minimum cumulative GPA: 2.0
• Minimum GPA for one semester: 1.5

Bachelor's Degree Requirements

• Minimum total units: 120. Of these 120 units:
 • PE maximum units: 4
 • Special Studies maximum units: 16
 • Maximum 300-499 course units: 6

• Minimum upper division units: 36
• Maximum number of semesters: 8 for first-year entrants; 5 for transfer students; summer terms do not count toward the maximum
• Minimum GPA in upper division and graduate courses identified for the major: 2.0
• Meet all major requirements
• Meet all general, curricular, and residence requirements of the University of California and the Berkeley campus

For more information about CDSS requirements, visit student resources and information (https://data.berkeley.edu/information-and-resources-students/) on the College of Computing, Data Science, and Society website.

University of California Requirements

Entry Level Writing (https://guide.berkeley.edu/undergraduate/education/#earningyourdegreetext)

All students who will enter the University of California as freshmen must demonstrate their command of the English language by satisfying the Entry Level Writing Requirement (ELWR). The UC Entry Level Writing Requirement website (https://admission.universityofcalifornia.edu/elwr/) provides information on how to satisfy the requirement.

American History and American Institutions (https://guide.berkeley.edu/undergraduate/education/#earningyourdegreetext)

The American History and Institutions (AH&I) requirements are based on the principle that a US resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.

Campus Requirement

American Cultures (https://guide.berkeley.edu/undergraduate/education/#earningyourdegreetext)

The American Cultures requirement is a Berkeley campus requirement, one that all undergraduate students at Berkeley need to pass in order to graduate. You satisfy the requirement by passing, with a grade not lower than C- or P, an American Cultures course. You may take an American Cultures course any time during your undergraduate career at Berkeley. The requirement was instituted in 1991 to introduce students to the diverse cultures of the United States through a comparative framework.

Courses are offered in more than fifty departments in many different disciplines at both the lower and upper division level.

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the Major Requirements tab.

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 10</td>
<td>4</td>
<td>COMPSCI 61A</td>
</tr>
<tr>
<td>MATH 1A</td>
<td>4</td>
<td>MATH 1B</td>
</tr>
<tr>
<td>Reading & Composition A</td>
<td>4</td>
<td>Reading & Composition B</td>
</tr>
<tr>
<td>CDSS Breadth</td>
<td>3</td>
<td>CDSS Breadth</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>Fall Units</th>
<th>Spring Units</th>
<th>Summer Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 61B</td>
<td>4</td>
<td>COMPSCI 70</td>
<td>4 Internship</td>
</tr>
<tr>
<td>EECS 16A, MATH 54, or MATH 56</td>
<td>4</td>
<td>CDSS Breadth</td>
<td>4 OR</td>
</tr>
<tr>
<td>Lower/Upper Division Elective</td>
<td>4</td>
<td>American Cultures Req</td>
<td>4 Study Abroad</td>
</tr>
<tr>
<td>Lower Division Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior</th>
<th>Fall Units</th>
<th>Spring Units</th>
<th>Summer Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPSCI 61C</td>
<td>4</td>
<td>Upper Division CS major course (2 of 5)</td>
<td>4 Internship</td>
</tr>
<tr>
<td>UD CS major course (1 of 5)</td>
<td>4</td>
<td>Upper Division CS major course (3 of 5)</td>
<td>4 OR</td>
</tr>
<tr>
<td>CDSS Breadth</td>
<td>4</td>
<td>Lower/Upper Division Elective</td>
<td>3 Study Abroad</td>
</tr>
<tr>
<td>Lower/Upper Division Elective</td>
<td>3</td>
<td>CDSS Breadth</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Division CS major course (4 of 5)</td>
<td>4</td>
<td>Upper Division CS major course (5 of 5)</td>
</tr>
<tr>
<td>Upper Division Elective major non-CS technical elective</td>
<td>4</td>
<td>Lower/Upper Division Elective</td>
</tr>
<tr>
<td>UD CDSS Elective</td>
<td>4</td>
<td>Lower/Upper Division Elective</td>
</tr>
<tr>
<td>UD CDSS Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Total Units: 113

Course Definitions

Upper Division major CS major course: course meeting the 20 units of upper division CS requirement (at least one of these must be a Design Course).
Upper Division major technical elective: course meeting the 4 units of non-CS technical electives requirement.

• NOTES

This is a sample program plan. This plan assumes that the student has completed the Entry Level Writing, American History and Institutions, Quantitative Reasoning, and Foreign Language requirements prior to admission.
Students are strongly advised to work with an academic adviser to determine a personal program plan. Your program plan will differ depending on previous credit received, your course schedule, and available offerings.

COMPSCI 152, COMPSCI 162, COMPSCI 164, COMPSCI 169, COMPSCI 170, COMPSCI 184, and EECS 151 are known to have heavy workloads. It is not recommended to take these courses in combination.

Students are strongly advised to work with an academic adviser to determine a personal program plan. Your program plan will differ depending on previous credit received, your course schedule, and available offerings. Current students may make an appointment with a Computer Science Advisor in CalCentral; prospective students may make an appointment at https://berkeleycs.youcanbook.me/.

Accelerated Program Plans

For students considering graduating in less than four years, it’s important to acknowledge the reasons to undertake such a plan of study. While there are advantages to pursuing a three-year degree plan such as reducing financial burdens, they are not for everyone and do involve sacrifices; especially with respect to participating in co-curricular activities, depth of study, and summer internships, which typically lead to jobs upon graduation. All things considered, please see the tables for three and three and a half year degree options.

3.5 and 3 Year Plans (https://berkeley.app.box.com/v/ugrad-sample-cs-freshmen/)

Mission

1. Preparing graduates to pursue postgraduate education in electrical engineering, computer science, or related fields.
2. Preparing graduates for success in technical careers related to electrical and computer engineering, or computer science and engineering.
3. Preparing graduates to become leaders in fields related to electrical and computer engineering or computer science and engineering.

Learning Goals for the Major

1. An ability to apply knowledge of mathematics, science, and engineering.
2. An ability to configure, apply test conditions, and evaluate outcomes of experimental systems.
3. An ability to design systems, components, or processes that conform to given specifications and cost constraints.
4. An ability to work cooperatively, respectfully, creatively, and responsibly as a member of a team.
5. An ability to identify, formulate, and solve engineering problems.
6. An understanding of the norms of expected behavior in engineering practice and their underlying ethical foundations.
7. An ability to communicate effectively by oral, written, and graphical means.
8. An awareness of global and societal concerns and their importance in developing engineering solutions.
9. An ability to independently acquire and apply required information, and an appreciation of the associated process of lifelong learning.
10. A knowledge of contemporary issues.
11. An in-depth ability to use a combination of software, instrumentation, and experimental techniques practiced in circuits, physical electronics, communication, networks and systems, hardware, programming, and computer science theory.

Major maps are experience maps that help undergraduates plan their Berkeley journey based on intended major or field of interest. Featuring student opportunities and resources from your college and department as well as across campus, each map includes curated suggestions for planning your studies, engaging outside the classroom, and pursuing your career goals in a timeline format.

Use the major map below to explore potential paths and design your own unique undergraduate experience:

View the Computer Science Major Map. (https://discovery.berkeley.edu/getting-started/ major-maps/computer-science/)

Select a subject to view courses

- Electrical Engineering and Computer Sciences (p. 6)
- Computer Science (p. 13)
- Electrical Engineering (p. 32)

Electrical Engineering and Computer Sciences

Expand all course descriptions [+]
Collapse all course descriptions [-]
EECS 16A Designing Information Devices and Systems I 4 Units
Terms offered: Fall 2024, Summer 2024 8 Week Session, Spring 2024
This course and its follow-on course EECS16B focus on the fundamentals of designing modern information devices and systems that interface with the real world. Together, this course sequence provides a comprehensive foundation for core EECS topics in signal processing, learning, control, and circuit design while introducing key linear-algebraic concepts motivated by application contexts. Modeling is emphasized in a way that deepens mathematical maturity, and in both labs and homework, students will engage computationally, physically, and visually with the concepts being introduced in addition to traditional paper/pencil exercises. The courses are aimed at entering students as well as non-majors seeking a broad foundation for the field.

Rules & Requirements

Prerequisites: MATH 1A and MATH 1B (1B may be taken concurrently); COMPSCI 61A (encouraged to be taken concurrently)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 2 hours of discussion, and 3 hours of laboratory per week
Summer: 8 weeks - 6 hours of lecture, 4 hours of discussion, and 6 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engin and Computer Sci/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Alon, Arcak, Ayazifar, Maharbiz, Niknejad, Ranade, Sahai, Subramanian, Tomlin
Formerly known as: Electrical Engineering 16A

Designing Information Devices and Systems I: Read More [+]

EECS 16B Designing Information Devices and Systems II 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
This course is a follow-on to EECS 16A, and focuses on the fundamentals of designing and building modern information devices and systems that interface with the real world. The course sequence provides a comprehensive introduction to core EECS topics in machine learning, circuit design, control, and signal processing while developing key linear-algebraic concepts motivated by application contexts. Modeling is emphasized in a way that deepens mathematical maturity, and in both labs and homework, students will engage computationally, physically, and visually with the concepts being introduced in addition to traditional paper/pencil exercises. The courses are aimed at entering students as well as non-majors seeking a broad introduction to the field.

Rules & Requirements

Prerequisites: EECS 16A

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 2 hours of discussion, and 3 hours of laboratory per week
Summer: 8 weeks - 6 hours of lecture, 4 hours of discussion, and 6 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engin and Computer Sci/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Alon, Ayazifar, Lustig, Maharbiz, Subramanian, Tomlin
Formerly known as: Electrical Engineering 16B

Designing Information Devices and Systems II: Read Less [-]
EECS 47D Completion of work in Electrical Engineering 16A 1 - 3 Units
Terms offered: Fall 2021
This course allows students who have had a linear algebra and/or basic circuit theory course to complete the work in EE16A and be ready for EE16B or EE47E. The course focuses on the fundamentals of designing modern information devices and systems that interface with the real world and provides a comprehensive foundation for core EECS topics in signal processing, learning, control, and circuit design. Modeling is emphasized in a way that deepens mathematical maturity, and in both labs and homework, students will engage computationally, physically, and visually with the concepts being introduced in addition to traditional paper/pencil exercises.
Completion of work in Electrical Engineering 16A: Read More [+]
Rules & Requirements
Prerequisites: MATH 1A, MATH 1B, COMPSCI 61A (encouraged to be taken concurrently), college level courses in linear algebra and/or circuit theory, and consent of the instructor

Hours & Format
Fall and/or spring: 15 weeks - 2-8 hours of self-paced per week
Summer: 8 weeks - 4-13 hours of self-paced per week

Additional Details
Subject/Course Level: Electrical Engin and Computer Sci/ Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Alon, Arcak, Ayazifar, Maharbiz, Niknejad, Ranade, Sahai, Subramanian, Tomlin
Completion of work in Electrical Engineering 16A: Read Less [-]

EECS 47E Completion of work in Electrical Engineering 16B 1 - 3 Units
Terms offered: Prior to 2007
This course allows students who have had a linear algebra and/or basic circuit theory course to complete the work in EE16B. The course focuses on the fundamentals of designing modern information devices and systems that interface with the real world and provides a comprehensive foundation for core EECS topics in signal processing (DFT), learning (SVD/PCA), feedback control, and circuit design. Modeling is emphasized in a way that deepens mathematical maturity, and in both labs and homework, students will engage computationally, physically, and visually with the concepts being introduced in addition to traditional paper/pencil exercises.
Completion of work in Electrical Engineering 16B: Read More [+]
Rules & Requirements
Prerequisites: MATH 1A, MATH 1B, and COMPSCI 61A; and EECS 16A, EECS 47D, or MATH 54; college level courses in linear algebra and/or circuit theory, and consent of the instructor

Hours & Format
Fall and/or spring: 15 weeks - 3-8 hours of self-paced per week
Summer: 8 weeks - 6-16 hours of self-paced per week

Additional Details
Subject/Course Level: Electrical Engin and Computer Sci/ Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Alon, Arcak, Ayazifar, Maharbiz, Niknejad, Ranade, Sahai, Subramanian, Tomlin
Completion of work in Electrical Engineering 16B: Read Less [-]
EECS 47F Completion of work in Computer Science 70 1 - 3 Units
Terms offered: Prior to 2007
This course allows students who have had a discrete math and/or probability course to complete the work in CS70. Logic, infinity, and induction; applications include undecidability and stable marriage problem. Modular arithmetic and GCDs; applications include primality testing and cryptography. Polynomials; examples include error correcting codes and interpolation. Probability including sample spaces, independence, random variables, law of large numbers; examples include load balancing, existence arguments, Bayesian inference.
Completion of work in Computer Science 70: Read More [+]

Rules & Requirements
Prerequisites: Sophomore mathematical maturity, programming experience equivalent to that gained in COMPSCI 61A, a prior college level course on discrete math and/or probability, and consent of the instructor

Hours & Format
Fall and/or spring: 15 weeks - 3-8 hours of self-paced per week
Summer: 8 weeks - 6-16 hours of self-paced per week

Additional Details
Subject/Course Level: Electrical Engin and Computer Sci/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Ranade, Rao, Sahai, Seshia, Vazirani, Walrand
Completion of work in Computer Science 70: Read Less [-]

EECS C106A Introduction to Robotics 4 Units
Terms offered: Fall 2024, Fall 2023, Fall 2022, Fall 2021, Fall 2020, Fall 2019
This course is an introduction to the field of robotics. It covers the fundamentals of kinematics, dynamics, control of robot manipulators, robotic vision, sensing, forward & inverse kinematics of serial chain manipulators, the manipulator Jacobian, force relations, dynamics, & control. We will present techniques for geometric motion planning & obstacle avoidance. Open problems in trajectory generation with dynamic constraints will also be discussed. The course also presents the use of the same analytical techniques as manipulation for the analysis of images & computer vision. Low level vision, structure from motion, & an introduction to vision & learning will be covered. The course concludes with current applications of robotics.
Introduction to Robotics: Read More [+]

Rules & Requirements
Prerequisites: Familiarity with linear algebra at the level of EECS 16A/EECS 16B or Math 54. Experience coding in python at the level of COMPSCI 61A. Preferred: experience developing software at the level of COMPSCI 61B and experience using Linux
Credit Restrictions: Students will receive no credit for Electrical Engineering and Computer Science C106A/Bioengineering C106A after completing EE C106A/BioE C125, Electrical Engineering 206A, or Electrical Engineering and Computer Science 206A.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week
Summer: 8 weeks - 6 hours of lecture, 2 hours of discussion, and 6 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engin and Computer Sci/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Sastry
Also listed as: BIO ENG C106A/MEC ENG C106A
Introduction to Robotics: Read Less [-]
EECS C106B Robotic Manipulation and Interaction 4 Units

Terms offered: Spring 2024, Spring 2023, Spring 2022, Spring 2021, Spring 2020, Spring 2019

The course is a sequel to EECS/BIOE/MEC106A/EECSC206A, which covers the mathematical fundamentals of robotics including kinematics, dynamics and control as well as an introduction to path planning, obstacle avoidance, and computer vision. This course will present several areas of robotics and active vision, at a deeper level and informed by current research. Concepts will include the review at an advanced level of robot control, the kinematics, dynamics and control of multi-fingered hands, grasping and manipulation of objects, mobile robots: including non-holonomic motion planning and control, path planning, Simultaneous Localization And Mapping (SLAM), and active vision. Additional research topics covered at the instructor's discretion.

Robotic Manipulation and Interaction: Read More [+]

Rules & Requirements

Prerequisites: EECS C106A / BIO ENG C106A / MEC ENG C106A / EECS C206A or an equivalent course. A strong programming background, knowledge of Python and Matlab, and some coursework in feedback controls (such as EL ENG C128 / MEC ENG C134) are also useful. Students who have not taken the prerequisite course should have a strong programming background, knowledge of Python and Matlab, and exposure to linear algebra, Lagrangian dynamics, and feedback controls at the intermediate level. EECS C106A

Credit Restrictions: Students will receive no credit for Electrical Engineering and Computer Science C106B/Bioengineering C106B after completing Electrical Engineering C106B/Bioengineering C125B, Electrical Engineering 206B, or Electrical Engineering and Computer Science 206B.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engin and Computer Sci/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Instructor: Sastry

Also listed as: BIO ENG C106B/MEC ENG C106B

Robotic Manipulation and Interaction: Read Less [-]

EECS 107 Introduction to AR/VR and Applications in Metaverse 4 Units

Terms offered: Not yet offered

This course develops a fundamental understanding of computer vision (CV) and computer graphics (CG) that underpin the emerging AR/VR and Metaverse applications. The syllabus includes 3D perception, near-eye optics, depth cameras, 3D localization, and immersive 3D user experience. The companion lab helps students to acquire basic AR/VR coding skills in Unity and develop Metaverse applications. The course builds a strong foundation for students to take more advanced course: CS 294-137.

Introduction to AR/VR and Applications in Metaverse: Read More [+]

Rules & Requirements

Prerequisites: Familiarity with Linear Algebra at the level of EECS 16A/B or MATH 54. Experience on coding proficiency and data structures at the level of CS61 A/B

Repeat rules: Course may be repeated for credit with instructor consent.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engin and Computer Sci/Undergraduate

Grading/Final exam status: Letter grade. Alternate method of final assessment during regularly scheduled final exam group (e.g., presentation, final project, etc.).

Instructor: Yang

Introduction to AR/VR and Applications in Metaverse: Read Less [-]
EECS 126 Probability and Random Processes
4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023

Rules & Requirements
Prerequisites: COMPSCI 70 preferred but not required; Familiarity with linear algebra
Credit Restrictions: Students will receive no credit for EECS 126 after completing EE 126.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engin and Computer Sci/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Instructor: Ramchandran
Probability and Random Processes: Read Less [-]

EECS 127 Optimization Models in Engineering 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
This course offers an introduction to optimization models and their applications, ranging from machine learning and statistics to decision-making and control, with emphasis on numerically tractable problems, such as linear or constrained least-squares optimization. Optimization Models in Engineering: Read More [+]

Rules & Requirements
Prerequisites: EECS 16A and EECS 16B, or consent of instructor
Credit Restrictions: Students will receive no credit for EECS 127 after taking EECS 227AT or Electrical Engineering 127/227AT.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engin and Computer Sci/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Instructor: El Ghaoui
Formerly known as: Electrical Engineering 127
Optimization Models in Engineering: Read Less [-]
EECS 149 Introduction to Embedded and Cyber Physical Systems 4 Units
Terms offered: Fall 2024, Fall 2023, Fall 2022
This course introduces students to the basics of modeling, analysis, and design of embedded, cyber-physical systems. Students learn how to integrate computation with physical processes to meet a desired specification. Topics include models of computation, control, analysis and verification, interfacing with the physical world, real-time behaviors, mapping to platforms, and distributed embedded systems. The course has a strong laboratory component, with emphasis on a semester-long sequence of projects.

Objectives & Outcomes
- **Course Objectives:** To develop the skills to realize embedded systems that are safe, reliable, and efficient in their use of resources. To learn how to model and design the joint dynamics of software, networks, and physical processes. To learn to think critically about technologies that are available for achieving such joint dynamics.

Rules & Requirements
- **Prerequisites:** COMPSCI 61C and COMPSCI 70; EECS 16A and EECS 16B, or permission of instructor
- **Hours & Format**
 - Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Introduction to Embedded and Cyber Physical Systems: Read Less [-]

EECS 151 Introduction to Digital Design and Integrated Circuits 3 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
An introduction to digital and system design. The material provides a top-down view of the principles, components, and methodologies for large scale digital system design. The underlying CMOS devices and manufacturing technologies are introduced, but quickly abstracted to higher-levels to focus the class on design of larger digital modules for both FPGAs (field programmable gate arrays) and ASICs (application specific integrated circuits). The class includes extensive use of industrial grade design automation and verification tools for assignments, labs and projects.

The class has two lab options: ASIC Lab (EECS 151LA) and FPGA Lab (EECS 151LB). Students must enroll in at least one of the labs concurrently with the class.

Objectives & Outcomes
- **Course Objectives:** The Verilog hardware description language is introduced and used. Basic digital system design concepts, Boolean operations/combinational logic, sequential elements and finite-state-machines, are described. Design of larger building blocks such as arithmetic units, interconnection networks, input/output units, as well as memory design (SRAM, Caches, FIFOs) and integration are also covered. Parallelism, pipelining and other micro-architectural optimizations are introduced. A number of physical design issues visible at the architecture level are covered as well, such as interconnects, power, and reliability.

Rules & Requirements
- **Prerequisites:** EECS 16A and EECS 16B
- **Credit Restrictions:** Students must enroll concurrently in at least one of the lab flavors EECS151LA or EECS151LB. Students wishing to take a second lab flavor next term can sign-up only for that Lab section and receive a Letter grade. The pre-requisite for "Lab-only" enrollment that term will be EECS151 from previous terms.

Hours & Format
- Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Introduction to Digital Design and Integrated Circuits: Read Less [-]
EECS 151LA Application Specific Integrated Circuits Laboratory 2 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
This lab lays the foundation of modern digital design by first presenting the scripting and hardware description language base for specification of digital systems and interactions with tool flows. The labs are centered on a large design with the focus on rapid design space exploration. The lab exercises culminate with a project design, e.g., implementation of a three-stage RISC-V processor with a register file and caches. The design is mapped to simulation and layout specification.

Application Specific Integrated Circuits Laboratory: Read More [+]

Objectives & Outcomes

Course Objectives: Software testing of digital designs is covered leading to a set of exercises that cover the design flow. Digital synthesis, floor-planning, placement and routing are covered, as well as tools to evaluate timing and power consumption. Chip-level assembly is covered, including instantiation of custom blocks: I/O pads, memories, PLLs, etc.

Rules & Requirements

Prerequisites: COMPSCI 61C, EECS 16A, EECS 16B, and EL ENG 105

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engin and Computer Sci/Undergraduate

Grading/Final exam status: Letter grade. Final exam not required.

Instructors: Stojanovic, Wawrzynek

Field-Programmable Gate Array Laboratory 2 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
This lab covers the design of modern digital systems with Field-Programmable Gate Array (FPGA) platforms. A series of lab exercises provide the background and practice of digital design using a modern FPGA design tool flow. Digital synthesis, partitioning, placement, routing, and simulation tools for FPGAs are covered in detail. The labs exercises culminate with a large design project, e.g., an implementation of a full three-stage RISC-V processor system, with caches, graphics acceleration, and external peripheral components. The design is mapped and demonstrated on an FPGA hardware platform.

Field-Programmable Gate Array Laboratory: Read More [+]

Objectives & Outcomes

Course Objectives: Software testing of digital designs is covered leading to a set of exercises that cover the design flow. Digital synthesis, floor-planning, placement and routing are covered, as well as tools to evaluate timing and power consumption. Chip-level assembly is covered, including instantiation of custom blocks: I/O pads, memories, PLLs, etc.

Rules & Requirements

Prerequisites: EECS 16A, EECS 16B, and COMPSCI 61C; EL ENG 105 recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engin and Computer Sci/Undergraduate

Grading/Final exam status: Letter grade. Final exam not required.

Instructors: Stojanovic, Wawrzynek

Field-Programmable Gate Array Laboratory: Read Less [-]

Computer Science
Expand all course descriptions [+]
Collapse all course descriptions [-]
COMPSCI C8 Foundations of Data Science 4 Units
Terms offered: Fall 2024, Summer 2024 8 Week Session, Spring 2024, Fall 2023, Spring 2023, Fall 2022, Spring 2022, Fall 2021, Summer 2021 8 Week Session, Fall 2020
Foundations of data science from three perspectives: inferential thinking, computational thinking, and real-world relevance. Given data arising from some real-world phenomenon, how does one analyze that data so as to understand that phenomenon? The course teaches critical concepts and skills in computer programming and statistical inference, in conjunction with hands-on analysis of real-world datasets, including economic data, document collections, geographical data, and social networks. It delves into social and legal issues surrounding data analysis, including issues of privacy and data ownership.

Foundations of Data Science: Read More [+]

Rules & Requirements

Prerequisites: This course may be taken on its own, but students are encouraged to take it concurrently with a data science connector course (numbered 88 in a range of departments)

Credit Restrictions: Students will receive no credit for DATA C8/COMPSCI C8/INFO C8/STAT C8 after completing COMPSCI 8, or DATA 8. A deficient grade in DATA C8/COMPSCI C8/INFO C8/STAT C8 may be removed by taking COMPSCI 8, COMPSCI 8, or DATA 8.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week
Summer: 8 weeks - 6 hours of lecture and 4 hours of laboratory per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Garcia, Hug

The Beauty and Joy of Computing: Read Less [-]

COMPSCI 10 The Beauty and Joy of Computing 4 Units
Terms offered: Fall 2024, Summer 2024 8 Week Session, Spring 2024
An introductory course for students with minimal prior exposure to computer science. Prepares students for future computer science courses and empowers them to utilize programming to solve problems in their field of study. Presents an overview of the history, great principles, and transformative applications of computer science, as well as a comprehensive introduction to programming. Topics include abstraction, recursion, algorithmic complexity, higher-order functions, concurrency, social implications of computing (privacy, education, algorithmic bias), and engaging research areas (data science, AI, HCI). Students will program in Snap! (a friendly graphical language) and Python, and will design and implement two projects of their choice.

The Beauty and Joy of Computing: Read More [+]

Rules & Requirements

Credit Restrictions: Students will receive no credit for 10 after having taken W10, 61A, 61B, or 61C.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture, 1 hour of discussion, and 4 hours of laboratory per week
Summer: 8 weeks - 4 hours of lecture, 2 hours of discussion, and 8 hours of laboratory per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Garcia, Hug

The Beauty and Joy of Computing: Read Less [-]
COMPSCI W10 The Beauty and Joy of Computing 4 Units

Terms offered: Fall 2012

This course meets the programming prerequisite for 61A. An introduction to the beauty and joy of computing. The history, social implications, great principles, and future of computing. Beautiful applications that have changed the world. How computing empowers discovery and progress in other fields. Relevance of computing to the student and society will be emphasized. Students will learn the joy of programming a computer using a friendly, graphical language, and will complete a substantial team programming project related to their interests.

The Beauty and Joy of Computing: Read More [+]

Rules & Requirements

Credit Restrictions: Students will receive no credit for W10 after taking 10, 61A, 61B or 61C. A deficient grade in 10 may be removed by taking W10.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of web-based lecture and 5 hours of web-based discussion per week

Summer: 8 weeks - 4 hours of web-based lecture and 10 hours of web-based discussion per week

Online: This is an online course.

Additional Details

Subject/Course Level: Computer Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Garcia, Hug

The Beauty and Joy of Computing: Read Less [-]

COMPSCI 36 CS Scholars Seminar: The Educational Climate in CS & CS61A technical discussions 2 Units

Terms offered: Fall 2019, Fall 2018, Spring 2018

Computer Science 36 is a seminar for CS Scholars who are concurrently taking CS61A: The Structure and Interpretation of Computer Programs. CS Scholars is a cohort-model program to provide support in exploring and potentially declaring a CS major for students with little to no computational background prior to coming to the university. CS 36 provides an introduction to the CS curriculum at UC Berkeley, and the overall CS landscape in both industry and academia—through the lens of accessibility and its relevance to diversity. Additionally, CS36 provides technical instruction to review concepts in CS61A, in order to support CS Scholars’ individual learning and success in the CS61A course.

CS Scholars Seminar: The Educational Climate in CS & CS61A technical discussions: Read More [+]

Objectives & Outcomes

Student Learning Outcomes: Students will know where to find several support services including tutoring, advising, counseling, and career advice. Students will perform as well as possible in the CS61A prerequisite for the CS major. They will also have customized program plans for completing the major within four years.

Rules & Requirements

Prerequisites: Prerequisite satisfied Concurrently: Participating in the CS Scholars program, and concurrently taking COMPSCI 61A

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of seminar per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Alternative to final exam.

Instructor: Hunn

CS Scholars Seminar: The Educational Climate in CS & CS61A technical discussions: Read Less [-]
COMPSCI 39 Freshman/Sophomore Seminar
1.5 - 2 Units
Terms offered: Fall 2023, Spring 2022, Spring 2019
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.
Freshman/Sophomore Seminar: Read More [+]
Rules & Requirements
Prerequisites: Priority given to freshmen and sophomores
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2-3 hours of seminar per week
Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final Exam To be decided by the instructor when the class is offered.
Freshman/Sophomore Seminar: Read Less [-]

COMPSCI 47A Completion of Work in Computer Science 61A 1 Unit
Terms offered: Fall 2024, Spring 2024, Fall 2023
Implementation of generic operations. Streams and iterators. Implementation techniques for supporting functional, object-oriented, and constraint-based programming in the Scheme programming language. Together with 9D, 47A constitutes an abbreviated, self-paced version of 61A for students who have already taken a course equivalent to 61B.
Completion of Work in Computer Science 61A: Read More [+]
Rules & Requirements
Prerequisites: COMPSCI 61B, COMPSCI 9D, and consent of instructor
Credit Restrictions: Students will receive no credit for 47A after taking 61A.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of self-paced per week
Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Garcia
Completion of Work in Computer Science 61A: Read Less [-]

COMPSCI 47B Completion of Work in Computer Science 61B 1 Unit
Terms offered: Fall 2024, Spring 2024, Fall 2023
Iterators. Hashing, applied to strings and multi-dimensional structures. Heaps. Storage management. Design and implementation of a program containing hundreds of lines of code. Students who have completed a portion of the subject matter of COMPSCI 61B may, with consent of instructor, complete COMPSCI 61B in this self-paced course. Please note that students in the College of Engineering are required to receive additional permission from the College as well as the EECS department for the course to count in place of COMPSCI 61B.
Completion of Work in Computer Science 61B: Read More [+]
Rules & Requirements
Prerequisites: A course in data structures, COMPSCI 9G, and consent of instructor
Credit Restrictions: Students will receive no credit for 47B after taking 61B.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of self-paced per week
Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Garcia
Completion of Work in Computer Science 61B: Read Less [-]

COMPSCI 47C Completion of Work in Computer Science 61C 1 Unit
Terms offered: Fall 2024, Spring 2024, Fall 2023
MIPS instruction set simulation. The assembly and linking process. Caches and virtual memory. Pipelined computer organization. Students with sufficient partial credit in 61C may, with consent of instructor, complete the credit in this self-paced course.
Completion of Work in Computer Science 61C: Read More [+]
Rules & Requirements
Prerequisites: Experience with assembly language including writing an interrupt handler, COMPSCI 9C, and consent of instructor
Credit Restrictions: Students will receive no credit for COMPSCI 47C after completing COMPSCI 61C, or COMPSCI 61CL.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of self-paced per week
Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Garcia
Completion of Work in Computer Science 61C: Read Less [-]
COMPSCI 61A The Structure and Interpretation of Computer Programs 4 Units
Terms offered: Fall 2024, Summer 2024 8 Week Session, Spring 2024
An introduction to programming and computer science focused on abstraction techniques as means to manage program complexity. Techniques include procedural abstraction; control abstraction using recursion, higher-order functions, generators, and streams; data abstraction using interfaces, objects, classes, and generic operators; and language abstraction using interpreters and macros. The course exposes students to programming paradigms, including functional, object-oriented, and declarative approaches. It includes an introduction to asymptotic analysis of algorithms. There are several significant programming projects.
The Structure and Interpretation of Computer Programs: Read More [...] Rules & Requirements
Prerequisites: MATH 1A (may be taken concurrently) or Math 10A or Math 16A. Programming experience equivalent to that gained from a score of 3 or above on the Advanced Placement Computer Science exam.
Credit Restrictions: Students will receive no credit for COMPSCI 61A after completing COMPSCI 47A, COMPSCI 61AS, or COMPSCI W61A. A deficient grade in COMPSCI 61A may be removed by taking COMPSCI 61AS, or COMPSCI W61A.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1.5 hours of discussion, and 1.5 hours of laboratory per week
Summer: 8 weeks - 6 hours of lecture, 3 hours of discussion, and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Garcia, Hilfinger

COMPSCI 61B Data Structures 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
Fundamental dynamic data structures, including linear lists, queues, trees, and other linked structures; arrays strings, and hash tables. Storage management. Elementary principles of software engineering. Abstract data types. Algorithms for sorting and searching. Introduction to the Java programming language.
Data Structures: Read More [...] Rules & Requirements
Prerequisites: COMPSCI 61A, COMPSCI 88, or ENGIN 7
Credit Restrictions: Students will receive no credit for COMPSCI 61B after completing COMPSCI 61BL, or COMPSCI 47B. A deficient grade in COMPSCI 61B may be removed by taking COMPSCI 61BL.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 2 hours of laboratory per week
Summer: 8 weeks - 6 hours of lecture, 2 hours of discussion, and 4 hours of laboratory per week
Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Hilfinger, Shewchuk

COMPSCI 61BL Data Structures and Programming Methodology 4 Units
Terms offered: Summer 2024 8 Week Session, Summer 2023 8 Week Session, Summer 2022 8 Week Session
The same material as in 61B, but in a laboratory-based format.
Data Structures and Programming Methodology: Read More [...] Rules & Requirements
Prerequisites: COMPSCI 61A, COMPSCI 88, or ENGIN 7
Credit Restrictions: Students will receive no credit for COMPSCI 61BL after completing COMPSCI 47B, or COMPSCI 47B. A deficient grade in COMPSCI 61BL may be removed by taking COMPSCI 61B.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 6 hours of laboratory per week
Summer: 8 weeks - 2 hours of lecture and 12 hours of laboratory per week
Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Hilfinger

Data Structures and Programming Methodology: Read Less […]
COMPSCI 61C Great Ideas of Computer Architecture (Machine Structures) 4 Units
Terms offered: Fall 2024, Summer 2024 8 Week Session, Spring 2024
The internal organization and operation of digital computers. Machine architecture, support for high-level languages (logic, arithmetic, instruction sequencing) and operating systems (I/O, interrupts, memory management, process switching). Elements of computer logic design. Tradeoffs involved in fundamental architectural design decisions.
Great Ideas of Computer Architecture (Machine Structures): Read More [+]
Rules & Requirements
Prerequisites: COMPSCI 61A, along with either COMPSCI 61B or COMPSCI 61BL, or programming experience equivalent to that gained in COMPSCI 9C, COMPSCI 9F, or COMPSCI 9G
Credit Restrictions: Students will receive no credit for COMPSCI 61C after completing COMPSCI 61CL.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 2 hours of laboratory per week
Summer: 8 weeks - 6 hours of lecture, 2 hours of discussion, and 4 hours of laboratory per week

Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Garcia, Katz, Stojanovic
Great Ideas of Computer Architecture (Machine Structures): Read Less [-]

COMPSCI W61A The Structure and Interpretation of Computer Programs (Online) 4 Units
Terms offered: Summer 2019 8 Week Session
An introduction to programming and computer science focused on abstraction techniques as means to manage program complexity. Techniques include procedural abstraction; control abstraction using recursion, higher-order functions, generators, and streams; data abstraction using interfaces, objects, classes, and generic operators; and language abstraction using interpreters and macros. The course exposes students to programming paradigms, including functional, object-oriented, and declarative approaches. It includes an introduction to asymptotic analysis of algorithms. There are several significant programming projects.
The Structure and Interpretation of Computer Programs (Online): Read More [+]
Rules & Requirements
Prerequisites: MATH 1A (may be taken concurrently); programming experience equivalent to that gained from a score of 3 or above on the Advanced Placement Computer Science A exam
Credit Restrictions: Students will receive no credit for Computer Science W61A after completing Computer Science 47A or Computer Science 61A. A deficient grade in Computer Science W61A may be removed by taking Computer Science 61A.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of web-based lecture, 1.5 hours of laboratory, and 1.5 hours of web-based discussion per week
Summer: 8 weeks - 6 hours of web-based lecture, 3 hours of laboratory, and 3 hours of web-based discussion per week
Online: This is an online course.

Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Denero
The Structure and Interpretation of Computer Programs (Online): Read Less [-]
COMPSCI 70 Discrete Mathematics and Probability Theory 4 Units
Terms offered: Fall 2024, Summer 2024 8 Week Session, Spring 2024
Logic, infinity, and induction; applications include undecidability and stable marriage problem. Modular arithmetic and GCDs; applications include primality testing and cryptography. Polynomials; examples include error correcting codes and interpolation. Probability including sample spaces, independence, random variables, law of large numbers; examples include load balancing, existence arguments, Bayesian inference.
Discrete Mathematics and Probability Theory: Read More [+]

Rules & Requirements

Prerequisites: Sophomore mathematical maturity, and programming experience equivalent to that gained with a score of 3 or above on the Advanced Placement Computer Science A exam

Credit Restrictions: Students will receive no credit for Computer Science 70 after taking Mathematics 55.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of discussion per week
Summer: 8 weeks - 6 hours of lecture and 4 hours of discussion per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Rao, Vazirani, Wagner, Sahai

Discrete Mathematics and Probability Theory: Read Less [-]

COMPSCI 84 Sophomore Seminar 1 or 2 Units
Terms offered: Fall 2007
Sophomore seminars are small interactive courses offered by faculty members in departments all across the campus. Sophomore seminars offer opportunity for close, regular intellectual contact between faculty members and students in the crucial second year. The topics vary from department to department and semester to semester. Enrollment limited to 15 sophomores.
Sophomore Seminar: Read More [+]}

Rules & Requirements

Prerequisites: At discretion of instructor
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format

Fall and/or spring:
5 weeks - 3-6 hours of seminar per week
10 weeks - 1.5-3 hours of seminar per week
15 weeks - 1-2 hours of seminar per week
Summer:
6 weeks - 2.5-5 hours of seminar per week
8 weeks - 2-4 hours of seminar per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

Sophomore Seminar: Read Less [-]
COMPSCI C88C Computational Structures in Data Science 3 Units
Terms offered: Fall 2024, Summer 2024 8 Week Session, Spring 2024, Spring 2023, Fall 2022
Development of Computer Science topics appearing in Foundations of Data Science (C8); expands computational concepts and techniques of abstraction. Understanding the structures that underlie the programs, algorithms, and languages used in data science and elsewhere. Mastery of a particular programming language while studying general techniques for managing program complexity, e.g., functional, object-oriented, and declarative programming. Provides practical experience with composing larger systems through several significant programming projects.

Objectives & Outcomes

Course Objectives: Develop a foundation of computer science concepts that arise in the context of data analytics, including algorithm, representation, interpretation, abstraction, sequencing, conditional, function, iteration, recursion, types, objects, and testing, and develop proficiency in the application of these concepts in the context of a modern programming language at a scale of whole programs on par with a traditional CS introduction course.

Student Learning Outcomes: Students will be able to demonstrate a working knowledge of these concepts and a proficiency of programming based upon them sufficient to construct substantial stand-alone programs.

Rules & Requirements

Prerequisites: This course is a Data Science connector course and may only be taken concurrently with or after COMPSCI C8/DATA C8/INFO C8/STAT C8. Students may take more than one Data Science connector (88) course if they wish, concurrent with or after having taken the C8 course

Credit Restrictions: Students will receive no credit for DATA C88C after completing COMPSCI 61A.

Hours & Format

Fall and/or spring: 15 weeks - 2-2 hours of lecture, 2-2 hours of laboratory, and 0-1 hours of supplement per week
Summer: 8 weeks - 4-4 hours of lecture, 4-4 hours of laboratory, and 0-2 hours of supplement per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Ball, Culler
Formerly known as: Computer Science 88
Also listed as: DATA C88C

COMPSCI C100 Principles & Techniques of Data Science 4 Units
Terms offered: Fall 2024, Summer 2024 8 Week Session, Spring 2024, Summer 2023 8 Week Session, Fall 2022, Fall 2021, Fall 2020
In this course, students will explore the data science lifecycle, including question formulation, data collection and cleaning, exploratory data analysis and visualization, statistical inference and prediction, and decision-making. This class will focus on quantitative critical thinking and key principles and techniques needed to carry out this cycle. These include languages for transforming, querying and analyzing data; algorithms for machine learning methods including regression, classification and clustering; principles behind creating informative data visualizations; statistical concepts of measurement error and prediction; and techniques for scalable data processing.

Principles & Techniques of Data Science: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI C8 / DATA C8 / INFO C8 / STAT C8 with a C- or better, or Pass; and COMPSCI 61A, COMPSCI/DATA C88C, or ENGIN 7 with a C- or better, or Pass; Corequisite: MATH 54, 56 or EECS 16A (C- or better, or Pass, required if completed prior to Data C100)

Credit Restrictions: Students will receive no credit for DATA C100/STAT C100/COMPSCI C100 after completing DATA 100. A deficient grade in DATA C100/STAT C100/COMPSCI C100 may be removed by taking DATA 100.

Hours & Format

Fall and/or spring: 15 weeks - 3-3 hours of lecture, 1-1 hours of discussion, and 0-1 hours of laboratory per week
Summer: 8 weeks - 6-6 hours of lecture, 2-2 hours of discussion, and 0-2 hours of laboratory per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Gonzalez, Nourozi, Perez, Yan
Formerly known as: Statistics C100/Computer Science C100
Also listed as: DATA C100/STAT C100

Principles & Techniques of Data Science: Read Less [-]
COMPSCI 152 Computer Architecture and Engineering 4 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022
Instruction set architecture, microcoding, pipelining (simple and complex). Memory hierarchies and virtual memory. Processor parallelism: VLIW, vectors, multithreading, Multiprocessors.
Computer Architecture and Engineering: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 61C

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of discussion per week
Summer: 8 weeks - 6 hours of lecture and 4 hours of discussion per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Instructors: Asanovic, Culler, Kubiatowicz, Wawrzynek

Computer Architecture and Engineering: Read Less [-]

COMPSCI 160 User Interface Design and Development 4 Units
Terms offered: Summer 2024 8 Week Session, Spring 2024, Summer 2023 8 Week Session
The design, implementation, and evaluation of user interfaces. User-centered design and task analysis. Conceptual models and interface metaphors. Usability inspection and evaluation methods. Analysis of user study data. Input methods (keyboard, pointing, touch, tangible) and input models. Visual design principles. Interface prototyping and implementation methodologies and tools. Students will develop a user interface for a specific task and target user group in teams.
User Interface Design and Development: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 61B or COMPSCI 61BL

Credit Restrictions: Students will receive no credit for Computer Science 160 after taking Computer Science 260A.

Hours & Format

Fall and/or spring: 15 weeks - 3-3 hours of lecture and 1-1.5 hours of discussion per week
Summer: 8 weeks - 6-6 hours of lecture and 2-3 hours of discussion per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Agrawala, Canny, Hartmann, Paulos

User Interface Design and Development: Read Less [-]

COMPSCI 161 Computer Security 4 Units
Terms offered: Fall 2024, Summer 2024 8 Week Session, Spring 2024
Introduction to computer security. Cryptography, including encryption, authentication, hash functions, cryptographic protocols, and applications. Operating system security, access control. Network security, firewalls, viruses, and worms. Software security, defensive programming, and language-based security. Case studies from real-world systems.
Computer Security: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 61B, COMPSCI 61C, and COMPSCI 70

Hours & Format

Fall and/or spring: 15 weeks - 3-3 hours of lecture and 1-1.5 hours of discussion per week
Summer: 8 weeks - 6-6 hours of lecture and 2-3 hours of discussion per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Paxson, Song, Wagner

Computer Security: Read Less [-]

COMPSCI 162 Operating Systems and System Programming 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
Operating Systems and System Programming: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 61B, COMPSCI 61C, and COMPSCI 70

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 8 weeks - 6 hours of lecture and 2 hours of discussion per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Joseph, Kubiatowicz, Stoica

Operating Systems and System Programming: Read Less [-]
COMPSCI 164 Programming Languages and Compilers 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
Prerequisites: COMPSCI 61B and COMPSCI 61C

COMPSCI 168 Introduction to the Internet: Architecture and Protocols 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2022
This course is an introduction to the Internet architecture. We will focus on the concepts and fundamental design principles that have contributed to the Internet's scalability and robustness and survey the various protocols and algorithms used within this architecture. Topics include layering, addressing, intradomain routing, interdomain routing, reliable delivery, congestion control, and the core protocols (e.g., TCP, UDP, IP, DNS, and HTTP) and network technologies (e.g., Ethernet, wireless).
Prerequisites: COMPSCI 61B and COMPSCI 162

COMPSCI 169A Introduction to Software Engineering 4 Units
Terms offered: Fall 2024, Summer 2024 8 Week Session, Fall 2023
Ideas and techniques for designing, developing, and modifying large software systems. Service-oriented architecture, behavior-driven design with user stories, cloud computing, test-driven development, automated testing, cost and quality metrics for maintainability and effort estimation, practical performance and security in software operations, design patterns and refactoring, specification and documentation, agile project team organization and management.
Prerequisites: COMPSCI 61A and COMPSCI 61B; COMPSCI 70 is recommended
Credit Restrictions: Students will receive no credit for COMPSCI 169A after completing COMPSCI 169, or COMPSCI W169A. A deficient grade in COMPSCI 169A may be removed by taking COMPSCI 169, or COMPSCI W169A.
COMPSCI 169L Software Engineering Team Project 4 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022
Open-ended design project enhancing or creating software for real customers in an agile team setting. Teamwork coordination, effective customer meetings, pre- and post-iteration team meetings, running scrums and standups, technical communication. Contributing as a team to an open-source project; tools and workflows associated with open source collaboration, including fork-and-pull, rebase, upstream merge, continuous deployment & integration.
Software Engineering Team Project: Read More [+]

Objectives & Outcomes
Course Objectives: Students will work in a team to develop new software or enhance existing software for a customer with a real business need.
Student Learning Outcomes: Students will learn how to conduct effective meetings with nontechnical customers and work with their feedback; Students will learn how to coordinate teamwork on developing, testing, and deploying features; and in most cases, how to approach a legacy codebase and add features to it; Students will learn to run a small team including rotation of team roles such as product owner, scrum master, and so on;

Rules & Requirements
Prerequisites: COMPSCI 169A or COMPSCI W169A
Credit Restrictions: Students will receive no credit for COMPSCI 169L after completing COMPSCI 169.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of discussion and 8 hours of fieldwork per week
Summer: 8 weeks - 6 hours of discussion and 16 hours of fieldwork per week

Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructors: Fox, Sen
Software Engineering Team Project: Read Less [-]

COMPSCI W169A Software Engineering 3 Units
Terms offered: Summer 2021 8 Week Session, Fall 2020, Summer 2020 8 Week Session
This course presents ideas and techniques for designing, developing, and modifying large software systems using Agile techniques and tools. Topics include: function-oriented and object-oriented modular design techniques, designing for re-use and maintainability including proper use of design patterns, behavior-driven design, test-driven development, user stories for requirements elicitation & documentation, verification and validation, cost and quality metrics and estimation, project team organization and management, analyzing and refactoring legacy code.
Software Engineering: Read More [+]

Objectives & Outcomes
Student Learning Outcomes: Students will learn how to apply BDD & TDD to identify the main parts of a legacy code base, measure code quality, and refactor code to improve its quality; Students will learn how to apply behavior-driven development (BDD) to elicit customer needs and express them as user stories that will drive development; Students will learn how to apply the key ideas of learning a new framework to construct and deploy simple Rails applications; Students will learn how to apply the key ideas of learning a new language in order to construct programs in Ruby; Students will learn how to construct unit- and module-level tests and measure their coverage; Students will learn how to exercise best practices in planning, effort estimation, and coordination of the efforts of small software teams, using appropriate tools to support those practices; Students will learn how to identify and repair potential app-level security and performance problems. Students will learn how to recognize when an appropriate Design Pattern may improve code quality, and refactor code to apply those Design Patterns; Students will learn how to summarize the key architectural elements of RESTful SaaS applications and microservices; Students will learn to articulate the primary differences between Agile and Plan-and-Document methodologies;

Rules & Requirements
Prerequisites: COMPSCI 61A and COMPSCI 61B
Credit Restrictions: Students will receive no credit for COMPSCI W169A after completing COMPSCI 169, or COMPSCI 169A. A deficient grade in COMPSCI W169A may be removed by taking COMPSCI 169, or COMPSCI 169A.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of web-based lecture and 1 hour of discussion per week
Summer: 8 weeks - 6 hours of web-based lecture and 0 hours of discussion per week

Online: This is an online course.

Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Fox, Sen
Software Engineering: Read Less [-]
COMPSCI 170 Efficient Algorithms and Intractable Problems 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
Concept and basic techniques in the design and analysis of algorithms; models of computation; lower bounds; algorithms for optimum search trees, balanced trees and UNION-FIND algorithms; numerical and algebraic algorithms; combinatorial algorithms. Turing machines, how to count steps, deterministic and nondeterministic Turing machines, NP-completeness. Unsolvable and intractable problems.
Efficient Algorithms and Intractable Problems: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 61B and COMPSCI 70

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 8 weeks - 6 hours of lecture and 2 hours of discussion per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Demmel, Papadimitriou, Rao, Wagner, Vazirani

Efficient Algorithms and Intractable Problems: Read Less [-]

COMPSCI 171 Cryptography 4 Units
Terms offered: Spring 2024, Spring 2021
Cryptography or cryptology is the science of designing algorithms and protocols for enabling parties to communicate and compute securely in an untrusted environment (e.g. secure communication, digital signature, etc.) Over the last four decades, cryptography has transformed from an ad hoc collection of mysterious tricks into a rigorous science based on firm complexity-theoretic foundations. This modern complexity-theoretic approach to cryptography will be the focus. E.g., in the context of encryption we will begin by giving a precise mathematical definition for what it means to be a secure encryption scheme and then give a construction (realizing this security notion) assuming various computational hardness assumptions (e.g. factoring).
Cryptography: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 70

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 8 weeks - 6 hours of lecture and 2 hours of discussion per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Garg

Cryptography: Read Less [-]

COMPSCI 172 Computability and Complexity 4 Units
Terms offered: Fall 2024, Fall 2022, Spring 2022
Computability and Complexity: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 170

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Papadimitriou, Seshia, Sinclair, Vazirani

Computability and Complexity: Read Less [-]
COMPSCI 174 Combinatorics and Discrete Probability 4 Units

Terms offered: Spring 2023, Spring 2022, Fall 2019

Permutations, combinations, principle of inclusion and exclusion, generating functions, Ramsey theory, Expectation and variance, Chebychev's inequality, Chernov bounds. Birthday paradox, coupon collector's problem, Markov chains and entropy computations, universal hashing, random number generation, random graphs and probabilistic existence bounds.

Rules & Requirements

Prerequisites: COMPSCI 170

Combinatorics and Discrete Probability: Read More [+]

COMPSCI C176 Algorithms for Computational Biology 4 Units

Terms offered: Fall 2022

This course will provide familiarity with algorithms and probabilistic models that arise in various computational biology applications, such as suffix trees, suffix arrays, pattern matching, repeat finding, sequence alignment, phylogenetics, hidden Markov models, gene finding, motif finding, linear/logistic regression, random forests, convolutional neural networks, genome-wide association studies, pathogenicity prediction, and sequence-to-epigenome prediction.

Objectives & Outcomes

Student Learning Outcomes:
- Understand the basic elements of molecular, cell, and evolutionary biology.
- Understand the key probabilistic and machine learning models used in computational biology applications.
- Understand various data structures and algorithms that arise in computational biology.

Rules & Requirements

Prerequisites: COMPSCI 70 and COMPSCI 170, MATH 54 or EECS 16A or an equivalent linear algebra course

Credit Restrictions: Students will receive no credit for COMPSCI C176 after completing COMPSCI 176. A deficient grade in COMPSCI C176 may be removed by taking COMPSCI 176.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Instructors: Song, Yun, Ioannidis

Also listed as: CMPBIO C176

Algorithms for Computational Biology: Read Less [-]
COMPSCI C177 Algorithmic Economics 4 Units
Terms offered: Spring 2024
The class provides an introduction to algorithmic questions in economic design. The class will cover problems of public goods and social choice, as well as allocative questions and private consumption. The focus is on normative questions: From the perspective of social goals, these are efficiency, fairness, and equity. In terms of private goals, the focus is on revenue maximization. The course will cover voting, fair division, pricing and market mechanisms. There is an emphasis on the algorithmic questions that arise naturally in economic design.

Algorithmic Economics: Read More [+]

Rules & Requirements

Prerequisites: Students should be comfortable with formal mathematical proofs, and will be expected to write proofs on their own

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Also listed as: ECON C147

Algorithmic Economics: Read Less [-]

COMPSCI 180 Intro to Computer Vision and Computational Photography 4 Units
Terms offered: Fall 2024, Fall 2023
This advanced undergraduate course introduces students to computing with visual data (images and video). We will cover acquisition, representation, and manipulation of visual information from digital photographs (image processing), image analysis and visual understanding (computer vision), and image synthesis (computational photography). Key algorithms will be presented, ranging from classical to contemporary, with an emphasis on using these techniques to build practical systems. The hands-on emphasis will be reflected in the programming assignments, where students will acquire their own images and develop, largely from scratch, image analysis and synthesis tools for real-world applications.

Intro to Computer Vision and Computational Photography: Read More [+]

Objectives & Outcomes

Course Objectives: Students will learn classic algorithms in image manipulation with Gaussian and Laplacian Pyramids, understand the hierarchy of image transformations including homographies, and how to warp an image with these transformations. Students will learn how to apply Convolutional Neural Networks for computer vision problems and how they can be used for image manipulation. Students will learn the fundamentals of 3D vision: stereo, multi-view geometry, camera calibration, structure-from-motion, multi-view stereo, and the plenoptic function. Students will learn the fundamentals of image processing from the mechanics of a pin-hole camera, representation of images as pixels, physics of light and the process of image formation, to manipulating the visual information using signal processing techniques in the spatial and frequency domains.

Student Learning Outcomes: After this class, students will be comfortable implementing, from scratch, these algorithms in modern programming languages and deep learning libraries.

Rules & Requirements

Prerequisites: COMPSCI 61B, COMPSCI 70, and MATH 53 (or other vector calculus course). MATH 54, MATH 110, or EECS 16A. COMPSCI 182 is strongly recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Summer: 8 weeks - 6 hours of lecture and 2 hours of discussion per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Efros, Kanazawa

Intro to Computer Vision and Computational Photography: Read Less [-]
COMPSCI 182 Designing, Visualizing and Understanding Deep Neural Networks 4 Units
Terms offered: Fall 2023, Spring 2023, Fall 2022
Deep Networks have revolutionized computer vision, language technology, robotics and control. They have growing impact in many other areas of science and engineering. They do not however, follow a closed or compact set of theoretical principles. In Yann Lecun’s words they require “an interplay between intuitive insights, theoretical modeling, practical implementations, empirical studies, and scientific analyses.” This course attempts to cover that ground.

Designing, Visualizing and Understanding Deep Neural Networks: Read More [+]

Objectives & Outcomes

Student Learning Outcomes: Students will come to understand visualizing deep networks. Exploring the training and use of deep networks with visualization tools.
Students will learn design principles and best practices: design motifs that work well in particular domains, structure optimization and parameter optimization.

Understanding deep networks. Methods with formal guarantees: generative and adversarial models, tensor factorization.

Rules & Requirements

Prerequisites: MATH 53, MATH 54, and COMPSCI 61B; COMPSCI 70 or STAT 134; COMPSCI 189 is recommended

Credit Restrictions: Students will receive no credit for COMPSCI 182 after completing COMPSCI W182, or COMPSCI L182. A deficient grade in COMPSCI 182 may be removed by taking COMPSCI W182, or COMPSCI L182.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Instructor: Canny

Designing, Visualizing and Understanding Deep Neural Networks: Read Less [-]

COMPSCI 184 Foundations of Computer Graphics 4 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022

Foundations of Computer Graphics: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 61B or COMPSCI 61BL; programming skills in C, C++, or Java; linear algebra and calculus

Credit Restrictions: Students will receive no credit for Comp Sci 184 after taking Comp Sci 284A.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Summer: 8 weeks - 6 hours of lecture and 2 hours of discussion per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: O'Brien, Ng

Foundations of Computer Graphics: Read Less [-]
COMPSCI 185 Deep Reinforcement Learning, Decision Making, and Control 3 Units

Terms offered: Not yet offered
This course will cover the intersection of control, reinforcement learning, and deep learning. This course will provide an advanced treatment of the reinforcement learning formalism, the most critical model-free reinforcement learning algorithms (policy gradients, value function and Q-function learning, and actor-critic), a discussion of model-based reinforcement learning algorithms, an overview of imitation learning, and a range of advanced topics, including exploration, model-based learning with video prediction, transfer learning, multi-task learning, and meta-learning. Homework assignments will cover imitation learning, policy gradients, Q-learning, and model-based reinforcement learning, as well as a final project.

Deep Reinforcement Learning, Decision Making, and Control: Read More [+]

Rules & Requirements
Prerequisites: CS189/289A or equivalent is a prerequisite for the course. This course will assume some familiarity with reinforcement learning, numerical optimization and machine learning, as well as a basic working knowledge of how to train deep neural networks (which is taught in CS182 and briefly covered in CS189)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Levine

Deep Reinforcement Learning, Decision Making, and Control: Read Less [-]

COMPSCI 186 Introduction to Database Systems 4 Units

Terms offered: Fall 2024, Spring 2024, Fall 2023
Access methods and file systems to facilitate data access. Hierarchical, network, relational, and object-oriented data models. Query languages for models. Embedding query languages in programming languages. Database services including protection, integrity control, and alternative views of data. High-level interfaces including application generators, browsers, and report writers. Introduction to transaction processing. Database system implementation to be done as term project.

Introduction to Database Systems: Read More [+]

Rules & Requirements
Prerequisites: COMPSCI 61C or COMPSCI 47C. COMPSCI 47C may be taken as a co-requisite for transfer students
Credit Restrictions: Students will receive no credit for COMPSCI 186 after completing COMPSCI W186. A deficient grade in COMPSCI 186 may be removed by taking COMPSCI W186.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Cheung, Hellerstein

Introduction to Database Systems: Read Less [-]
COMPSCI W186 Introduction to Database Systems 4 Units
Terms offered: Fall 2021, Spring 2021, Spring 2020
Broad introduction to systems for storing, querying, updating and managing large databases. Computer science skills synthesizing viewpoints from low-level systems architecture to high-level modeling and declarative logic. System internals, including the complex details of query optimization and execution, concurrency control, indexing, and memory management. More abstract issues in query languages and data modeling – students are exposed to formal relational languages, SQL, full-text search, entity-relationship modeling, normalization, and physical database design. Recent technological trends in the field, including “Big Data” programming libraries like MapReduce, and distributed key-value stores with various consistency models.

Introduction to Database Systems: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 61B and COMPSCI 61C

Credit Restrictions: Students will receive no credit for COMPSCI W186 after completing COMPSCI 186. A deficient grade in COMPSCI W186 may be removed by taking COMPSCI 186.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of web-based lecture and 1 hour of discussion per week
Summer: 8 weeks - 6 hours of web-based lecture and 2 hours of discussion per week
Online: This is an online course.

Additional Details

Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Hellerstein

Introduction to Database Systems: Read Less [-]

COMPSCI C187 Data Engineering 4 Units
Terms offered: Not yet offered
This course will cover the principles and practices of managing data at scale, with a focus on use cases in data analysis and machine learning. We will cover the entire life cycle of data management and science, ranging from data preparation to exploration, visualization and analysis, to machine learning and collaboration, with a focus on ensuring reliable, scalable operationalization.
Data Engineering: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 61B, or INFO 206B, or equivalent courses in programming with a C- or better, or Pass; and COMPSCI C100 / DATA C100 / STAT C100, or COMPSCI 189, or INFO 251, or DATA 144, or equivalent upper-division course in data science with a C- or better, or Pass

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Hellerstein, Jain, Parameswaran, Yan

Formerly known as: Data Science, Undergraduate 101
Also listed as: DATA C101

Data Engineering: Read Less [-]

COMPSCI 188 Introduction to Artificial Intelligence 4 Units
Terms offered: Fall 2024, Summer 2024 8 Week Session, Spring 2024
Ideas and techniques underlying the design of intelligent computer systems. Topics include search, game playing, knowledge representation, inference, planning, reasoning under uncertainty, machine learning, robotics, perception, and language understanding.

Introduction to Artificial Intelligence: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 61A, COMPSCI 61B, and COMPSCI 70

Hours & Format

Fall and/or spring: 15 weeks - 3-3 hours of lecture and 1-1.5 hours of discussion per week
Summer: 8 weeks - 6-6 hours of lecture and 2-3 hours of discussion per week

Additional Details

Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Abbeel, Klein, Russell

Introduction to Artificial Intelligence: Read Less [-]
COMPSCI 189 Introduction to Machine Learning 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
Theoretical foundations, algorithms, methodologies, and applications for machine learning. Topics may include supervised methods for regression and classification (linear models, trees, neural networks, ensemble methods, instance-based methods); generative and discriminative probabilistic models; Bayesian parametric learning; density estimation and clustering; Bayesian networks; time series models; dimensionality reduction; programming projects covering a variety of real-world applications.
Introduction to Machine Learning: Read More [+]
Rules & Requirements
Prerequisites: MATH 53 and MATH 54; and COMPSCI 70 or consent of instructor
Credit Restrictions: Students will receive no credit for Comp Sci 189 after taking Comp Sci 289A.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 8 weeks - 6 hours of lecture and 2 hours of discussion per week
Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Abbeel, Bartlett, Darrell, El Ghaoui, Jordan, Klein, Malik, Russell
Introduction to Machine Learning: Read Less [-]

COMPSCI C191 Introduction to Quantum Computing 4 Units
Terms offered: Spring 2024, Fall 2023, Spring 2023
This multidisciplinary course provides an introduction to fundamental conceptual aspects of quantum mechanics from a computational and informational theoretic perspective, as well as physical implementations and technological applications of quantum information science. Basic sections of quantum algorithms, complexity, and cryptography, will be touched upon, as well as pertinent physical realizations from nanoscale science and engineering.
Introduction to Quantum Computing: Read More [+]
Rules & Requirements
Prerequisites: Linear Algebra (EECS 16A or PHYSICS 89 or MATH 54) AND either discrete mathematics (COMPSCI 70 or MATH 55), or quantum mechanics (PHYSICS 7C or PHYSICS 137A or CHEM 120A)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Also listed as: CHEM C191/PHYSICS C191
Introduction to Quantum Computing: Read Less [-]

COMPSCI 194 Special Topics 1 - 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
Topics will vary semester to semester. See the Computer Science Division announcements.
Special Topics: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of lecture per week
Summer: 8 weeks - 2-8 hours of lecture per week
Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Special Topics: Read Less [-]
COMPSCI 195 Social Implications of Computer Technology 1 Unit
Terms offered: Fall 2024, Fall 2023, Spring 2023
Topics include electronic community; the changing nature of work; technological risks; the information economy; intellectual property; privacy; artificial intelligence and the sense of self; pornography and censorship; professional ethics. Students will lead discussions on additional topics.
Social Implications of Computer Technology: Read More [+]

Rules & Requirements
Credit Restrictions: Students will receive no credit for 195 after taking C195/Interdisciplinary Field Study C155 or H195.

Hours & Format
Fall and/or spring: 15 weeks - 1.5 hours of lecture per week

Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Instructor: Harvey

Social Implications of Computer Technology: Read Less [-]

COMPSCI H195 Honors Social Implications of Computer Technology 3 Units
Terms offered: Fall 2024, Fall 2023, Spring 2023
Topics include electronic community; the changing nature of work; technological risks; the information economy; intellectual property; privacy; artificial intelligence and the sense of self; pornography and censorship; professional ethics. Students may lead discussions on additional topics.
Honors Social Implications of Computer Technology: Read More [+]

Rules & Requirements
Credit Restrictions: Student will receive no credit for H195 after taking 195 or C195.

Hours & Format
Fall and/or spring: 15 weeks - 1.5 hours of lecture and 1.5 hours of discussion per week

Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Instructor: Harvey

Honors Social Implications of Computer Technology: Read Less [-]

COMPSCI H196A Senior Honors Thesis Research 1 - 4 Units
Terms offered: Fall 2021, Fall 2020, Fall 2016
Thesis work under the supervision of a faculty member. To obtain credit the student must, at the end of two semesters, submit a satisfactory thesis to the Electrical Engineering and Computer Science department archive. A total of four units must be taken. The units may be distributed between one or two semesters in any way. H196A-H196B count as graded technical elective units, but may not be used to satisfy the requirement for 27 upper division technical units in the College of Letters and Science with a major in Computer Science.
Senior Honors Thesis Research: Read More [+]

Rules & Requirements
Prerequisites: Open only to students in the computer science honors program

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week

Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Senior Honors Thesis Research: Read Less [-]

COMPSCI H196B Senior Honors Thesis Research 1 - 4 Units
Terms offered: Spring 2023, Spring 2010, Spring 2009
Thesis work under the supervision of a faculty member. To obtain credit the student must, at the end of two semesters, submit a satisfactory thesis to the Electrical Engineering and Computer Science department archive. A total of four units must be taken. The units may be distributed between one or two semesters in any way. H196A-H196B count as graded technical elective units, but may not be used to satisfy the requirement for 27 upper division technical units in the College of Letters and Science with a major in Computer Science.
Senior Honors Thesis Research: Read More [+]

Rules & Requirements
Prerequisites: Open only to students in the computer science honors program

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week

Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Senior Honors Thesis Research: Read Less [-]
COMPSCI 197 Field Study 1 - 4 Units
Terms offered: Fall 2024, Fall 2023, Spring 2019
Students take part in organized individual field sponsored programs with
off-campus companies or tutoring/mentoring relevant to specific aspects
and applications of computer science on or off campus. Note Summer
CPT or OPT students: written report required. Course does not count
toward major requirements, but will be counted in the cumulative units
toward graduation.
Field Study: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor (see department adviser)
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of fieldwork per week
Summer:
6 weeks - 2.5-10 hours of fieldwork per week
8 weeks - 2-7.5 hours of fieldwork per week

Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final
exam not required.
Field Study: Read Less [-]

COMPSCI 198 Directed Group Studies for
Advanced Undergraduates 1 - 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
Group study of selected topics in Computer Sciences, usually relating to
new developments.
Directed Group Studies for Advanced Undergraduates: Read More [+]

Rules & Requirements
Prerequisites: 2.0 GPA or better; 60 units completed
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per
week
Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final
exam not required.
Directed Group Studies for Advanced Undergraduates: Read Less [-]

COMPSCI 199 Supervised Independent Study
1 - 4 Units
Terms offered: Fall 2021, Spring 2020, Fall 2018
Supervised independent study. Enrollment restrictions apply.
Supervised Independent Study: Read More [+]

Rules & Requirements
Prerequisites: Consent of instructor and major adviser
Credit Restrictions: Enrollment is restricted; see the Introduction to
Courses and Curricula section of this catalog.
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week

Additional Details
Subject/Course Level: Computer Science/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final
exam not required.
Supervised Independent Study: Read Less [-]

Electrical Engineering
Expand all course descriptions [+]
Collapse all course descriptions [-]

EL ENG 24 Freshman Seminar 1 Unit
Terms offered: Fall 2022, Fall 2021, Fall 2017
The Freshman Seminar Program has been designed to provide new
students with the opportunity to explore an intellectual topic with a faculty
member in a small seminar setting. Freshman seminars are offered
in all campus departments, and topics may vary from department to
department and semester to semester.
Freshman Seminar: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: The grading option will be decided by the
instructor when the class is offered. Final exam required.
Freshman Seminar: Read Less [-]
EL ENG 25 What Electrical Engineers Do-- Feedback from Recent Graduates 1 Unit
Terms offered: Fall 2011
A Berkeley Electrical Engineering and Computer Sciences degree opens the door to many opportunities, but what exactly are they? Graduation is only a few years away and it's not too early to find out. In this seminar students will hear from practicing engineers who recently graduated.
What are they working on? Are they working in a team? What do they wish they had learned better? How did they find their jobs?
What Electrical Engineers Do--Feedback from Recent Graduates: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Instructor: Boser

What Electrical Engineers Do--Feedback from Recent Graduates: Read Less [-]

EL ENG 39 Freshman/Sophomore Seminar 2 - 4 Units
Terms offered: Spring 2023, Fall 2022, Spring 2022
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25.
Freshman/Sophomore Seminar: Read More [+]

Rules & Requirements
Prerequisites: Priority given to freshmen and sophomores
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 2-4 hours of seminar per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.
Freshman/Sophomore Seminar: Read Less [-]

EL ENG 42 Introduction to Digital Electronics 3 Units
Terms offered: Fall 2013, Summer 2013 8 Week Session, Spring 2013
This course serves as an introduction to the principles of electrical engineering, starting from the basic concepts of voltage and current and circuit elements of resistors, capacitors, and inductors. Circuit analysis is taught using Kirchhoff's voltage and current laws with Thevenin and Norton equivalents. Operational amplifiers with feedback are introduced as basic building blocks for amplification and filtering. Semiconductor devices including diodes and MOSFETs and their IV characteristics are covered. Applications of diodes for rectification, and design of MOSFETs in common source amplifiers are taught. Digital logic gates and design using CMOS as well as simple flip-flops are introduced.
Speed and scaling issues for CMOS are considered. The course includes as motivating examples designs of high level applications including logic circuits, amplifiers, power supplies, and communication links.
Introduction to Digital Electronics: Read More [+]

Rules & Requirements
Prerequisites: Mathematics 1B
Credit Restrictions: Students will receive no credit for 42 after taking 40 or 100.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 8 weeks - 6 hours of lecture and 2 hours of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Introduction to Digital Electronics: Read Less [-]
EL ENG 49 Electronics for the Internet of Things 4 Units
Terms offered: Spring 2020, Spring 2019, Fall 2018
Electronics has become pervasive in our lives as a powerful technology with applications in a wide range of fields including healthcare, environmental monitoring, robotics, or entertainment. This course teaches how to build electronic circuits that interact with the environment through sensors and actuators and how to communicate wirelessly with the internet to cooperate with other devices and with humans. In the laboratory students design and build representative samples such as solar harvesters, robots, that exchange information with or are controlled from the cloud.
Electronics for the Internet of Things: Read More [+]

Objectives & Outcomes

Course Objectives: Electronics has become a powerful and ubiquitous technology supporting solutions to a wide range of applications in fields ranging from science, engineering, healthcare, environmental monitoring, transportation, to entertainment. The objective of this course is to teach students majoring in these and related subjects how to use electronic devices to solve problems in their areas of expertise.
Through the lecture and laboratory, students gain insight into the possibilities and limitations of the technology and how to use electronics to help solve problems. Students learn to use electronics to interact with the environment through sound, light, temperature, motion using sensors and actuators, and how to use electronic computation to orchestrate the interactions and exchange information wirelessly over the internet.

Student Learning Outcomes: Deploy electronic sensors and interface them to microcontrollers through digital and analog channels as well as common protocols (I2C, SPI).
Design, build and test electronic devices leveraging these concepts. Interact with the internet and cloud services using protocols such as http, MQTT, Blynk.
Interface DC motors, steppers and servos to microcontrollers.
Represent information with voltage, current, power, and energy and how to measure these quantities with laboratory equipment.
To use and program low-cost and low-power microcontrollers for sensing, actuation, and information processing, and find and use program libraries supporting these tasks
Understand and make basic low-pass and high-pass filters, Wheatstone bridge etc.
Use electronics to sense and actuate physical parameters such as temperature, humidity, sound, light, and motion.

Rules & Requirements

Prerequisites: ENGIN 7, COMPSCI 10, or equivalent background in computer programming (including COMPSCI 61A or COMPSCI C8 / INFO C8 / STAT C8); MATH 1A or equivalent background in Calculus

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 2 hours of discussion, and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Boser
Electronics for the Internet of Things: Read Less [-]

EL ENG 84 Sophomore Seminar 1 or 2 Units
Terms offered: Fall 2022, Spring 2022, Fall 2021
Sophomore seminars are small interactive courses offered by faculty members in departments all across the campus. Sophomore seminars offer opportunity for close, regular intellectual contact between faculty members and students in the crucial second year. The topics vary from department to department and semester to semester. Enrollment limited to 15 sophomores.
Sophomore Seminar: Read More [+]

Rules & Requirements

Prerequisites: At discretion of instructor
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format

Fall and/or spring:
5 weeks - 3-6 hours of seminar per week
10 weeks - 1.5-3 hours of seminar per week
15 weeks - 1-2 hours of seminar per week

Summer:
6 weeks - 2.5-5 hours of seminar per week
8 weeks - 1.5-3.5 hours of seminar per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.
Sophomore Seminar: Read Less [-]

EL ENG 97 Field Study 1 - 4 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
Students take part in organized individual field sponsored programs with off-campus companies or tutoring/mentoring relevant to specific aspects and applications of computer science on or off campus. Note Summer CPT or OPT students: written report required. Course does not count toward major requirements, but will be counted in the cumulative units toward graduation.
Field Study: Read More [+]

Rules & Requirements

Prerequisites: Consent of instructor (see department adviser)
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-4 hours of fieldwork per week
Summer:
6 weeks - 2.5-10 hours of fieldwork per week
8 weeks - 2-7.5 hours of fieldwork per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Field Study: Read Less [-]
EL ENG 98 Directed Group Study for Undergraduates 1 - 4 Units
Terms offered: Fall 2021, Fall 2020, Fall 2016
Group study of selected topics in electrical engineering, usually relating to
new developments.
Directed Group Study for Undergraduates: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final
exam not required.

Directed Group Study for Undergraduates: Read Less [-]

EL ENG 99 Individual Study and Research for Undergraduates 1 - 4 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
Supervised independent study and research for students with fewer than
60 units completed.
Individual Study and Research for Undergraduates: Read More [+]

Rules & Requirements
Prerequisites: Freshman or sophomore standing and consent of
instructor. Minimum GPA of 3.4 required

Credit Restrictions: Enrollment is restricted; see the Introduction to
Courses and Curricula section of this catalog.

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Individual Study and Research for Undergraduates: Read Less [-]

EL ENG 105 Microelectronic Devices and Circuits 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
This course covers the fundamental circuit and device concepts needed
to understand analog integrated circuits. After an overview of the basic
properties of semiconductors, the p-n junction and MOS capacitors are
described and the MOSFET is modeled as a large-signal device. Two
port small-signal amplifiers and their realization using single stage and
multistage CMOS building blocks are discussed. Sinusoidal steady-
state signals are introduced and the techniques of phasor analysis are
developed, including impedance and the magnitude and phase response
of linear circuits. The frequency responses of single and multi-stage
amplifiers are analyzed. Differential amplifiers are introduced.
Microelectronic Devices and Circuits: Read More [+]

Rules & Requirements
Prerequisites: EECS 16A and EECS 16B
Credit Restrictions: Students will receive no credit for EL ENG 105 after
completing EL ENG 240A, or EL ENG 140.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and
3 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Microelectronic Devices and Circuits: Read Less [-]
EL ENG C106A Introduction to Robotics 4 Units
Terms offered: Fall 2017, Fall 2016, Fall 2015
An introduction to the kinematics, dynamics, and control of robot manipulators, robotic vision, and sensing. The course covers forward and inverse kinematics of serial chain manipulators, the manipulator Jacobian, force relations, dynamics, and control. It presents elementary principles on proximity, tactile, and force sensing, vision sensors, camera calibration, stereo construction, and motion detection. The course concludes with current applications of robotics in active perception, medical robotics, and other areas.
Introduction to Robotics: Read More [+]
Rules & Requirements
Prerequisites: EL ENG 120 or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Bajcsy
Formerly known as: Electrical Engineering C125/Bioengineering C125
Also listed as: BIO ENG C125

Introduction to Robotics: Read Less [-]

EL ENG C106B Robotic Manipulation and Interaction 4 Units
Terms offered: Spring 2017, Spring 2016
This course is a sequel to Electrical Engineering C106A/Bioengineering C125, which covers kinematics, dynamics and control of a single robot. This course will cover dynamics and control of groups of robotic manipulators coordinating with each other and interacting with the environment. Concepts will include an introduction to grasping and the constrained manipulation, contacts and force control for interaction with the environment. We will also cover active perception guided manipulation, as well as the manipulation of non-rigid objects. Throughout, we will emphasize design and human-robot interactions, and applications to applications in manufacturing, service robotics, tele-surgery, and locomotion.
Robotic Manipulation and Interaction: Read More [+]
Rules & Requirements
Prerequisites: EECS C106A / BIO ENG C125 or consent of the instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructors: Bajcsy, Sastry
Also listed as: BIO ENG C125B

Robotic Manipulation and Interaction: Read Less [-]
EL ENG 108 Introduction to Electric Power and Renewable Energy 4 Units
Terms offered: Spring 2024
This course is designed to provide an introduction to electric power conversion, distribution, and generation with renewable energy sources. The course will introduce fundamental concepts in the area of electric power, such as complex and reactive power, phasors, impedance, magnetic circuits and transformers, power factor, power quality, three-phase power, ac-dc conversion, and a conceptual overview of renewable energy and the integration of sustainable energy sources on the electric grid. Real world applications, ranging from ground-fault circuit interrupters to residential power distribution and solar photovoltaic dc-ac inverters will be explored in live lecture demonstration.
Introduction to Electric Power and Renewable Energy: Read More [+]
Rules & Requirements
Prerequisites: Differential equations and linear algebra (Math 54 or equivalent), Electricity and magnetism (Physics 7B or equivalent). Introduction to electric circuits (EE 16AB or equivalent). Students should enter the course with a basic working knowledge of RLC circuits
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Pilawa
Introduction to Electric Power and Renewable Energy: Read Less [-]

EL ENG 113B Power Electronics Design 4 Units
Terms offered: Spring 2024
This course is the second in a two-semester series to equip students with the skills needed to analyze, design, and prototype power electronic converters. While EE 113/213A provides an overview of power electronics fundamentals and applications, EE 113B/213B focuses on the practical design and hardware implementation of power converters. The primary focus of EE 113B/213B is time in the laboratory, with sequential modules on topics such as power electronic components, PCB layout, closed-loop control, and experimental validation. At the end of the course, students will have designed, prototyped, and validated a power converter from scratch, demonstrating a skill set that is critical for power electronics engineers in research and industry.
Power Electronics Design: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit with instructor consent.
Hours & Format
Fall and/or spring: 15 weeks - 1.5 hours of lecture and 6 hours of laboratory per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternate method of final assessment during regularly scheduled final exam group (e.g., presentation, final project, etc.).
Instructor: Boles
Power Electronics Design: Read Less [-]
EL ENG 117 Electromagnetic Fields and Waves 4 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022
Review of static electric and magnetic fields and applications; Maxwell's equations; transmission lines; propagation and reflection of plane waves; introduction to guided waves, microwave networks, and radiation and antennas. Minilabs on statics, transmission lines, and waves. Explanation of cellphone antennas, WiFi communication, and other wireless technologies.
Electromagnetic Fields and Waves: Read More [+]

Rules & Requirements

Prerequisites: EECS 16B, MATH 53, and MATH 54; PHYSICS 7B or equivalent that covers AC circuits and electromagnetics up to Maxwell's equations

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Yablonovitch

Electromagnetic Fields and Waves: Read Less [-]

EL ENG 118 Introduction to Optical Engineering 4 Units
Terms offered: Fall 2024, Fall 2023, Fall 2022
Introduction to Optical Engineering: Read More [+]

Rules & Requirements

Prerequisites: MATH 53; EECS 16A and EECS 16B, or MATH 54

Credit Restrictions: Students will receive no credit for Electrical Engineering 118 after taking Electrical Engineering 218A. A deficient grade in Electrical Engineering 119 may be removed by taking Electrical Engineering 118.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Waller, Kante
Introduction to Optical Engineering: Read Less [-]

EL ENG 120 Signals and Systems 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
Signals and Systems: Read More [+]

Rules & Requirements

Prerequisites: EECS 16A and EECS 16B

Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture and 1 hour of recitation per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Signals and Systems: Read Less [-]

EL ENG 121 Introduction to Digital Communication Systems 4 Units
Terms offered: Spring 2016, Fall 2014, Fall 2013
Introduction to the basic principles of the design and analysis of modern digital communication systems. Topics include source coding, channel coding, baseband and passband modulation techniques, receiver design, and channel equalization. Applications to design of digital telephone modems, compact disks, and digital wireless communication systems. Concepts illustrated by a sequence of MATLAB exercises.
Introduction to Digital Communication Systems: Read More [+]

Rules & Requirements

Prerequisites: EECS 16A, EECS 16B, and COMPSCI 70

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Introduction to Digital Communication Systems: Read Less [-]
EL ENG 122 Introduction to Communication Networks 4 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022
This course focuses on the fundamentals of the wired and wireless communication networks. The course covers both the architectural principles for making these networks scalable and robust, as well as the key techniques essential for analyzing and designing them. The topics include graph theory, Markov chains, queuing, optimization techniques, the physical and link layers, switching, transport, cellular networks and Wi-Fi.

Introduction to Communication Networks: Read More [+]

Rules & Requirements

Prerequisites: COMPSCI 70

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Introduction to Communication Networks: Read Less [-]

EL ENG 123 Digital Signal Processing 4 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022

Digital Signal Processing: Read More [+]

Rules & Requirements

Prerequisites: EL ENG 120

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 1 hour of laboratory per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Digital Signal Processing: Read Less [-]

EL ENG 126 Probability and Random Processes 4 Units
Terms offered: Spring 2017, Fall 2016, Spring 2016

Probability and Random Processes: Read More [+]

Rules & Requirements

Prerequisites: EECS 16A and EECS 16B

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Probability and Random Processes: Read Less [-]

EL ENG C128 Feedback Control Systems 4 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022
Analysis and synthesis of linear feedback control systems in transform and time domains. Control system design by root locus, frequency response, and state space methods. Applications to electro-mechanical and mechatronics systems.

Feedback Control Systems: Read More [+]

Rules & Requirements

Prerequisites: EECS 16A or MEC ENG 100; MEC ENG 132 or EL ENG 120

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Electrical Engineering/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Also listed as: MEC ENG C134

Feedback Control Systems: Read Less [-]
EL ENG 130 Integrated-Circuit Devices 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
Overview of electronic properties of semiconductor. Metal-semiconductor contacts, pn junctions, bipolar transistors, and MOS field-effect transistors. Properties that are significant to device operation for integrated circuits. Silicon device fabrication technology.

Rules & Requirements
Prerequisites: EECS 16A and EECS 16B
Credit Restrictions: Students will receive no credit for El Eng 130 after taking El Eng 230A.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

EL ENG 134 Fundamentals of Photovoltaic Devices 4 Units
Terms offered: Spring 2024, Spring 2023, Spring 2022
This course is designed to give an introduction to, and overview of, the fundamentals of photovoltaic devices. Students will learn how solar cells work, understand the concepts and models of solar cell device physics, and formulate and solve relevant physical problems related to photovoltaic devices. Monocrystalline, thin film and third generation solar cells will be discussed and analyzed. Light management and economic considerations in a solar cell system will also be covered.

Rules & Requirements
Prerequisites: EECS 16A and EECS 16B; or Math 54 and Physics 7B; or equivalent

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Arias

EL ENG 137A Introduction to Electric Power Systems 4 Units
Terms offered: Fall 2024, Fall 2023, Fall 2022
Overview of conventional electric power conversion and delivery, emphasizing a systemic understanding of the electric grid with primary focus at the transmission level, aimed toward recognizing needs and opportunities for technological innovation. Topics include aspects of a.c. system design, electric generators, components of transmission and distribution systems, power flow analysis, system planning and operation, performance measures, and limitations of legacy technologies.

Rules & Requirements
Prerequisites: Physics 7B; EECS 16A and EECS 16B, or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: von Meier

EL ENG 137B Introduction to Electric Power Systems 4 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Overview of recent and potential future evolution of electric power systems with focus on new and emerging technologies for power conversion and delivery, primarily at the distribution level. Topics include power electronics applications, solar and wind generation, distribution system design and operation, electric energy storage, information management and communications, demand response, and microgrids.

Rules & Requirements
Prerequisites: EL ENG 137A or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: von Meier

Instructor: von Meier

Introduction to Electric Power Systems: Read Less [-]
EL ENG 140 Linear Integrated Circuits 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
Single and multiple stage transistor amplifiers. Operational amplifiers. Feedback amplifiers, 2-port formulation, source, load, and feedback network loading. Frequency response of cascaded amplifiers, gain-bandwidth exchange, compensation, dominant pole techniques, root locus. Supply and temperature independent biasing and references. Selected applications of analog circuits such as analog-to-digital converters, switched capacitor filters, and comparators. Hardware laboratory and design project.
Linear Integrated Circuits: Read More [+]

Rules & Requirements

Prerequisites: EL ENG 105

Credit Restrictions: Students will receive no credit for El Eng 140 after taking El Eng 240A.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Alon, Sanders
Linear Integrated Circuits: Read Less [-]

EL ENG 142 Integrated Circuits for Communications 4 Units
Terms offered: Spring 2024, Fall 2023, Spring 2023
Analysis and design of electronic circuits for communication systems, with an emphasis on integrated circuits for wireless communication systems. Analysis of noise and distortion in amplifiers with application to radio receiver design. Power amplifier design with application to wireless radio transmitters. Radio-frequency mixers, oscillators, phase-locked loops, modulators, and demodulators.
Integrated circuits for Communications: Read More [+]

Rules & Requirements

Prerequisites: EECS 16A, EECS 16B, and EL ENG 105

Credit Restrictions: Students will receive no credit for El Eng 142 after taking El Eng 242A.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Alon, Sanders
Integrated circuits for Communication: Read Less [-]

EL ENG 143 Microfabrication Technology 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
Integrated circuit device fabrication and surface micromachining technology. Thermal oxidation, ion implantation, impurity diffusion, film deposition, epitaxy, lithography, etching, contacts and interconnections, and process integration issues. Device design and mask layout, relation between physical structure and electrical/mechanical performance. MOS transistors and poly-Si surface microstructures will be fabricated in the laboratory and evaluated.
Microfabrication Technology: Read More [+]

Rules & Requirements

Prerequisites: PHYSICS 7B

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Microfabrication Technology: Read Less [-]

EL ENG 144 Fundamental Algorithms for Systems Modeling, Analysis, and Optimization 4 Units
Terms offered: Fall 2015, Fall 2014, Fall 2013
The modeling, analysis, and optimization of complex systems requires a range of algorithms and design software. This course reviews the fundamental techniques underlying the design methodology for complex systems, using integrated circuit design as example. Topics include design flows, discrete and continuous models and algorithms, and strategies for implementing algorithms efficiently and correctly in software. Laboratory assignments and a class project will expose students to state-of-the-art tools.
Fundamental Algorithms for Systems Modeling, Analysis, and Optimization: Read More [+]

Rules & Requirements

Prerequisites: EECS 16A and COMPSCI 70, or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture per week

Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Keutzer, Lee, Roychowdhury, Seshia
Fundamental Algorithms for Systems Modeling, Analysis, and Optimization: Read Less [-]
EL ENG C145B Medical Imaging Signals and Systems 4 Units
Terms offered: Fall 2024, Fall 2023, Fall 2022
Biomedical imaging is a clinically important application of engineering, applied mathematics, physics, and medicine. In this course, we apply linear systems theory and basic physics to analyze X-ray imaging, computed tomography, nuclear medicine, and MRI. We cover the basic physics and instrumentation that characterizes medical image as an ideal perfect-resolution image blurred by an impulse response. This material could prepare the student for a career in designing new medical imaging systems that reliably detect small tumors or infarcts.
Medical Imaging Signals and Systems: Read More [+]
Rules & Requirements
Prerequisites: Prerequisites are introductory level skills in Python/ Matlab; and either EECS 16A, EECS 16B, and EL ENG 120; or MATH 54, BIO ENG 105, and BIO ENG 101
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Conolly
Also listed as: BIO ENG C165
Medical Imaging Signals and Systems: Read Less [-]

EL ENG C145L Introductory Electronic Transducers Laboratory 3 Units
Terms offered: Fall 2014, Fall 2013, Fall 2012
Laboratory exercises exploring a variety of electronic transducers for measuring physical quantities such as temperature, force, displacement, sound, light, ionic potential; the use of circuits for low-level differential amplification and analog signal processing; and the use of microcomputers for digital sampling and display. Lectures cover principles explored in the laboratory exercises; construction, response and signal to noise of electronic transducers and actuators; and design of circuits for sensing and controlling physical quantities.
Introductory Electronic Transducers Laboratory: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Derenko
Also listed as: BIO ENG C145L
Introductory Electronic Transducers Laboratory: Read Less [-]

EL ENG C145M Introductory Microcomputer Interfacing Laboratory 3 Units
Terms offered: Spring 2013, Spring 2012, Spring 2011
Laboratory exercises constructing basic interfacing circuits and writing 20-100 line C programs for data acquisition, storage, analysis, display, and control. Use of the IBM PC with microprogrammable digital counter/timer, parallel I/O port. Circuit components include anti-aliasing filters, the S/H amplifier, A/D and D/A converters. Exercises include effects of aliasing in periodic sampling, fast Fourier transforms of basic waveforms, the use of the Hanning filter for leakage reduction, Fourier analysis of the human voice, digital filters, and control using Fourier deconvolution. Lectures cover principles explored in the lab exercises and design of microcomputer-based systems for data acquisitions, analysis and control.
Introductory Microcomputer Interfacing Laboratory: Read More [+]
Rules & Requirements
Prerequisites: EE 16A & 16B
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Derenko
Also listed as: BIO ENG C145M
Introductory Microcomputer Interfacing Laboratory: Read Less [-]
EL ENG C145O Laboratory in the Mechanics of Organisms 3 Units
Introduction to laboratory and field study of the biomechanics of animals and plants using fundamental biomechanical techniques and equipment. Course has a series of rotations involving students in experiments demonstrating how solid and fluid mechanics can be used to discover the way in which diverse organisms move and interact with their physical environment. The laboratories emphasize sampling methodology, experimental design, and statistical interpretation of results. Latter third of course devoted to independent research projects. Written reports and class presentation of project results are required.
Laboratory in the Mechanics of Organisms: Read More [+]
Rules & Requirements
Prerequisites: INTEGBI 135 or consent of instructor. For Electrical Engineering and Computer Sciences students: EL ENG 105, EL ENG 120 or COMPSCI 184
Credit Restrictions: Students will receive no credit for C135L after taking 135L.
Hours & Format
Fall and/or spring: 15 weeks - 6 hours of laboratory, 1 hour of discussion, and 1 hour of fieldwork per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: Integrative Biology 135L
Also listed as: BIO ENG C136L/INTEGBI C135L
Laboratory in the Mechanics of Organisms: Read Less [-]

EL ENG 146L Application Specific Integrated Circuits Laboratory 2 Units
Terms offered: Spring 2015
This is a lab course that covers the design of modern Application-Specific Integrated Circuits (ASICs). The labs lay the foundation of modern digital design by first setting-up the scripting and hardware description language base for specification of digital systems and interactions with tool flows. Software testing of digital designs is covered leading into a set of labs that cover the design flow. Digital synthesis, floorplanning, placement and routing are covered, as well as tools to evaluate design timing and power. Chip-level assembly is covered, instantiation of custom IP blocks: I/O pads, memories, PLLs, etc. The labs culminate with a project design – implementation of a 3-stage RISC-V processor with register file and caches.
Application Specific Integrated Circuits Laboratory: Read More [+]
Objectives & Outcomes
Course Objectives: This course is a one-time offering to supplement the CS150 course offered in the Fall 2014, with a lab and project section that cover the Application-Specific Integrated Circuit Design. The CS150 lectures in the Fall 2014 already covered the necessary lecture material, so students who took the CS150 lab in the Fall of 2014 will have a chance to expand their skills into the area of Application-Specific Integrated Circuit design. Hence the pre-requisite for this course is that a student has taken the CS150 course in the Fall 2014.
Rules & Requirements
Prerequisites: EECS 16B; EL ENG 105 recommended
Credit Restrictions: Students will receive no credit for Electrical Engineering 146L after taking Fall 2014 version of Electrical Engineering 141/241A.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of laboratory and 1 hour of discussion per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Instructor: Stojanovic
Application Specific Integrated Circuits Laboratory: Read Less [-]
EL ENG 147 Introduction to Microelectromechanical Systems (MEMS) 3 Units
Terms offered: Fall 2024, Fall 2023, Fall 2022
This course will teach fundamentals of micromachining and microfabrication techniques, including planar thin-film process technologies, photolithographic techniques, deposition and etching techniques, and the other technologies that are central to MEMS fabrication. It will pay special attention to teaching of fundamentals necessary for the design and analysis of devices and systems in mechanical, electrical, fluidic, and thermal energy/signal domains, and will teach basic techniques for multi-domain analysis. Fundamentals of sensing and transduction mechanisms including capacitive and piezoresistive techniques, and design and analysis of micromachined miniature sensors and actuators using these techniques will be covered.
Introduction to Microelectromechanical Systems (MEMS): Read More [+]
Rules & Requirements
Prerequisites: EECS 16A and EECS 16B
Credit Restrictions: Students will receive no credit for El Eng 147 after taking El Eng 247A.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Maharbiz, Nguyen, Pister
Introduction to Microelectromechanical Systems (MEMS): Read Less [-]

EL ENG 192 Mechatronic Design Laboratory 4 Units
Terms offered: Spring 2021, Spring 2020, Spring 2019
Design project course, focusing on application of theoretical principles in electrical engineering to control of a small-scale system, such as a mobile robot. Small teams of students will design and construct a mechatronic system incorporating sensors, actuators, and intelligence.
Mechatronic Design Laboratory: Read More [+]
Rules & Requirements
Prerequisites: EECS 16A, EECS 16B, COMPSCI 61A, COMPSCI 61B, COMPSCI 61C, and EL ENG 120
Hours & Format
Fall and/or spring: 15 weeks - 1.5 hours of lecture and 10 hours of laboratory per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Fearing
Mechatronic Design Laboratory: Read Less [-]

EL ENG 194 Special Topics 1 - 4 Units
Terms offered: Fall 2024, Spring 2024, Fall 2023
Topics will vary semester to semester. See the Electrical Engineering announcements.
Special Topics: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of lecture per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Special Topics: Read Less [-]

EL ENG H196A Senior Honors Thesis Research 1 - 4 Units
Terms offered: Spring 2016, Fall 2015, Spring 2015
Thesis work under the supervision of a faculty member. A minimum of four units must be taken; the units may be distributed between one and two semesters in any way. To obtain credit a satisfactory thesis must be submitted at the end of the two semesters to the Electrical and Engineering and Computer Science Department archive. Students who complete four units and a thesis in one semester receive a letter grade at the end of H196A. Students who do not, receive an IP in H196A and must enroll in H196B.
Senior Honors Thesis Research: Read More [+]
Rules & Requirements
Prerequisites: Open only to students in the Electrical Engineering and Computer Science honors program
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. This is part one of a year long series course. A provisional grade of IP (in progress) will be applied and later replaced with the final grade after completing part two of the series. Final exam required.
Senior Honors Thesis Research: Read Less [-]
EL ENG H196B Senior Honors Thesis Research 1 - 4 Units
Terms offered: Spring 2016, Spring 2015, Spring 2014
Thesis work under the supervision of a faculty member. A minimum of four units must be taken; the units may be distributed between one and two semesters in any way. To obtain credit a satisfactory thesis must be submitted at the end of the two semesters to the Electrical and Engineering and Computer Science Department archive. Students who complete four units and a thesis in one semester receive a letter grade at the end of H196A. Students who do not receive an IP in H196A and must enroll in H196B.
Senior Honors Thesis Research: Read More [+]
Rules & Requirements
Prerequisites: Open only to students in the Electrical Engineering and Computer Science honors program
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Letter grade. This is part two of a year long series course. Upon completion, the final grade will be applied to both parts of the series. Final exam required.
Senior Honors Thesis Research: Read Less [-]

EL ENG 197 Field Study 1 - 4 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Students take part in organized individual field sponsored programs with off-campus companies or tutoring/mentoring relevant to specific aspects and applications of computer science on or off campus. Note Summer CPT or OPT students: written report required. Course does not count toward major requirements, but will be counted in the cumulative units toward graduation.
Field Study: Read More [+]
Rules & Requirements
Prerequisites: Open only to students in the Electrical Engineering and Computer Science honors program
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of fieldwork per week
Summer:
6 weeks - 2.5-10 hours of fieldwork per week
8 weeks - 2-7.5 hours of fieldwork per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Field Study: Read Less [-]

EL ENG 198 Directed Group Study for Advanced Undergraduates 1 - 4 Units
Terms offered: Spring 2024, Fall 2023, Spring 2023
Group study of selected topics in electrical engineering, usually relating to new developments.
Directed Group Study for Advanced Undergraduates: Read More [+]
Rules & Requirements
Prerequisites: 2.0 GPA or better; 60 units completed
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Study for Advanced Undergraduates: Read Less [-]

EL ENG 199 Supervised Independent Study 1 - 4 Units
Terms offered: Summer 2024 10 Week Session, Spring 2023, Fall 2018
Supervised independent study. Enrollment restrictions apply.
Supervised Independent Study: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor and major adviser
Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week
Additional Details
Subject/Course Level: Electrical Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Supervised Independent Study: Read Less [-]