Data Science

Bachelor of Arts (BA)
The Data Science Major degree program combines computational and inferential reasoning to draw conclusions based on data about some aspect of the real world. Data scientists come from all walks of life, all areas of study, and all backgrounds. They share an appreciation for the practical use of mathematical and scientific thinking and the power of computing to understand and solve problems for business, research, and societal impact.

The Data Science Major will equip students to draw sound conclusions from data in context, using knowledge of statistical inference, computational processes, data management strategies, domain knowledge, and theory. Students will learn to carry out analyses of data through the full cycle of the investigative process in scientific and practical contexts. Students will gain an understanding of the human and ethical implications of data analytics and integrate that knowledge in designing and carrying out their work.

The Data Science major requirements include DATA C8 and DATA C100, the core lower-division and upper-division elements of the major, along with courses from each of the following requirement groups:

- Foundations in Mathematics and Computing
- Computational and Inferential Depth
- Modeling, Learning and Decision Making
- Probability
- Human Contexts and Ethics
- Domain Emphasis

All students will select a Domain Emphasis, a cluster of one lower division course and two upper division courses, that brings them into the context of a domain and allows them to build bridges with data science.

For students admitted in Fall 2023, Data Science is a high-demand major in L&S. For more information on the high-demand major policy please visit the "Admissions" page for the College of Letters and Science on the Berkeley Academic Guide. (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/#admissionstext)

Minor Program
The Minor in Data Science at UC Berkeley aims to provide students with practical knowledge of the methods and techniques of data analysis, as well as the ability to think critically about the construction and implications of data analysis and models. The minor will empower students across the wide array of campus disciplines with a working knowledge of statistics, probability, and computation that allow students not just to participate in data science projects, but to design and carry out rigorous computational and inferential analysis for their field of interest. Check the Data Science Minor program website (https://data.berkeley.edu/academics/data-science-undergraduate-studies/data-science-minor/) for details.

In addition to the University, campus, and college requirements listed on the College Requirements tab, students must fulfill the below requirements specific to the major program. Please check the Data Science program website (https://data.berkeley.edu/academics/data-science-undergraduate-studies/data-science-major/) for updates.

General Guidelines
- All courses taken to fulfill the major requirements below must be taken for letter-graded credit.
- No more than two upper-division courses can overlap between two majors.
- A minimum grade point average (GPA) of 2.0 must be maintained in all courses toward the major, and in all upper-division courses toward the major.

Lower Division Prerequisites

DATA/COMPSCI/ Foundations of Data Science
STAT/INFO C8
MATH 1A Calculus 3-4
or MATH 10A Methods of Mathematics: Calculus, Statistics, and Combinatorics
or MATH 16A Analytic Geometry and Calculus
MATH 1B Calculus 4
MATH 54 Linear Algebra and Differential Equations 4
or MATH 56 Linear Algebra
or STAT 89A Linear Algebra for Data Science
or EECS 16A Designing Information Devices and Systems I
& EECS 16B and Designing Information Devices and Systems II
or PHYSICS 89 Introduction to Mathematical Physics

COMPSCI 61A The Structure and Interpretation of Computer Programs 4
or DATA C88C Computational Structures in Data Science
or COMPSCI C80 Computational Structures in Data Science
or ENGIN 7 Introduction to Computer Programming for Scientists and Engineers

COMPSCI 61B Data Structures 4

In some cases, students may complete alternative courses to satisfy the above prerequisites. See the lower-division requirements (https://data.berkeley.edu/academics/data-science-undergraduate-studies/data-science-major/requirements-lower-division/) page on the Data Science program website for more details.

Lower Division Requirements
Students will also be required to take one lower division course towards their choice of Domain Emphasis.

Upper Division Requirements
Students will be required to complete 8 unique upper-division courses for a total of 28 or more units from the following requirement categories.

Principles and techniques of data science
DATA/COMPSCI/ Principles & Techniques of Data Science
STAT C100

Computational and Inferential Depth
Students will be required to take two upper division courses comprising 7 or more units that provide computational and inferential depth beyond that provided in Data 100 and the lower-division courses.

Choose two courses comprising 7+ units from the following:
ASTRON 128 Astronomy Data Science Laboratory 4
COMPSCI 161 Computer Security 4
Students will be required to take one upper-division course on probability.

Choose one of the following:
- DATA/STAT C140 Probability for Data Science
- MATH 106 Mathematical Probability Theory
- EL ENG 126 Probability and Random Processes
- IND ENG 172 Probability and Risk Analysis for Engineers
- STAT 134 Concepts of Probability

Modeling, Learning, and Decision-Making
Students will be required to take one upper-division course on modeling, learning, and decision-making.

Choose one of the following:
- COMPSCI 182 Designing, Visualizing and Understanding Deep Neural Networks
- COMPSCI 189 Introduction to Machine Learning
- DATA/STAT C102 Data, Inference, and Decisions
- IND ENG 142 Introduction to Machine Learning and Data Analytics
- STAT 154 Modern Statistical Prediction and Machine Learning

Human Contexts and Ethics
Students will be required to take one course from a curated list of courses that establish a human, social, and ethical context in which data analytics and computational inference play a central role.

- AFTRAM 134 Information Technology and Society
- NWMEDIA 151AC Transforming Tech: Issues and Interventions in STEM and Silicon Valley
- INFO 188 Behind the Data: Humans and Values
- ISF 100J The Social Life of Computing
- PHYSICS 188 Bayesian Data Analysis and Machine Learning for Physical Sciences (previously PHYSICS 188)
- STAT 135 Concepts of Statistics
- STAT 150 Stochastic Processes
- STAT 151A Linear Modelling: Theory and Applications
- STAT 152 Sampling Surveys
- STAT 153 Introduction to Time Series
- STAT 158 Experimental Design
- STAT 159 Reproducible and Collaborative Statistical Data Science
- UGBA 142 Advanced Business Analytics

Domain Emphasis
Students will also be required to take two upper-division courses towards their choice of Domain Emphasis.

Domain Emphases that students can choose from:
- Applied Mathematics and Modeling (p. 3)
- Business and Industrial Analytics (p. 3)
- Cognition (p. 3)
- Computational Methods in Molecular and Genomic Biology (p. 4)
- Data Arts and Humanities
- Ecology and the Environment (p. 5)
- Economics (p. 5)
- Environment, Resource Management, and Society (p. 5)
- Evolution and Biodiversity (p. 6)
- Geospatial Information and Technology (p. 6)
- Human and Population Health (p. 6)
• Human Behavior and Psychology (p. 7)
• Inequalities in Society (p. 7)
• Linguistic Sciences (p. 7)
• Neurosciences (p. 8)
• Organizations and the Economy (p. 8)
• Philosophical Foundations: Evidence and Inference (p. 8)
• Philosophical Foundations: Minds, Morals, and Machines (p. 8)
• Physical Science Analytics (p. 9)
• Quantitative Social Science (p. 9)
• Robotics (p. 9)
• Science, Technology, and Society (p. 10)
• Social Welfare, Health, and Poverty (p. 10)
• Social Policy and Law (p. 11)
• Sustainable Development and Engineering (p. 11)
• Urban Science (p. 11)

From the lists shown below, students will select one course from the lower-division, and two courses from the upper-division. The lower division course is a required element of the Domain Emphasis.

NOTE: Courses in each domain emphasis may be restricted by major to enroll and/or have extensive prerequisites. It may be difficult to complete an emphasis given these restrictions. Students are advised to make appropriate alternate plans. Prerequisites can be viewed by clicking on a course link.

Applied Mathematics and Modeling

The Applied Mathematics and Modeling domain emphasis gives students the opportunity to explore mathematical techniques essential to data science and mathematical modeling. Apart from gaining core competencies in advanced calculus and linear algebra, students can learn numerical approximation and optimal decision methods, as well as gain experience in their implementation in parallel programming.

The Honors versions of these courses (where applicable) will also be accepted.

Lower Division (choose one)
MATH 53 Multivariable Calculus 4
MATH 55 Discrete Mathematics 4

Upper Division (choose two)
CIV ENG C133/ MEC ENG C180 Engineering Analysis Using the Finite Element Method 3
EECS 127 Optimization Models in Engineering 4
ENGIN 150 Basic Modeling and Simulation Tools for Industrial Research Applications 4
IND ENG 160 Nonlinear and Discrete Optimization 3
IND ENG 162 Linear Programming and Network Flows 3
MATH 104 Introduction to Analysis 4
MATH 110 Abstract Linear Algebra 4
MATH 113 Introduction to Abstract Algebra 4
MATH 118 Fourier Analysis, Wavelets, and Signal Processing 4
MATH 128A Numerical Analysis 4
COMPSCI C267/ ENGIN C233 Applications of Parallel Computers 3

We recognize in general that to satisfy the prerequisites for these courses below, a student will have already satisfied the Domain Emphasis. Because these courses are natural to include in this emphasis, they will function as an elective for many students who take them. They are included here merely for those students who get to these courses from nontraditional paths, for whom these courses should count towards the DE.

MATH 128B Numerical Analysis 4

Business and Industrial Analytics

The Business and Industrial Analytics domain emphasis allows students to explore the principles and methods of making data-driven decisions under uncertainty in the worlds of business and industry. Students will learn how to approach management decisions from economic, probabilistic, and computational perspectives, and how to analyze and manage risk.

Lower Division (select one)
ECON 1 Introduction to Economics 4
ECON 2 Introduction to Economics--Lecture Format 4
MATH 53 Multivariable Calculus 4

Upper Division (select two)
ENGIN/IND ENG 120 Principles of Engineering Economics 3
IND ENG 115 Industrial and Commercial Data Systems 3
IND ENG 130 Methods of Manufacturing Improvement 3
IND ENG 153 Logistics Network Design and Supply Chain Management 3
IND ENG 166 Decision Analytics 3
IND ENG 185 Course Not Available (OpportunityTech and the Future of Work -- approved only with this topic in Spring 2022) 3
UGBA 104 Introduction to Business Analytics 3
UGBA 134 Introduction to Financial Engineering 3
UGBA 141 Production and Operations Management (when completed for 3 units) 3
UGBA 142 Advanced Business Analytics 3
UGBA 161 Market Research: Tools and Techniques for Data Collection and Analysis 3

For students completing the lower-division requirement outside of UC Berkeley at a college where microeconomics and macroeconomics are offered as separate courses, only microeconomics is required for the Data Science BA. However, note that full equivalence to Econ 1 may still be required as a prerequisite to other courses you wish to take at UC Berkeley.

COgnition

The Cognition domain emphasis introduces students to fundamental scientific questions about how the human mind works. It gives them the opportunity to pursue one or more disciplinary approaches, including psychology, neuroscience, and linguistics, and to consider computational models of mind.

Lower Division (select one)
COG SCI 1/1B/ N1 Introduction to Cognitive Science 4
MCELLBI/ PSYCH C61 Brain, Mind, and Behavior 3
MCELLBI/ PSYCH C64 Exploring the Brain: Introduction to Neuroscience (only offered in summer) 3
Data Science

Upper Division (select two)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>COG SCI C100/</td>
<td>Basic Issues in Cognition</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH C120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COG SCI C101/</td>
<td>Cognitive Linguistics</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIS C105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COG SCI/</td>
<td>Perception</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH C126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COG SCI/</td>
<td>Cognitive Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH C127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COG SCI 131/</td>
<td>Computational Models of Cognition</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH C123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COG SCI 150</td>
<td>Sensemaking and Organizing</td>
<td>3</td>
</tr>
<tr>
<td>COG SCI 180</td>
<td>Mind, Brain, and Identity</td>
<td>3</td>
</tr>
<tr>
<td>COG SCI 190</td>
<td>Special Topics in Cognitive Science (Data Science and Cognition -- only when offered with this topic)</td>
<td>3</td>
</tr>
<tr>
<td>COMPSCI 188</td>
<td>Introduction to Artificial Intelligence</td>
<td>4</td>
</tr>
<tr>
<td>MUSIC 108</td>
<td>Music Perception and Cognition</td>
<td>4</td>
</tr>
<tr>
<td>or MUSIC 108</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Music Perception and Cognition</td>
<td></td>
</tr>
<tr>
<td>PSYCH 114</td>
<td>Biology of Learning</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 117</td>
<td>Human Neuropsychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 122</td>
<td>Course Not Available (ended in Spring 2021)</td>
<td></td>
</tr>
<tr>
<td>PSYCH 131</td>
<td>Developmental Psychopathology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH C143/</td>
<td>Language Acquisition</td>
<td>3</td>
</tr>
<tr>
<td>LINGUIS C146</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Computational Methods in Molecular and Genomic Biology

This domain emphasis will prepare students for work or graduate school in bioinformatics and computational biology with a focus on molecular biology and genomics. Students with this emphasis will be able to understand how computational and statistical methods are used to elucidate the mechanisms of cellular processing of genetic data and will prepare them for computational analyses of DNA sequencing data and other molecular biological data.

Lower Division (select one)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGY 1A</td>
<td>General Biology Lecture</td>
<td>3</td>
</tr>
<tr>
<td>BIOLOGY 1B</td>
<td>General Biology Lecture and Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>MATH 53</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
</tbody>
</table>

Upper Division (select two)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO ENG 131/</td>
<td>Introduction to Computational Molecular and Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>CMPBIO C131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO ENG 134</td>
<td>Genetic Design Automation</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG 145</td>
<td>Introduction to Machine Learning for Computational Biology</td>
<td>4</td>
</tr>
<tr>
<td>CMPBIO 156</td>
<td>Human Genome, Environment and Public Health</td>
<td>4</td>
</tr>
<tr>
<td>CMPBIO/</td>
<td>Algorithms for Computational Biology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTEGBI C176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTEGBI 141</td>
<td>Human Genetics</td>
<td>3</td>
</tr>
<tr>
<td>or INTEGBI 164</td>
<td>Human Genetics and Genomics</td>
<td></td>
</tr>
<tr>
<td>or MCELLBI 143</td>
<td>The Human Genome</td>
<td></td>
</tr>
<tr>
<td>INTEGBI 161</td>
<td>Population and Evolutionary Genetics</td>
<td>4</td>
</tr>
<tr>
<td>MATH 127</td>
<td>Mathematical and Computational Methods in Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI C100A/</td>
<td>Biophysical Chemistry: Physical Principles and the</td>
<td>4</td>
</tr>
<tr>
<td>CHEM C130</td>
<td>Molecules of Life</td>
<td></td>
</tr>
<tr>
<td>MCELLBI 102</td>
<td>Survey of the Principles of Biochemistry and Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 104</td>
<td>Genetics, Genomics, and Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 130</td>
<td>Course Not Available</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 132</td>
<td>Biology of Human Cancer</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 137L</td>
<td>Physical Biology of the Cell</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 140</td>
<td>General Genetics</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 143</td>
<td>Evolution of Genomes, Cells, and Development</td>
<td>3</td>
</tr>
<tr>
<td>MCELLBI/</td>
<td>Microbial Genomics and Genetics</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI C148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCELLBI 153</td>
<td>Molecular Therapeutics</td>
<td>4</td>
</tr>
<tr>
<td>PLANTBI 160</td>
<td>Plant Molecular Genetics</td>
<td>3</td>
</tr>
</tbody>
</table>

DATA ARTS AND HUMANITIES

The Data Arts and Humanities domain emphasis allows students to explore and engage data science practices across the humanities and arts. In addition to investigating the place of data in humanistic inquiry and creative work in broad terms, students can learn current data arts and humanities methods specific to different disciplines and departments, as and together with critical inquiry

Lower Division (select one)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART 23AC</td>
<td>DIGITAL MEDIA: FOUNDATIONS</td>
<td>4</td>
</tr>
<tr>
<td>HISTORY 88</td>
<td>How Does History Count?</td>
<td>2</td>
</tr>
<tr>
<td>L & S 88</td>
<td>Data Science Connector (Rediscovering Text as Data (only when offered with this topic))</td>
<td>2-4</td>
</tr>
<tr>
<td>L & S 88</td>
<td>Data Science Connector (Aesthetics and Data (only when offered with this topic))</td>
<td>2-4</td>
</tr>
<tr>
<td>MUSIC 30</td>
<td>Computational Creativity for Music and the Arts</td>
<td>4</td>
</tr>
<tr>
<td>RHETOR 10</td>
<td>Introduction to Practical Reasoning and Critical Analysis</td>
<td>4</td>
</tr>
</tbody>
</table>

Upper Division (select two)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIGHUM 100</td>
<td>Theory and Method in the Digital Humanities (summer only)</td>
<td>3</td>
</tr>
<tr>
<td>DIGHUM 101</td>
<td>Practicing the Digital Humanities (summer only)</td>
<td>3</td>
</tr>
<tr>
<td>DIGHUM 150A</td>
<td>Digital Humanities and Archival Design (summer only)</td>
<td>3</td>
</tr>
<tr>
<td>DIGHUM 150B</td>
<td>Digital Humanities and Visual and Spatial Analysis (summer only)</td>
<td>3</td>
</tr>
<tr>
<td>DIGHUM 150C</td>
<td>Digital Humanities and Text and Language Analysis (summer only)</td>
<td>3</td>
</tr>
<tr>
<td>DIGHUM 160</td>
<td>Critical Digital Humanities (summer only)</td>
<td>3</td>
</tr>
<tr>
<td>GLOBAL 140</td>
<td>Special Topics in Global Societies and Cultures (Mapping Diasporas: Jewish Culture, Museums, and Digital Humanities (only when offered with this topic))</td>
<td>4</td>
</tr>
<tr>
<td>or JEWISH 121</td>
<td>Topics in Jewish Arts and Culture</td>
<td></td>
</tr>
<tr>
<td>HISTART C109/</td>
<td>Digital Humanities, Visual Cultures</td>
<td>4</td>
</tr>
<tr>
<td>ENGLISH C181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HISTORY 133D</td>
<td>Calculating Americans: Big Histories of Small Data</td>
<td>4</td>
</tr>
<tr>
<td>HISTART 190T</td>
<td>Transcultural (VR and Its Prehistories (only when offered with this topic))</td>
<td>4</td>
</tr>
<tr>
<td>HISTART 192DH</td>
<td>Undergraduate Seminar: Digital Imaging and Forensic Art History</td>
<td>4</td>
</tr>
<tr>
<td>INFO 103</td>
<td>History of Information</td>
<td>4</td>
</tr>
<tr>
<td>INFO 159</td>
<td>Natural Language Processing</td>
<td>4</td>
</tr>
</tbody>
</table>
Ecology and the Environment

The domain emphasis in Ecology and Environment explores the rapidly emerging diverse data sources from gene sequencing to satellites that shed light on the behavior, abundance and distribution of living organisms and the ecosystems they inhabit.

Lower Division (select one)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>L & S/ESPM C46</td>
<td>Climate Change and the Future of California</td>
<td>4</td>
</tr>
<tr>
<td>EPS 80</td>
<td>Environmental Earth Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 15</td>
<td>Introduction to Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 2</td>
<td>The Biosphere</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 6</td>
<td>Environmental Biology</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 88B</td>
<td>Data Sciences in Ecology and the Environment</td>
<td>2</td>
</tr>
<tr>
<td>GEOG 40</td>
<td>Introduction to Earth System Science</td>
<td>4</td>
</tr>
</tbody>
</table>

Upper Division (select two)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE,RES 102</td>
<td>Quantitative Aspects of Global Environmental Problems</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 102B & 102BL</td>
<td>Natural Resource Sampling and Laboratory in Natural Resource Sampling</td>
<td>2</td>
</tr>
<tr>
<td>ESPM C103/ INTEGBI C156</td>
<td>Principles of Conservation Biology</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 111</td>
<td>Ecosystem Ecology</td>
<td>4</td>
</tr>
<tr>
<td>ESPM/EPS C129</td>
<td>Biometeorology</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 130A</td>
<td>Forest Hydrology</td>
<td>4</td>
</tr>
<tr>
<td>ESPM/INTEGBI C153</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 170LF</td>
<td>Methods in Population and Community Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 157</td>
<td>Data Science in Global Change Ecology</td>
<td>4</td>
</tr>
<tr>
<td>ESPM C170/ EPS C183</td>
<td>Carbon Cycle Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ESPM 174A</td>
<td>Applied Time Series Analysis for Ecology and Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CIV ENG C106/ EPS C180/ESPM C180</td>
<td>Air Pollution</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI 152</td>
<td>Environmental Toxicology</td>
<td>4</td>
</tr>
</tbody>
</table>

Economics

Lower Division (select one)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 1</td>
<td>Introduction to Economics</td>
<td>4</td>
</tr>
<tr>
<td>ECON 2</td>
<td>Introduction to Economics--Lecture Format</td>
<td>4</td>
</tr>
<tr>
<td>DATA 88E</td>
<td>Economic Models</td>
<td>2</td>
</tr>
</tbody>
</table>

Upper Division (select two)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 100A</td>
<td>Microeconomics</td>
<td>4</td>
</tr>
<tr>
<td>or ECON 101A</td>
<td>Microeconomics (Math Intensive)</td>
<td>4</td>
</tr>
<tr>
<td>ECON/MATH C103</td>
<td>Introduction to Mathematical Economics</td>
<td>4</td>
</tr>
<tr>
<td>MATH C103</td>
<td>Introduction to Mathematical Economics</td>
<td>4</td>
</tr>
<tr>
<td>ECON 104</td>
<td>Advanced Microeconomic Theory</td>
<td>4</td>
</tr>
<tr>
<td>ECON 119</td>
<td>Psychology and Economics</td>
<td>4</td>
</tr>
<tr>
<td>ECON 121</td>
<td>Industrial Organization and Public Policy</td>
<td>4</td>
</tr>
<tr>
<td>ECON C125/ ENVECON C101</td>
<td>Environmental Economics</td>
<td>4</td>
</tr>
<tr>
<td>ECON 136</td>
<td>Financial Economics</td>
<td>4</td>
</tr>
<tr>
<td>ECON 139</td>
<td>Asset Pricing and Portfolio Choice</td>
<td>4</td>
</tr>
<tr>
<td>ECON 140</td>
<td>Econometrics</td>
<td>4</td>
</tr>
<tr>
<td>or ECON 141</td>
<td>Econometrics (Math Intensive)</td>
<td>4</td>
</tr>
<tr>
<td>ECON/PUB POL C142/ POL SCI C131A</td>
<td>Applied Econometrics and Public Policy</td>
<td>4</td>
</tr>
<tr>
<td>ECON/DEMOP C175</td>
<td>Economic Demography</td>
<td>4</td>
</tr>
<tr>
<td>ENVECON/IAS C118</td>
<td>Introductory Applied Econometrics</td>
<td>4</td>
</tr>
</tbody>
</table>

Environment, Resource Management, and Society

The Domain Emphasis in Environment, Resource Management, and Society explores the interface of economics and policy with ecological and environmental sciences. Topics include climate change, agro-ecology, energy policy, natural resources, sociology, and culture.

Lower Division (select one)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON C3/ ENVECON C1</td>
<td>Introduction to Environmental Economics and Policy</td>
<td>4</td>
</tr>
</tbody>
</table>
from our deep past to better understand our planet today. The analyses and understanding of diverse data from fossils to genomes and evolution of the astounding diversity of life on earth. Topics include

Upper Division (select two)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPM 50AC</td>
<td>Introduction to Culture and Natural Resource</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>ENE,RES W100/</td>
<td>Energy and Society</td>
<td>4</td>
</tr>
<tr>
<td>PUB POL C184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENE,RES 131</td>
<td>Data, Environment and Society</td>
<td>4</td>
</tr>
<tr>
<td>ESPM/LD ARCH</td>
<td>Upper Division (select two)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTEGBI 141 Human Genetics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or INTEGBI 164 Human Genetics and Genomics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTEGBI C160/ MCELLBI C144 Evolution</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or INTEGBI 165 Evolution and Earth History: From Genes to Fossils</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>INTEGBI 161 Population and Evolutionary Genetics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>INTEGBI 162 Ecological Genetics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>INTEGBI 169 Evolutionary Medicine</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>INTEGBI 172 Coevolution: From Genes to Ecosystems</td>
<td>4</td>
</tr>
</tbody>
</table>

GEOSPATIAL INFORMATION AND TECHNOLOGY

This domain emphasis explores the use of geospatial approaches to understand geophysical and ecological processes. Topics of study include climate change, cartography, digital mapping, remote sensing, ecology, and environmental data analysis, among others.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG/CY</td>
<td>Data Science for Smart Cities</td>
<td>2</td>
</tr>
<tr>
<td>PLAN C88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESM 72</td>
<td>Introduction to Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>ESM 88A</td>
<td>Exploring Geospatial Data</td>
<td>2</td>
</tr>
<tr>
<td>EPS 50</td>
<td>The Planet Earth</td>
<td>4</td>
</tr>
<tr>
<td>GEOG 80</td>
<td>An Introduction to Geospatial Technologies:</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mapping, Space and Power</td>
<td></td>
</tr>
<tr>
<td>GEOG 88</td>
<td>Data Science Applications in Geography</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 183</td>
<td>Cartographic Representation</td>
<td>5</td>
</tr>
<tr>
<td>GEOG 185</td>
<td>Earth System Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 186</td>
<td>Web Cartography</td>
<td>5</td>
</tr>
<tr>
<td>GEOG 187</td>
<td>Geographic Information Analysis</td>
<td>4</td>
</tr>
<tr>
<td>GEOG/LD ARCH</td>
<td>Geographic Information Science</td>
<td>4</td>
</tr>
<tr>
<td>C188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS 101</td>
<td>Field Geology and Digital Mapping</td>
<td>4</td>
</tr>
<tr>
<td>EPS 115</td>
<td>Stratigraphy and Earth History</td>
<td>4</td>
</tr>
<tr>
<td>EPSM 137</td>
<td>Landscape Ecology</td>
<td>3</td>
</tr>
<tr>
<td>EPSM 164</td>
<td>GIS and Environmental Science</td>
<td>3</td>
</tr>
<tr>
<td>EPSM 172</td>
<td>Remote Sensing of the Environment</td>
<td>3</td>
</tr>
<tr>
<td>EPSM 173</td>
<td>Introduction to Ecological Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ESPM/LD ARCH</td>
<td>GIS and Environmental Spatial Data Analysis</td>
<td>4</td>
</tr>
<tr>
<td>C177</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evolution and Biodiversity

The domain emphasis in Evolution and Biodiversity explores the origins and evolution of the astounding diversity of life on earth. Topics include the analyses and understanding of diverse data from fossils to genomes from our deep past to better understand our planet today.

Lower Division (select one)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGY 1A</td>
<td>General Biology Lecture</td>
<td>3</td>
</tr>
<tr>
<td>BIOLOGY 1B</td>
<td>General Biology Lecture and Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Upper Division (select two)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPM INTEGBI</td>
<td>Natural History Museums and Biodiversity Science</td>
<td>3</td>
</tr>
<tr>
<td>C105</td>
<td>Environmental Change Genetics</td>
<td>3</td>
</tr>
<tr>
<td>ESPM C125</td>
<td>Biogeography</td>
<td>4</td>
</tr>
<tr>
<td>ESPM C152/</td>
<td>Global Change Biology</td>
<td>3</td>
</tr>
<tr>
<td>GEOG C148/</td>
<td>Evolution and Ecology of Development</td>
<td>3</td>
</tr>
<tr>
<td>INTEGBI C166</td>
<td>Paleobiological Perspectives on Ecology and Evolution</td>
<td>4</td>
</tr>
</tbody>
</table>

Human and Population Health

The goal of the domain emphasis in Human and Population Health is to expose students to questions, data structures, and methodology related to research in subject-matter areas such as epidemiology, environmental health, nutrition, toxicology, metabolic diseases, infectious diseases, and cancer. This includes the formulation of meaningful research questions, the development of sound study designs, data collection, exploratory data analysis, the application of pertinent statistical and computational methods, and the interpretation and validation of results.

Lower Division (select one)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGY 1A</td>
<td>General Biology Lecture</td>
<td>3</td>
</tr>
<tr>
<td>BIOLOGY 1B</td>
<td>General Biology Lecture and Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>MCELLBI 50</td>
<td>The Immune System and Disease</td>
<td>4</td>
</tr>
</tbody>
</table>

Upper Division (select two)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMOG 110</td>
<td>Introduction to Population Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>
The Inequalities in Society domain emphasis explores the nature, causes, and consequences of social inequalities, with special attention to race and ethnicity, social class, and gender. Students will develop an understanding of how scientists conceptualize and study social inequalities and the methodological tools they use to do so.

Lower Division (select one)
- **DATA 4AC** Data and Justice 4
- **INTEGBI 114** Infectious Disease Dynamics 4
- **INTEGBI 116L** Medical Parasitology 4
- **INTEGBI 132** Survey of Human Physiology 4
- **INTEGBI 137** Human Endocrinology 4
- **INTEGBI 140** Biology of Human Reproduction 4
- **MCCELLBI 132** Biology of Human Cancer 4
- **NUSCTX 110** Toxicology 4
- **NUSCTX 121** Computational Toxicology 3
- **NUSCTX 160** Metabolic Bases of Human Health and Diseases 4
- **PB HLTH 132** Artificial Intelligence for Health and Healthcare 3
- **PB HLTH 150A** Introduction to Epidemiology and Human Disease 4
- **PB HLTH 150B** Human Health and the Environment in a Changing World 3
- **PB HLTH 162A** Public Health Microbiology 4
- **PB HLTH 181** Poverty and Population 3

Human Behavior and Psychology
The domain emphasis in Human Behavior and Psychology engages students with fundamental aspects of individual and group behavior and the factors and processes that influence it, as explored in the cognitive, behavioral, and economic sciences.

Lower Division (select one)
- **COG SCI 1/1B/ N1** Introduction to Cognitive Science 4
- **PSYCH 1** General Psychology 3
- **PSYCH 2** Principles of Psychology 3

Upper Division (select two)
- **COG SCI C131/ PSYCH C123** Computational Models of Cognition 4
- **ECON C110/ POL SCI C135** Game Theory in the Social Sciences 4
- **ECON 119** Psychology and Economics 4
- **PSYCH 101D** Data Science for Research Psychology 4
- **PSYCH 110** Introduction to Biological Psychology 3
- **PSYCH 124** The Evolution of Human Behavior 3
- **PSYCH 130** Clinical Psychology 3
- **PSYCH 134** Health Psychology 3
- **or PSYCH N134** Health Psychology 3
- **PSYCH 140** Developmental Psychology 3
- **PSYCH 150** Psychology of Personality 3
- **PSYCH 156** Human Emotion 3
- **PSYCH 160** Social Psychology 3
- **or SOCIOL 150** Social Psychology 3
- **PSYCH 167AC** Stigma and Prejudice 3
- **UGBA 160** Customer Insights 3

Linguistic Sciences
The domain emphasis in Linguistic Sciences explores the data-driven analysis of language. Topics include linguistic structure (phonetics, phonology, morphology, syntax), logic and the philosophy of language, natural language processing, and empirical approaches to reasoning about language as data.

Lower Division (select one)
- **LINGUIS 100** Introduction to Linguistic Science 4
- **PHILOS 12A** Introduction to Logic 4

Upper Division (select two)
- **LINGUIS 100** Introduction to Linguistic Science 4
- **LINGUIS 108** Psycholinguistics 3
- **LINGUIS 110** Phonetics 4
- **LINGUIS 111** Phonology 4
- **LINGUIS 113** Experimental Phonetics 3
- **LINGUIS 115** Morphology 4
- **LINGUIS 120** Syntax 4
- **LINGUIS 121** Formal Semantics 4
- **LINGUIS/COG SCI C142** Language and Thought 3
- **LINGUIS C160/ COG SCI C140** Quantitative Methods in Linguistics 4
- **LINGUIS 188** LINGUISTIC DATA 3
- **INFO 159** Natural Language Processing 4
- **PHILOS 133** Philosophy of Language 4
LINGUIS 100 plus two additional upper-division courses from the list, without taking a lower-division course. Please note that there are a limited number of courses approved for this domain emphasis that can be taken without LINGUIS 100 as a prerequisite.

Neurosciences
The Neuroscience domain emphasis provides students with expertise in models and methods of computational neuroscience, including data analysis and theoretical models of information processing in the brain. Students with this emphasis will be able to apply statistical analyses to extract patterns embedded in high-dimensional neuroscience datasets (multi-unit recordings, optical imaging, EEG, fMRI), and develop computational models toward elucidating neural mechanisms of information processing in the brain.

Upper Division (select two)
- ANTHRO 107: Evolution of the Human Brain
- COG SCI C127: Cognitive Neuroscience
- INTEGBI 139: The Neurobiology of Stress
- MCELLBI 160: Cellular and Molecular Neurobiology
- MCELLBI 161: Circuit, Systems and Behavioral Neuroscience
- MCELLBI 165: Neurobiology of Disease
- MCELLBI 166: Biophysical Neurobiology
- PSYCH C113/: Exploring the Brain: Introduction to Neuroscience
- PSYCH C64: Exploring the Brain: Introduction to Neuroscience
- INTEGBI C143A: Exploring the Brain: Introduction to Neuroscience
- PSYCH 117: Human Neuropsychology
- PSYCH 125: The Developing Brain

Organizations and the Economy
The domain emphasis in Organizations and the Economy explores the social construction of markets and the role of organizations and institutions in the contemporary economy. How can we understand the economic behavior of firms and governments? What is the nature of work in modern capitalism?

Lower Division (select one)
- DATA 4AC: Data and Justice
- SOCIOL 1: Introduction to Sociology
- SOCIOL 3AC: Principles of Sociology: American Cultures

Upper Division (select two)
- ECON 121: Industrial Organization and Public Policy
- ECON 131: Public Economics
- ENVECON 142: Industrial Organization with Applications to Agriculture and Natural Resources
- GEOG 110: Critical Economic Geographies
- GWS 139: Why Work? Gender and Labor Under Capitalism
- SOCIOL 110: Organizations and Social Institutions
- SOCIOL 116: Sociology of Work
- SOCIOL 119S: Organizational Strategy and Design: A Sociological Perspective
- SOCIOL 120: Economy and Society
- SOCIOL 121: Innovation and Entrepreneurship: Social and Cultural Context

Philosophical Foundations: Evidence and Inference
When do data confirm a hypothesis or a theory? What do we do when several different hypotheses or theories are consistent with the data? When, if ever, is inductive inference justified? How are models related to what they model? When is reasoning good reasoning? Which conclusions can be inferred from which premises? How does it depend on what we are reasoning about: arithmetic, the physical world, what exists, what is possible, what is known? What are we saying when we say that something is likely or unlikely to occur? What are we saying when we say that one event caused another? Are we saying something about the world or merely something about us, about what we have observed and what we now expect?

Lower Division (select one)
- L & S 22: Sense and Sensibility and Science
- MATH 55: Discrete Mathematics
- PHILOS 4: Knowledge and Its Limits
- PHILOS 5: Science and Human Understanding
- PHILOS 12A: Introduction to Logic

Upper Division (select two)
- MATH 125A: Mathematical Logic
- MATH 135: Introduction to the Theory of Sets
- MATH 136: Incompleteness and Undecidability
- PHILOS 122: Theory of Knowledge
- PHILOS 125: Metaphysics
- PHILOS 128: Philosophy of Science
- PHILOS 134: Form and Meaning
- PHILOS 140A: Intermediate Logic
- PHILOS 140B: Intermediate Logic
- PHILOS 142: Philosophical Logic
- PHILOS 143: Modal Logic
- PHILOS 146: Philosophy of Mathematics
- PHILOS 148: Probability and Induction
- PHILOS 149: Special Topics in Philosophy of Logic and Mathematics
- RHETOR 107: Rhetoric of Scientific Discourse

Philosophical Foundations: Minds, Morals, and Machines
Can machines think? Can they be conscious? Do they have rights? To answer these questions, we need to understand the nature of thought and consciousness is, and the basis of rights. In virtue of what do we count as thinking or conscious? In virtue of what do we have rights? Increasingly, algorithms are replacing human beings as decision makers. When are algorithmic decisions fair? Are we entitled to an explanation of algorithmic decisions? Is it paternalistic or anti-democratic to design algorithms that don’t give you what you want, if that will mislead you or make you unhappy?

Lower Division (select one)
- COG SCI 1/1B/: Introduction to Cognitive Science
- PHILOS 2: Individual Morality and Social Justice
- PHILOS 3: The Nature of Mind
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHILOS 14</td>
<td>Philosophy of Artificial Intelligence</td>
<td>4</td>
</tr>
<tr>
<td>Upper Division (select two)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COG SCI C100/PSYCH C120</td>
<td>Basic Issues in Cognition</td>
<td>3</td>
</tr>
<tr>
<td>COG SCI C101/LINGUIS C105</td>
<td>Cognitive Linguistics</td>
<td>4</td>
</tr>
<tr>
<td>COG SCI C131/PSYCH C123</td>
<td>Computational Models of Cognition</td>
<td>4</td>
</tr>
<tr>
<td>COG SCI/LINGUIS C142</td>
<td>Language and Thought</td>
<td>3</td>
</tr>
<tr>
<td>ECON C110/POL SCI C135</td>
<td>Game Theory in the Social Sciences</td>
<td>4</td>
</tr>
<tr>
<td>STAT 155</td>
<td>Game Theory</td>
<td>3</td>
</tr>
<tr>
<td>PHILOS 104</td>
<td>Ethical Theories</td>
<td>4</td>
</tr>
<tr>
<td>PHILOS 115</td>
<td>Political Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>PHILOS 132</td>
<td>Philosophy of Mind</td>
<td>4</td>
</tr>
<tr>
<td>PHILOS 133</td>
<td>Philosophy of Language</td>
<td>4</td>
</tr>
<tr>
<td>PHILOS 135</td>
<td>Theory of Meaning</td>
<td>4</td>
</tr>
<tr>
<td>PHILOS 136</td>
<td>Philosophy of Perception</td>
<td>4</td>
</tr>
<tr>
<td>PHILOS 141</td>
<td>Philosophy and Game Theory</td>
<td>4</td>
</tr>
<tr>
<td>Physical Science Analytics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Physical Science Analytics domain emphasis allows students to explore ways that data analytics, inference, computational simulation and modeling, uncertainty analysis, and prediction arise in physical science and engineering domains.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Division (select one)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSICS 5BL & PHYSICS 5CL</td>
<td>Introduction to Experimental Physics I and Introduction to Experimental Physics II</td>
<td>2</td>
</tr>
<tr>
<td>PHYSICS 7A</td>
<td>Physics for Scientists and Engineers</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 77</td>
<td>Introduction to Computational Techniques in Physics</td>
<td>3</td>
</tr>
<tr>
<td>Upper Division (select two)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTRON 120</td>
<td>Optical and Infrared Astronomy Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>ASTRON 121</td>
<td>Radio Astronomy Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>ASTRON 128</td>
<td>Astronomy Data Science Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>ASTRON C161</td>
<td>Relativistic Astrophysics and Cosmology</td>
<td>4</td>
</tr>
<tr>
<td>ASTRON C162</td>
<td>Planetary Astrophysics</td>
<td>4</td>
</tr>
<tr>
<td>CIV ENG C133/MEC ENG C180</td>
<td>Engineering Analysis Using the Finite Element Method</td>
<td>3</td>
</tr>
<tr>
<td>ENGIN 150</td>
<td>Basic Modeling and Simulation Tools for Industrial Research Applications</td>
<td>4</td>
</tr>
<tr>
<td>EPS 108</td>
<td>Geodynamics</td>
<td>4</td>
</tr>
<tr>
<td>EPS 109</td>
<td>Computer Simulations with Jupyter Notebooks</td>
<td>4</td>
</tr>
<tr>
<td>EPS 122</td>
<td>Physics of the Earth and Planetary Interiors</td>
<td>3</td>
</tr>
<tr>
<td>EPS C183/ESPM C170</td>
<td>Carbon Cycle Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>GEOG C136/ESPM C130</td>
<td>Terrestrial Hydrology</td>
<td>4</td>
</tr>
<tr>
<td>GEOG C139/EPS C181</td>
<td>Atmospheric Physics and Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>NUC ENG 101</td>
<td>Nuclear Reactions and Radiation</td>
<td>4</td>
</tr>
<tr>
<td>NUC ENG 130</td>
<td>Analytical Methods for Non-proliferation</td>
<td>3</td>
</tr>
<tr>
<td>NUC ENG 155</td>
<td>Introduction to Numerical Simulations in Radiation Transport</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 105</td>
<td>Analytic Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 111A</td>
<td>Instrumentation Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 112</td>
<td>Introduction to Statistical and Thermal Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 129</td>
<td>Particle Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 188</td>
<td>Bayesian Data Analysis and Machine Learning for Physical Sciences</td>
<td>4</td>
</tr>
<tr>
<td>Quantitative Social Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Quantitative Social Science domain emphasis provides students with expertise in various methodologies used in quantitative social science research and analysis. Topics include mathematical modeling, description of patterns and trends, statistical modeling, and testing of social scientific hypotheses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Division (select one)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 1</td>
<td>Introduction to Economics</td>
<td>4</td>
</tr>
<tr>
<td>or ECON 2</td>
<td>Introduction to Economics--Lecture Format</td>
<td>4</td>
</tr>
<tr>
<td>SOCIO 1</td>
<td>Introduction to Sociology</td>
<td>4</td>
</tr>
<tr>
<td>SOCIO 3AC</td>
<td>Principles of Sociology: American Cultures</td>
<td>4</td>
</tr>
<tr>
<td>SOCIO 5</td>
<td>Evaluation of Evidence</td>
<td>4</td>
</tr>
<tr>
<td>POL SCI 3</td>
<td>Introduction to Empirical Analysis and Quantitative Methods</td>
<td>4</td>
</tr>
<tr>
<td>POL SCI 88</td>
<td>The Scientific Study of Politics</td>
<td>2</td>
</tr>
<tr>
<td>Upper Division (select two)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEMOG 110</td>
<td>Introduction to Population Analysis</td>
<td>3</td>
</tr>
<tr>
<td>DEMOG/SOCIO C126</td>
<td>Sex, Death, and Data</td>
<td>4</td>
</tr>
<tr>
<td>DEMOG/ECON C175</td>
<td>Economic Demography</td>
<td>4</td>
</tr>
<tr>
<td>DEMOG 180</td>
<td>Social Networks</td>
<td>4</td>
</tr>
<tr>
<td>ECON C110/POL SCI C135/W135</td>
<td>Game Theory in the Social Sciences</td>
<td>4</td>
</tr>
<tr>
<td>ENVECON/IAS C118</td>
<td>Introductory Applied Econometrics</td>
<td>4</td>
</tr>
<tr>
<td>MEDIAST 130</td>
<td>Research Methods in Media Studies</td>
<td>4</td>
</tr>
<tr>
<td>POL SCI 133</td>
<td>Selected Topics in Quantitative Methods</td>
<td>4</td>
</tr>
<tr>
<td>SOCIO 106</td>
<td>Quantitative Sociological Methods</td>
<td>4</td>
</tr>
<tr>
<td>Robotics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The goal of the domain emphasis in Robotics is to provide a pathway into the field of robotics, which includes the design and control of robots as well as the study of relationships between robots and nature. Topics include manipulation and control, decision making grounded in the physical world, embedded systems, mechatronics, and human-robot interaction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 53</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Upper Division (select two)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO ENG 105</td>
<td>Engineering Devices 1</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG/ECS C106A</td>
<td>Introduction to Robotics</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG/ECS C106B</td>
<td>Robotic Manipulation and Interaction</td>
<td>4</td>
</tr>
</tbody>
</table>
Science, Technology, and Society

The Science, Technology, and Society (STS) domain emphasis provides students with critical capacities to engage with a world shaped by science, technology, and medicine. It explores how these fields are constructed, contingent, and contested and how they interact with institutions, policy, and various forms of global social inequality.

Lower Division (select one)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA 4AC</td>
<td>Data and Justice</td>
<td>4</td>
</tr>
<tr>
<td>GEOG 80</td>
<td>An Introduction to Geospatial Technologies: Mapping, Space and Power</td>
<td>4</td>
</tr>
<tr>
<td>HISTORY 30</td>
<td>Science and Society</td>
<td>4</td>
</tr>
<tr>
<td>ISF 60</td>
<td>Technology and Values</td>
<td>3</td>
</tr>
</tbody>
</table>

Upper Division (select two)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHRO 115</td>
<td>Introduction to Medical Anthropology</td>
<td>4</td>
</tr>
<tr>
<td>ANTHRO 119</td>
<td>Special Topics in Medical Anthropology</td>
<td>4</td>
</tr>
<tr>
<td>ENGIN/IAS 157AC</td>
<td>Engineering, The Environment, and Society</td>
<td>4</td>
</tr>
<tr>
<td>ENGLISH 180Z</td>
<td>Science Fiction</td>
<td>4</td>
</tr>
<tr>
<td>ENVECON 143</td>
<td>Economics of Innovation and Intellectual Property</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 161</td>
<td>Environmental Philosophy and Ethics</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 162</td>
<td>Bioethics and Society</td>
<td>4</td>
</tr>
<tr>
<td>ESPM 163AC/SOCIOL 137AC</td>
<td>Environmental Justice: Race, Class, Equity, and the Environment</td>
<td>4</td>
</tr>
<tr>
<td>FILM 155</td>
<td>Media Technologies</td>
<td>4</td>
</tr>
<tr>
<td>GEOG 130/N130</td>
<td>Food and the Environment</td>
<td>4</td>
</tr>
<tr>
<td>GWS 130AC</td>
<td>Gender, Race, Nation, and Health</td>
<td>4</td>
</tr>
<tr>
<td>HISTORY 100S/100ST</td>
<td>Special Topics in the History of Science</td>
<td>4</td>
</tr>
<tr>
<td>HISTORY 103S</td>
<td>Proseminar: Problems in Interpretation in the Several Fields of History: History of Science</td>
<td>4</td>
</tr>
<tr>
<td>HISTORY 138/138T</td>
<td>History of Science in the U.S.</td>
<td>4</td>
</tr>
<tr>
<td>HISTORY 180/180T</td>
<td>The Life Sciences since 1750</td>
<td>4</td>
</tr>
<tr>
<td>HISTORY 182A/182AT</td>
<td>Science, Technology, and Society</td>
<td>4</td>
</tr>
<tr>
<td>INFO 103</td>
<td>History of Information</td>
<td>4</td>
</tr>
<tr>
<td>ISF 100D</td>
<td>Introduction to Technology, Society, and Culture</td>
<td>4</td>
</tr>
<tr>
<td>ISF 100G</td>
<td>Introduction to Science, Society, and Ethics</td>
<td>4</td>
</tr>
<tr>
<td>RHETOR 107</td>
<td>Rhetoric of Scientific Discourse</td>
<td>4</td>
</tr>
<tr>
<td>RHETOR 115</td>
<td>Technology and Culture</td>
<td>4</td>
</tr>
<tr>
<td>RHETOR 145</td>
<td>Science, Narrative, and Image</td>
<td>4</td>
</tr>
<tr>
<td>SOCIOL C115/ PB HLTH C155</td>
<td>Sociology of Health and Medicine</td>
<td>4</td>
</tr>
<tr>
<td>SOCIOL 166</td>
<td>Society and Technology</td>
<td>4</td>
</tr>
<tr>
<td>SOCIOL 167</td>
<td>Virtual Communities/Social Media</td>
<td>4</td>
</tr>
<tr>
<td>STS C100/ HISTORY C182C/ISF C100G</td>
<td>Introduction to Science, Technology, and Society</td>
<td>4</td>
</tr>
<tr>
<td>UGIS 110</td>
<td>Introduction to Disability Studies</td>
<td>3</td>
</tr>
</tbody>
</table>

One additional course that meets the Data Science Human Contexts & Ethics requirement may be counted toward the Domain Emphasis in STS. If counted toward the STS DE, this course may not be used to satisfy the HCE requirement:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMERSTD/ AFRICAM C134</td>
<td>Information Technology and Society</td>
<td>4</td>
</tr>
<tr>
<td>BIO ENG 100</td>
<td>Ethics in Science and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CY PLAN 101</td>
<td>Introduction to Urban Data Analytics</td>
<td>4</td>
</tr>
<tr>
<td>DATA C104/ HISTORY C184D/History/STS</td>
<td>Human Contexts and Ethics of Data - DATA/STS</td>
<td>4</td>
</tr>
<tr>
<td>DIGHUM 100</td>
<td>Theory and Method in the Digital Humanities</td>
<td>3</td>
</tr>
<tr>
<td>EB MGMT 167/ PB HLTH C160</td>
<td>Environmental Health and Development</td>
<td>4</td>
</tr>
<tr>
<td>INFO 188</td>
<td>Behind the Data: Humans and Values</td>
<td>3</td>
</tr>
<tr>
<td>ISF 100J</td>
<td>The Social Life of Computing</td>
<td>4</td>
</tr>
<tr>
<td>NW MEDIA 151ACTransforming Tech: Issues and Interventions in STEM and Silicon Valley</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PHILOS 121</td>
<td>Moral Questions of Data Science</td>
<td>4</td>
</tr>
</tbody>
</table>

Social Welfare, Health, and Poverty

The goal of the domain emphasis in Social Welfare, Health, and Poverty is to expose students to questions, data structures, and methodology related to research in the subject-matter areas of social welfare, health, and poverty. This includes the formulation of meaningful research questions, the development of sound study designs, data collection, exploratory data analysis, the application of pertinent statistical and computational methods, and the interpretation and validation of results.

Lower Division (select one)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA 4AC</td>
<td>Data and Justice</td>
<td>4</td>
</tr>
<tr>
<td>SOCIO 1</td>
<td>Introduction to Sociology</td>
<td>4</td>
</tr>
<tr>
<td>SOCIO 3AC</td>
<td>Principles of Sociology: American Cultures</td>
<td>4</td>
</tr>
</tbody>
</table>

Upper Division (select two)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVECON 153</td>
<td>Population, Environment, and Development</td>
<td>4</td>
</tr>
<tr>
<td>GPP 105</td>
<td>The Ethics, Methods, and Pragmatics of Global Practice</td>
<td>4</td>
</tr>
<tr>
<td>GPP 115</td>
<td>Global Poverty: Challenges and Hopes</td>
<td>4</td>
</tr>
<tr>
<td>GLOBAL 102</td>
<td>Critical Thinking In Global Studies</td>
<td>4</td>
</tr>
<tr>
<td>GWS 130AC</td>
<td>Gender, Race, Nation, and Health</td>
<td>4</td>
</tr>
<tr>
<td>PB HLTH 112</td>
<td>Global Health: A Multidisciplinary Examination</td>
<td>4</td>
</tr>
<tr>
<td>PB HLTH 126</td>
<td>Health Economics and Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>PB HLTH 150D</td>
<td>Introduction to Health Policy and Management</td>
<td>3</td>
</tr>
<tr>
<td>PB HLTH 150E</td>
<td>Introduction to Community Health and Human Development</td>
<td>3</td>
</tr>
<tr>
<td>PB HLTH C155/SOCIOL C115</td>
<td>Sociology of Health and Medicine</td>
<td>4</td>
</tr>
<tr>
<td>PB HLTH C160/ESPM C167</td>
<td>Environmental Health and Development</td>
<td>4</td>
</tr>
<tr>
<td>PB HLTH 181</td>
<td>Poverty and Population</td>
<td>3</td>
</tr>
</tbody>
</table>
Making, and spatial data analysis. Data science topics include data-driven modeling, environmental decision-making, transportation systems, and water resources. Data explores research in environmental science, sustainable engineering, policies, such as health, welfare, and crime policies.

Social Policy and Law
The Social Policy and Law domain emphasis explores the foundations of legal institutions and its intersection with the history and analysis of social policy. Students can study the social construction of law, the nature of the criminal justice system, and the origins of contemporary social policies.

Lower Division (select one)
- DATA 4AC Data and Justice 4
- SOCIOL 1 Introduction to Sociology 4
- SOCIOL 3AC Principles of Sociology: American Cultures 4

Upper Division (select two)
- GWS 132AC Gender, Race, and Law 4
- LEGALST 100 Foundations of Legal Studies 4
- LEGALST 102 Policing and Society 4
- LEGALST 123 Data, Prediction & Law 4
- LEGALST 158 Law and Development 4
- LEGALST 160 Punishment, Culture, and Society 4
- PB HLTH 150D Introduction to Health Policy and Management 3
- POLECON 111 Poverty and Social Policy 3
- POL SCI 186 Public Problems 4
- PUB POL 101 Introduction to Public Policy Analysis 4
- SOC WEL 112 Social Welfare Policy 3
- SOC WEL 181 Social Science and Crime Prevention Policy 3
- SOCIOL 114 Sociology of Law 4
- SOCIOL 148 Social Policy 4

Sustainable Development and Engineering
The domain emphasis in Sustainable Development and Engineering explores research in environmental science, sustainable engineering, climate change, transportation systems, and water resources. Data science topics include data-driven modeling, environmental decision-making, and spatial data analysis.

Lower Division (select one)
- CIV ENG 1 Engineered Systems and Sustainability 3
- LD ARCH 12 Environmental Science for Sustainable Development 4

Upper Division (select two)
- ARCH 140 Energy and Environment 4
- CIV ENG 107 Climate Change Mitigation 3
- CIV ENG 110 Water Systems of the Future 3
- CIV ENG 111 Environmental Engineering 3
- CIV ENG 155 Transportation Systems Engineering 3
- CIV ENG 191 Civil and Environmental Engineering Systems Analysis 3
- ENE,RES 131 Data, Environment and Society 4
- ESPM C133/ GEOG C135 Water Resources and the Environment 3
- ESPM/LD ARCH GIS and Environmental Spatial Data Analysis C177
- LD ARCH 122 Hydrology for Planners 4

Urban Science
The Urban Science domain emphasis explores the theories and methods used to understand the deep structure of how cities function and the potential of urban policies and planning to shape more equitable futures. Topics include sustainability, mapping, visualization, design, urban economic analysis, smart urbanism, metropolitan structure, urban communities, and place-making, among others.

Lower Division (select one)
- CIV ENG C88 Data Science for Smart Cities 2
- ENV DES 4B Global Cities 3
- GEOG 70AC The Urban Experience: Race, Class, Gender & The American City 4

Upper Division (select two)
- CY PLAN 110 Introduction to City Planning 4
- CY PLAN 113A Economic Analysis for Planning 3
- CY PLAN 114 Introduction to Urban and Regional Transportation 3
- CY PLAN 119 Planning for Sustainability 4
- CY PLAN 140 Urban Design: City-Building and Place-Making 3
- ENE,RES 131 Data, Environment and Society 4
- ENV DES 100 The City: Theories and Methods in Urban Studies 4
- ENV DES 102 Climate Change and City Planning: Adaptation and Resilience 3
- GEOG 181 Urban Field Study 4
- GEOG 182 Field Study of Buildings and Cities 3
- LD ARCH 130 Sustainable Landscapes and Cities 4
- LD ARCH/GEOG C188 Geographic Information Science 4
- LD ARCH 187 Representation as Research: Contemporary Topics in Landscape Visualization 3
- SOCIOL 136 Urban Sociology 4

The Minor in Data Science at UC Berkeley aims to provide students with practical knowledge of the methods and techniques of data analysis, as well as the ability to think critically about the construction and implications of data analysis and models. The minor will empower students across the wide array of campus disciplines with a working knowledge of statistics, probability, and computation that allow students not just to participate in data science projects, but to design and carry out rigorous computational and inferential analysis for their field of interest.

General Guidelines

1. All minors must be declared prior to the first day of classes of the student’s Expected Graduation Term (EGT). If the student’s EGT is a summer term, the deadline to declare a minor is prior to the first day of classes of Summer Session A. To declare a minor, contact the department advisor for information on requirements, and the declaration process.

2. All courses for the minor must be taken for a letter grade.
3. Students must earn a C- or better in each course, and have a minimum 2.0 GPA in all courses towards the minor.

4. Students may overlap up to 1 course in the upper division requirements for the Data Science minor with each of their majors (for example, a Computer Science major may count COMPSCI/DATA/STAT C100 toward both their major and the Data Science minor).

5. A maximum of one course offered by or cross-listed with the student’s major department(s) may count toward the data science minor upper-division requirements, including any overlapping course (for example, if a Computer Science major takes COMPSCI/DATA/STAT C100 toward the Data Science minor, this is the only COMPSCI, ELENG, or EECS course which may count toward the upper-division requirements for the minor).

6. An upper-division course used to fulfill a lower-division requirement (for example, Stat 134 to fulfill the probability requirement) will not be counted toward the maximum 1 course allowed to overlap with the major, nor will it fulfill one of the four upper division course requirements.

7. There is no restriction on overlap with another minor.

8. Courses used to fulfill the minor requirements may be applied toward the Seven-Course Breadth requirement, for Letters & Science students.

9. All minor requirements must be completed prior to the last day of finals during the semester in which you plan to graduate.

Lower-division Requirements

- **DATA/COMPSCI/ Foundations of Data Science**
 - STAT/INFO C8
 - DATA/COMPSCI Computational Structures in Data Science 3-4
 - C88C or COMPSCI 6 The Structure and Interpretation of Computer Programs
 - ENGIN 7 Introduction to Computer Programming for Scientists and Engineers

Choose one of the following: 1

- **DATA/STAT Probability and Mathematical Statistics in Data Science** 3-4
 - C88S or COMPSCI 7 Discrete Mathematics and Probability Theory
 - MATH 10B Methods of Mathematics: Calculus, Statistics, and Combinatorics
 - MATH 55 Discrete Mathematics
 - CIV ENG 93 Engineering Data Analysis

1 STAT 134, DATA C140, IND ENG 172, EECS 126, or MATH 106 may be substituted.

Upper-division Requirements

Complete a total of 4 upper-division courses in one of the following pathways:

1-Core course Pathway

- **DATA/COMPSCI/ Principles & Techniques of Data Science**
 - STAT C100

Choose one of the following:

- AMERSTD/AFRICAM C134
 - Information Technology and Society [4]
- BIO ENG 100 Ethics in Science and Engineering [3]
- CY PLAN 101 Introduction to Urban Data Analytics [4]
- DATA C104/ HISTOR C118/History/STS [4]
- STS C104D
- DIGHUM 100 Theory and Method in the Digital Humanities [3]
- ESPM C167/ Environmental Health and Development [4]
- PB HLTH C160
- INFO 188 Behind the Data: Humans and Values [3]
- ISF 100J The Social Life of Computing [4]
- NWMEDIA 151 Transforming Tech: Issues and Interventions in STEM and Silicon Valley [4]
- PHILOS 121 Moral Questions of Data Science [4]

If completing the 1-core course pathway, choose TWO from the Approved Elective List (https://docs.google.com/document/d/1OvQls_dcVndFVqcgufywEnUzXHovrWKLLFTXa8a3Vyl/edit?usp=sharing).

2-core course PATHWAY

- **DATA/STAT C131A Statistical Methods for Data Science**
 - 4
- **STAT 133 Concepts in Computing with Data**
 - 3

Choose one of the following:

- AMERSTD/AFRICAM C134
 - Information Technology and Society [4]
- BIO ENG 100 Ethics in Science and Engineering [3]
- CY PLAN 101 Introduction to Urban Data Analytics [4]
- DATA C104/ HISTOR C118/History/STS [4]
- STS C104D
- DIGHUM 100 Theory and Method in the Digital Humanities [3]
- ESPM C167/ Environmental Health and Development [4]
- PB HLTH C160
- INFO 188 Behind the Data: Humans and Values [3]
- ISF 100J The Social Life of Computing [4]
- NWMEDIA 151 Transforming Tech: Issues and Interventions in STEM and Silicon Valley [4]
- PHILOS 121 Moral Questions of Data Science [4]

If completing the 2-core course pathway, choose ONE from the Approved Elective List (https://docs.google.com/document/d/1OvQls_dcVndFVqcgufywEnUzXHovrWKLLFTXa8a3Vyl/edit?usp=sharing).

Undergraduate students must fulfill the following requirements in addition to those required by their major program.

For detailed lists of courses that fulfill college requirements, please review the College of Letters & Sciences (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/) page in this Guide. For
College advising appointments, please visit the L&S Advising (https://lsadvising.berkeley.edu/home) Pages.

University of California Requirements

Entry Level Writing (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/entry-level-writing-requirement/)

All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing requirement. Fulfillment of this requirement is also a prerequisite to enrollment in all reading and composition courses at UC Berkeley.

American History and American Institutions (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/american-history-institutions-requirement/)

The American History and Institutions requirements are based on the principle that a US resident graduated from an American university, should have an understanding of the history and governmental institutions of the United States.

Berkeley Campus Requirement

American Cultures (http://americancultures.berkeley.edu/students/courses/)

All undergraduate students at Cal need to take and pass this course in order to graduate. The requirement offers an exciting intellectual environment centered on the study of race, ethnicity and culture of the United States. AC courses offer students opportunities to be part of research-led, highly accomplished teaching environments, grappling with the complexity of American Culture.

College of Letters & Science Essential Skills Requirements

Quantitative Reasoning (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/quantitative-reasoning-requirement/)

The Quantitative Reasoning requirement is designed to ensure that students graduate with basic understanding and competency in math, statistics, or computer science. The requirement may be satisfied by exam or by taking an approved course.

Foreign Language (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/foreign-language-requirement/)

The Foreign Language requirement may be satisfied by demonstrating proficiency in reading comprehension, writing, and conversation in a foreign language equivalent to the second semester college level, either by passing an exam or by completing approved course work.

Reading and Composition (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/reading-composition-requirement/)

In order to provide a solid foundation in reading, writing, and critical thinking the College requires two semesters of lower division work in composition in sequence. Students must complete parts A & B reading and composition courses in sequential order by the end of their fourth semester.

College of Letters & Science 7 Course Breadth Requirements

Breadth Requirements (http://guide.berkeley.edu/undergraduate/colleges-schools/letters-science/#breadthrequirementsstext)

The undergraduate breadth requirements provide Berkeley students with a rich and varied educational experience outside of their major program. As the foundation of a liberal arts education, breadth courses give students a view into the intellectual life of the University while introducing them to a multitude of perspectives and approaches to research and scholarship. Engaging students in new disciplines and with peers from other majors, the breadth experience strengthens interdisciplinary connections and context that prepares Berkeley graduates to understand and solve the complex issues of their day.

Unit Requirements

- 120 total units
- Of the 120 units, 36 must be upper division units
- Of the 36 upper division units, 6 must be taken in courses offered outside your major department

Residence Requirements

For units to be considered in "residence," you must be registered in courses on the Berkeley campus as a student in the College of Letters & Science. Most students automatically fulfill the residence requirement by attending classes here for four years, or two years for transfer students. In general, there is no need to be concerned about this requirement, unless you go abroad for a semester or year or want to take courses at another institution or through UC Extension during your senior year. In these cases, you should make an appointment to meet an adviser to determine how you can meet the Senior Residence Requirement.

Note: Courses taken through UC Extension do not count toward residence.

Senior Residence Requirement

After you become a senior (with 90 semester units earned toward your BA degree), you must complete at least 24 of the remaining 30 units in residence in at least two semesters. To count as residence, a semester must consist of at least 6 passed units. Intercampus Visitor, EAP, and UC Berkeley-Washington Program (UCDC) units are excluded.

You may use a Berkeley Summer Session to satisfy one semester of the Senior Residence requirement, provided that you successfully complete 6 units of course work in the Summer Session and that you have been enrolled previously in the college.

Modified Senior Residence Requirement

Participants in the UC Education Abroad Program (EAP), Berkeley Summer Abroad, or the UC Berkeley Washington Program (UCDC) may meet a Modified Senior Residence requirement by completing 24 (excluding EAP) of their final 60 semester units in residence. At least 12 of these 24 units must be completed after you have completed 90 units.

Upper Division Residence Requirement

You must complete in residence a minimum of 18 units of upper division courses (excluding UCEAP units), 12 of which must satisfy the requirements for your major.

Sample plans for completing major coursework are included below. These are not comprehensive plans which will reflect the situation of
For new freshmen (four-year plan):

For transfer students (two-year plan):

*Note: this sample plan is based on a transfer student who has
completed 1 year of calculus, linear algebra and data structures, as well as IGEC/L&S 7-Course Breadth at their previous college or university, which may not reflect the reality for every transfer student. Students should consult with a Data Science Advisor to make an individualized plan based on their specific situation.

Major Maps help undergraduate students discover academic, co-curricular, and discovery opportunities at UC Berkeley based on intended major or field of interest. Developed by the Division of Undergraduate Education in collaboration with academic departments, these experience maps will help you:

• Explore your major and gain a better understanding of your field of study
• Connect with people and programs that inspire and sustain your creativity, drive, curiosity and success
• Discover opportunities for independent inquiry, enterprise, and creative expression
• Engage locally and globally to broaden your perspectives and change the world
• Reflect on your academic career and prepare for life after Berkeley

Student Teams

Each semester, we recruit dozens of students to participate in our student teams as interns and volunteers, with opportunities to advance into team lead roles and other leadership positions. Teams include Communications, Operations, External Relations, and Curriculum Development (https://data.berkeley.edu/education/modules/). Interested students can email ds-team@berkeley.edu with questions about the
opportunities. Learn more here (https://data.berkeley.edu/academics/campus-resources/student-opportunities/).

Data Scholars
The Data Scholars program addresses issues of underrepresentation in the data science community by establishing a welcoming, educational, and empowering environment for underrepresented and nontraditional students. The program, which offers specialized tutoring, advising, mentorship, and workshops, is especially suited for students who can bring diverse perspectives to the field of Data Science. Learn more here (https://data.berkeley.edu/academics/campus-resources/data-scholars/).

Data Science Discovery Consulting
Data Science Discovery Consulting helps make data science accessible across the broader campus community by providing technical support office hours, consultations via appointments, and data literacy workshops open to all. Discovery Consultants are available on a drop-in basis or by appointment. Email us at ds-peer-consulting@berkeley.edu.

Data Science Peer Advising
Data Science Peer Advisors are available to help fellow students choose classes, explore academic interests, and learn how to declare the Data Science major and minor. The Data Science Peer Advising services are available on a drop-in basis. Contact the Data Science Peer Advisors at ds-peer-consulting@berkeley.edu. Learn more here (https://data.berkeley.edu/degrees/peer-advising/).

Data Science Discovery Research Program
The Data Science Discovery Program incubates and accelerates real world data science research at academic institutions, government agencies, non-profit, and industry partners across the globe. Teams of UC Berkeley students will have an opportunity to make a real world impact on hundreds of projects with the support of graduate and undergraduate consultants in the Data Science Discovery Consulting program. Learn more here (https://data.berkeley.edu/research/discovery-program-home/).

Data Science Transfer Mentors
Data Science Transfer Mentors are available to assist incoming and current transfer students as they learn how to navigate Cal, choose classes, find academic support, and build community. Learn more here (https://data.berkeley.edu/information-prospective-transfer-students/).

Data Science Career Accelerator
The Data Science Career Accelerator Program (CAP) connects undergraduates with recruitment and career-search support via 1-unit courses in the fall & spring, 1:1 career advising, peer support groups, a weekly newsletter, and employer info-sessions. Learn more here. (https://data.berkeley.edu/careeraccelerator/)

DATA 4AC Data and Justice 4 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
This course engages students with fundamental questions of justice in relation to data and computing in American society. Data collection, visualization, and analysis have been entangled in the struggle for racial and social justice because they can make injustice visible, imaginable, and thus actionable. Data has also been used to oppress minoritized communities and institutionalize, rationalize, and naturalize systems of racial violence. The course examines key sites of justice involving data (such as citizenship, policing, prisons, environment, and health). Along with critical social science tools, students gain introductory experience and do collaborative and creative projects with data science using real-world data.

Data and Justice: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1.5 hours of discussion per week

Additional Details
Subject/Course Level: Data Science, Undergraduate/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.

Data and Justice: Read Less [-]
DATA 6 Introduction to Computational Thinking with Data 3 Units
Terms offered: Prior to 2007
An introduction to computational thinking and quantitative reasoning, preparing students for further coursework (especially Foundations of Data Science, Data 8). Emphasizes the use of computation to gain insight about quantitative problems. Uses data from various domains in the social sciences in order to develop an understanding of the societal implications of data science. Expressions, data types, collections, and tables in Python. Programming practices, abstraction, and iteration. The data science lifecycle. Visualizing univariate and bivariate data with bar charts, histograms, plots, and maps. Introduction to statistical concepts including averages and distributions, prediction, causality, probability, sampling, and inference.

Introduction to Computational Thinking with Data: Read More [+]

Objectives & Outcomes

Course Objectives: C6 also includes quantitative reasoning concepts that aren't covered in Data 8. These include certain topics in: principles of data visualization; simulation of random processes; and understanding numerical functions through their graphs. This will help prepare students for computational and quantitative courses other than Data 8. C6 takes advantage of the complementarity of computing and quantitative reasoning to enliven abstract ideas and build students' confidence in their ability to solve real problems with quantitative tools. Students learn computer science concepts and immediately apply them to plot functions, visualize data, and simulate random events.

Foundations of Data Science (CS/Info/Stat C8, a.k.a. Data 8) is an increasingly popular class for entering students at Berkeley. Data 8 builds students' computing skills in the first month of the semester, and students rely on these skills as the course progresses. For some students, particularly those with little prior exposure to computing, developing these skills benefits from further time and practice. C6 is a rapid introduction to Python programming, visualization, and data analysis, which will prepare students for success in Data 8.

Student Learning Outcomes: Appreciate the interdisciplinary nature of data science. Create and use visualizations to understand univariate data and to identify associations or causal relationships in bivariate data. Formulate questions about data and perform exploratory data analysis. Perform basic computations in Python, and be able to work with tabular data. Run and understand basic probabilistic simulations. Understand the syntactic structure of Python code. Use good practices in Python programming.

Rules & Requirements

Credit Restrictions: Students will receive no credit for DATA 6 after completing DATA C8.

Hours & Format

Summer: 6 weeks - 4 hours of lecture, 2 hours of discussion, and 4 hours of laboratory per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Yan, Hug, Harding

Formerly known as: Data Science, Undergraduate C6/Computer Science C6/Statistics C6

DATA C8 Foundations of Data Science 4 Units
Terms offered: Spring 2024, Fall 2023, Summer 2023 8 Week Session, Spring 2023, Fall 2022, Spring 2022, Fall 2021, Summer 2021 8 Week Session, Fall 2020

Foundations of data science from three perspectives: inferential thinking, computational thinking, and real-world relevance. Given data arising from some real-world phenomenon, how does one analyze that data so as to understand that phenomenon? The course teaches critical concepts and skills in computer programming and statistical inference, in conjunction with hands-on analysis of real-world datasets, including economic data, document collections, geographical data, and social networks. It delves into social and legal issues surrounding data analysis, including issues of privacy and data ownership.

Foundations of Data Science: Read More [+]

Rules & Requirements

Prerequisites: This course may be taken on its own, but students are encouraged to take it concurrently with a data science connector course (numbered 88 in a range of departments)

Credit Restrictions: Students will receive no credit for DATA C8/COMPSCI C8/INFO C8/STAT C8 after completing COMPSCI 8, or DATA 8. A deficient grade in DATA C8/COMPSCI C8/INFO C8/STAT C8 may be removed by taking COMPSCI 8, COMPSCI 8, or DATA 8.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Summer: 8 weeks - 6 hours of lecture and 4 hours of laboratory per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: Computer Science C8/Statistics C8/Information C8

Also listed as: COMPSCI C8/INFO C8/STAT C8

Foundations of Data Science: Read Less [-]
DATA 88 Data Science Connector 2 - 4 Units
Terms offered: Spring 2022, Spring 2021, Fall 2020

Designed to be taken in conjunction with the Foundations of Data Science (COMPSCI/INFO/STAT C8) course, each connector course will flesh out data science ideas in the context of one particular field. Blending inferential thinking and computational thinking, the course relies on the increasing availability of datasets across a wide range of human endeavor, and students' natural interest in such data, to teach students to work actively with data in a field of their interest and to interpret and critique their analyses of data. Topics vary by field, and several topics will be offered each term.

Data Science Connector: Read More [+]

Objectives & Outcomes

Course Objectives:
- Discuss how to formulate and substantiate an argument with evidence
- Explain a variety of analytic and visualization techniques
- Explore approaches to effective communication
- Explore the challenges with working with primary and secondary data

Student Learning Outcomes:
- Apply data analysis to evaluate everyday problems
- Communicate effectively in written, spoken, and graphical form about specific issues
- Interpret statistical results
- Know how to locate and use primary data sources
- Obtain and/or collect relevant data using specific qualitative and/or quantitative research methods
- Understand how to use empirical evidence to evaluate an argument

Rules & Requirements

Prerequisites: Instructors may require students to enroll concurrently or have completed Data 8 (COMPSCI/STAT/INFO C8)

Repeat rules: Course may be repeated for credit without restriction. Students may enroll in multiple sections of this course within the same semester.

Hours & Format

Fall and/or spring: 15 weeks - 2-4 hours of seminar per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Data Science Connector: Read Less [-]

DATA 88E Economic Models 2 Units
Terms offered: Fall 2023, Fall 2022, Spring 2022

This class aims to motivate and illustrate key concepts in economics through a series of exercises and examples that use Python Jupyter notebooks. The class covers concepts from introductory economics, microeconomic theory, econometrics, development economics, environmental economics and public economics. The course provides data science students a pathway to apply Python programming and data science concepts within the discipline of economics. The course will also give economics students a pathway to apply programming to reinforce fundamental concepts and to advance the level of study in upper division coursework and possible thesis work.

Economic Models: Read More [+]

Objectives & Outcomes

Course Objectives:
- Demonstrate how to construct understanding of concepts in economics by developing and coding examples
- Illustrate topics in economics through coding applications
- Motivate basics of econometrics from a data science perspective

Student Learning Outcomes:
- Programmatically create and interpret graphs of simple equations used in microeconomics
- Reason about and solve simple equations used in microeconomics through coding
- Understand basic concepts in economics

Rules & Requirements

Prerequisites: You must have taken Data C8 or be concurrently enrolled in Data C8 to take this course. That being said, we are able to make exceptions if you have prior programming or data science experience; please email the course staff if you have any questions. Prior economics knowledge may be helpful but is not necessary

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture per week

Summer:
- 6 weeks - 5 hours of lecture per week
- 8 weeks - 4 hours of lecture per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Economic Models: Read Less [-]
DATA C88C Computational Structures in Data Science 3 Units
Terms offered: Spring 2024, Fall 2023, Spring 2023, Fall 2022
Development of Computer Science topics appearing in Foundations of Data Science (C8); expands computational concepts and techniques of abstraction. Understanding the structures that underlie the programs, algorithms, and languages used in data science and elsewhere. Mastery of a particular programming language while studying general techniques for managing program complexity, e.g., functional, object-oriented, and declarative programming. Provides practical experience with composing larger systems through several significant programming projects.
Computational Structures in Data Science: Read More [+]

Objectives & Outcomes

Course Objectives: Develop a foundation of computer science concepts that arise in the context of data analytics, including algorithm, representation, interpretation, abstraction, sequencing, conditional, function, iteration, recursion, types, objects, and testing, and develop proficiency in the application of these concepts in the context of a modern programming language at a scale of whole programs on par with a traditional CS introduction course.

Student Learning Outcomes: Students will be able to demonstrate a working knowledge of these concepts and a proficiency of programming based upon them sufficient to construct substantial stand-alone programs.

Rules & Requirements

Prerequisites: This course is a Data Science connector course and may only be taken concurrently with or after COMPSCI C8/DATA C8/INFO C8/STAT C8. Students may take more than one Data Science connector (88) course if they wish, concurrent with or after having taken the C8 course

Credit Restrictions: Students will receive no credit for DATA C88C after completing COMPSCI 61A.

Hours & Format
Fall and/or spring: 15 weeks - 2-2 hours of lecture, 2-2 hours of laboratory, and 0-1 hours of supplement per week
Summer: 8 weeks - 4-4 hours of lecture, 4-4 hours of laboratory, and 0-2 hours of supplement per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Ball, Culler
Formerly known as: Computer Science 88
Also listed as: COMPSCI C88C
Computational Structures in Data Science: Read Less [-]

DATA C88S Probability and Mathematical Statistics in Data Science 3 Units
Terms offered: Spring 2024, Summer 2023 8 Week Session, Spring 2023, Fall 2022
In this connector course we will state precisely and prove results discovered while exploring data in Data C8. Topics include: probability, conditioning, and independence; random variables; distributions and joint distributions; expectation, variance, tail bounds; Central Limit Theorem; symmetries in random permutations; prior and posterior distributions; probabilistic models; bias-variance tradeoff; testing hypotheses; correlation and the regression model.
Probability and Mathematical Statistics in Data Science: Read More [+]

Rules & Requirements

Prerequisites: Prerequisite: one semester of calculus at the level of Math 16A, Math 10A, or Math 1A. Corequisite or Prerequisite: Foundations of Data Science (COMPSCI C8 / DATA C8 / INFO C8 / STAT C8)

Credit Restrictions: Students will receive no credit for DATA C88S after completing STAT 134, STAT 140, STAT 135, or DATA C102.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of discussion per week
Summer: 8 weeks - 6 hours of lecture and 4 hours of discussion per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: Statistics 88
Also listed as: STAT C88S
Probability and Mathematical Statistics in Data Science: Read Less [-]

DATA 94 Special Topics in Data Science 1 - 4 Units
Terms offered: Spring 2021
Topics will vary semester to semester.
Special Topics in Data Science: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture, 0-2 hours of discussion, and 0-2 hours of laboratory per week
Summer: 8 weeks - 2-6 hours of lecture, 0-4 hours of discussion, and 0-4 hours of laboratory per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate
Grading/Final exam status: Letter grade. Final exam required, with common exam group.
Special Topics in Data Science: Read Less [-]
DATA C100 Principles & Techniques of Data Science 4 Units
Terms offered: Spring 2024, Fall 2023, Summer 2023 8 Week Session, Spring 2023, Fall 2022, Fall 2021, Fall 2020
In this course, students will explore the data science lifecycle, including question formulation, data collection and cleaning, exploratory data analysis and visualization, statistical inference and prediction, and decision-making. This class will focus on quantitative critical thinking and key principles and techniques needed to carry out this cycle. These include languages for transforming, querying and analyzing data; algorithms for machine learning methods including regression, classification and clustering; principles behind creating informative data visualizations; statistical concepts of measurement error and prediction; and techniques for scalable data processing.

Principles & Techniques of Data Science: Read More [+]

Rules & Requirements
Prerequisites: COMPSCI C8 / DATA C8 / INFO C8 / STAT C8 with a C- or better, or Pass; and COMPSCI 61A, COMPSCI/DATA C88C, or ENGIN 7 with a C- or better, or Pass; Corequisite: MATH 54, 56 or EECS 16A (C- or better, or Pass, required if completed prior to Data C100)

Credit Restrictions: Students will receive no credit for DATA C100/STAT C100/COMPSCI C100 after completing DATA 100. A deficient grade in DATA C100/STAT C100/COMPSCI C100 may be removed by taking DATA 100.

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 1 hour of laboratory per week
Summer: 8 weeks - 6 hours of lecture, 2 hours of discussion, and 2 hours of laboratory per week

Additional Details
Subject/Course Level: Data Science, Undergraduate/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Hellerstein, Jain, Parameswaran

DATA 101 Data Engineering 4 Units
Terms offered: Fall 2023, Fall 2022
This course will cover the principles and practices of managing data at scale, with a focus on use cases in data analysis and machine learning. We will cover the entire life cycle of data management and science, ranging from data preparation to exploration, visualization and analysis, to machine learning and collaboration, with a focus on ensuring reliable, scalable operationalization.

Data Engineering: Read More [+]

Rules & Requirements
Prerequisites: COMPSCI 61B or INFO 206B or equivalent courses in programming with a C- or better, or Pass; AND COMPSCI C100/ DATA C100/STAT C100 or COMPSCI 189 or INFO 251 or DATA 144 or equivalent upper-division course in data science with a C- or better, or Pass

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Data Science, Undergraduate/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Hellerstein, Jain, Parameswaran

Data Engineering: Read Less [-]
DATA C102 Data, Inference, and Decisions 4 Units
Terms offered: Spring 2024, Fall 2023, Spring 2023
This course develops the probabilistic foundations of inference in data science, and builds a comprehensive view of the modeling and decision-making life cycle in data science including its human, social, and ethical implications. Topics include: frequentist and Bayesian decision-making, permutation testing, false discovery rate, probabilistic interpretations of models, Bayesian hierarchical models, basics of experimental design, confidence intervals, causal inference, Thompson sampling, optimal control, Q-learning, differential privacy, clustering algorithms, recommendation systems and an introduction to machine learning tools including decision trees, neural networks and ensemble methods.

Data, Inference, and Decisions: Read More [+]

Rules & Requirements

Prerequisites: Math 54 or 56 or 110 or Stat 89A or Physics 89 or both of EECS 16A and 16B with a C- or better, or Pass; Data/Stat/CompSci C100 with a C- or better, or Pass; and any of EECS 126, Data/Stat C140, Stat 134, IndEng 172, Math 106 with a C- or better, or Pass. Data/Stat C140 or EECS 126 are preferred

Credit Restrictions: Students will receive no credit for DATA C102 after completing STAT 102, or DATA 102. A deficient grade in DATA C102 may be removed by taking STAT 102, STAT 102, or DATA 102.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 1 hour of laboratory per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: Statistics 102

Also listed as: STAT C102

Data, Inference, and Decisions: Read Less [-]

DATA C104 Human Contexts and Ethics of Data - DATA/History/STS 4 Units
Terms offered: Spring 2024, Fall 2023, Spring 2023, Spring 2022, Fall 2020, Spring 2020
This course teaches you to use the tools of applied historical thinking and Science, Technology, and Society (STS) to recognize, analyze, and shape the human contexts and ethics of data. It addresses key topics such as doing ethical data science amid shifting definitions of human subjects, consent, and privacy; the changing relationship between data, democracy, and law; the role of data analytics in how corporations and governments provide public goods such as health and security to citizens; sensors, machine learning and artificial intelligence and changing landscapes of labor, industry, and city life. It prepares you to engage as a knowledgeable and responsible citizen and professional in the varied arenas of our datafied world.

Human Contexts and Ethics of Data - DATA/History/STS: Read More [+]

Rules & Requirements

Credit Restrictions: Students will receive no credit for DATA C104/HISTORY C184D/STS C104D after completing DATA 104. A deficient grade in DATA C104/HISTORY C184D/STS C104D may be removed by taking DATA 104.

Hours & Format

Fall and/or spring: 15 weeks - 3-3 hours of lecture and 0-1.5 hours of discussion per week

Summer:
6 weeks - 7.5-7.5 hours of lecture and 0-3.5 hours of discussion per week
8 weeks - 6-6 hours of lecture and 0-3 hours of discussion per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: History C184D/Science and Technology Studies C104D

Also listed as: HISTORY C184D/STS C104D

Human Contexts and Ethics of Data - DATA/History/STS: Read Less [-]
DATA C131A Statistical Methods for Data Science 4 Units
Terms offered: Fall 2023, Spring 2023, Fall 2022
This course teaches a broad range of statistical methods that are used to solve data problems. Topics include group comparisons and ANOVA, standard parametric statistical models, multivariate data visualization, multiple linear regression, logistic regression and classification, regression trees and random forests. An important focus of the course is on statistical computing and reproducible statistical analysis. The course and lab include hands-on experience in analyzing real world data from the social, life, and physical sciences. The R statistical language is used.

Rules & Requirements

Prerequisites: Statistics/Computer Science/Information C8 or Statistics 20; and Mathematics 1A, Mathematics 16A, or Mathematics 10A/10B. Strongly recommended corequisite: Statistics 33A or Statistics 133

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: Statistics 131A
Also listed as: STAT C131A

Statistical Methods for Data Science: Read Less [-]

DATA C140 Probability for Data Science 4 Units
Terms offered: Spring 2024, Fall 2023, Spring 2023, Spring 2022

Objectives & Outcomes

Course Objectives: Data/Stat C140 is a probability course for Data C8 graduates who have taken more mathematics and wish to go deeper into data science. The emphasis on simulation and the bootstrap in Data C8 gives students a concrete sense of randomness and sampling variability. Data/Stat C140 capitalizes on this, abstraction and computation complementing each other throughout. Topics in statistical theory are included to allow students to proceed to modeling and statistical learning classes without taking a further semester of mathematical statistics.

Student Learning Outcomes: Understand the difference between math and simulation, and appreciate the power of both
Use a variety of approaches to problem solving
Work with probability concepts algebraically, numerically, and graphically

Rules & Requirements

Prerequisites: DATA/COMPSCI/INFO/STAT C8, or both STAT 20 and one of COMPSCI 61A or COMPSCI/DATA C88C with C- or better, or Pass; and one year of calculus at the level of MATH 1A-1B or higher, with C- or better, or Pass. Corequisite: MATH 54, MATH 56, EECS 16B, MATH 110 or equivalent linear algebra (C- or better, or Pass, required if completed prior to enrollment in Data/Stat C140)

Credit Restrictions: Students will receive no credit for STAT C140 after completing STAT 134, or EECS 126.

Hours & Format

Fall and/or spring:
15 weeks - 3-3 hours of lecture, 1-1 hours of discussion, 1-1 hours of supplement, and 0-1 hours of voluntary per week
15 weeks - 3-3 hours of lecture, 2-2 hours of discussion, 0-0 hours of supplement, and 0-1 hours of voluntary per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: Statistics 140
Also listed as: STAT C140

Probability for Data Science: Read Less [-]
DATA 144 Data Mining and Analytics 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Data Mining and Analytics introduces students to practical fundamentals of data mining and emerging paradigms of data mining and machine learning with enough theory to aid intuition building. The course is project-oriented, with a project beginning in class every week. The in-class portion of the project is meant to be collaborative and a time for the instructor and GSIs to work closely with project groups to understand the objectives, help work through software logistics, and connect project work to lecture. Lectures will introduce theories, concepts, practical contexts, and algorithms. Students should expect to leave the class with hands-on, contemporary data mining skills they can confidently apply in research and industry.

Objectives & Outcomes

Course Objectives: Conduct manual feature engineering (from domain knowledge) vs. machine induced featurization (representation learning)
Develop intuition in various machine learning classification algorithms (e.g. decision trees, feed-forward neural networks, recurrent neural networks, skip-grams) and clustering techniques (e.g. k-means, spectral)
Foster critical thinking about real-world actionability from analytics
Provide an overview of issues in research and practice that will affect the practice of data science in a variety of domains

Student Learning Outcomes: Develop capabilities in a range of data mining techniques
Gain the ability to solve problems in data mining research and practice
Think critically about how to assess analytics
Use data mining and analytics in a domain of application

Rules & Requirements

Prerequisites: Corequisite: Data/CompSci/Stat C100 (C- or better, or Pass, required if completed prior to Data 144)

Credit Restrictions: Students will receive no credit for DATA 144 after completing INFO 154. A deficient grade in DATA 144 may be removed by taking INFO 154.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Instructor: Pardos

DATA 188 Advanced Data Science Connector 2 Units
Terms offered: Prior to 2007
Designed to be taken concurrently with or after Principles and Techniques of Data Science (Data C100) or Probability for Data Science (Data C140) or both, each connector course consists of an intensive study of data science ideas in a particular field. Topics include the development of the theory of data science and the application of data science in a variety of domains. Topics vary by field, and more than one topic may be offered in a semester.

Objectives & Outcomes

Course Objectives: Develop theoretical mastery in data science topics, address the challenges of gathering data and converting it to usable formats, develop skills in selecting appropriate data science methods, explore approaches to decision-making and effective communication.

Student Learning Outcomes: Understand and apply theory in an area of data science, or follow the data science life cycle in a domain of application from question formulation to the use of advanced data science methods and the communication of results.

Rules & Requirements

Prerequisites: Prerequisites or corequisites may vary depending on topic. Consult the Schedule of Classes or department website for details

Repeat rules: Course may be repeated for credit when topic changes. Students may enroll in multiple sections of this course within the same semester.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of seminar and 1 hour of discussion per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate

Grading/Final exam status: Letter grade. Alternate method of final assessment during regularly scheduled final exam group (e.g., presentation, final project, etc.).

Instructor: Pardos

Data Mining and Analytics: Read More [+]

Advanced Data Science Connector: Read Less [-]
DATA H195A Data Science Honors Thesis Seminar 2 Units
Terms offered: Prior to 2007
The senior honors thesis seminar gives students an opportunity to experience firsthand what it means to do data science research. Over two semesters, students will learn to formulate a research problem, design a research strategy, collect evidence, and write up the findings and analysis. The first semester focuses primarily on the preparation and implementation of a research proposal, as well as data management strategies. During the second semester, we will emphasize analysis and writing. The final result will be a hybrid product with a 20-25 page research paper, with data visualizations and analysis tables, along with a documented data source, annotated code, well documented Github repository, and open science posting of the project.

Data Science Honors Thesis Seminar: Read More [+]

Objectives & Outcomes

Course Objectives:
- Assist students with project organization and management.
- Convey approaches to effective writing and visual communication.
- Discuss how to formulate and substantiate an argument with evidence.
- Explain approaches to designing a research question and project.
- Explore a variety of analytic and visualization techniques and discuss their appropriateness to different research questions.
- Identify the challenges in data acquisition and management.

Student Learning Outcomes:
- Communicate effectively in written, spoken, and graphical form.
- Develop an understanding of data availability, constraints, and ethics.
- Develop data management skills.
- Develop reproducible research and interpret results.
- Formulate a proposal for a research project.
- Learn how to develop a research question and project.
- Understand how to organize empirical work into a written document.
- Understand how to use empirical evidence to construct an argument.

Rules & Requirements

Prerequisites: There are no specific prerequisites. Students must be accepted into the data science honors program in order to take this course. Students must complete H195A in order to enroll in H195B

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of seminar per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.

Data Science Honors Thesis Seminar: Read Less [-]

DATA H195B Data Science Honors Thesis Seminar 2 Units
Terms offered: Spring 2020
The senior honors thesis seminar gives students an opportunity to experience firsthand what it means to do data science research. Over two semesters, students will learn to formulate a research problem, design a research strategy, collect evidence, and write up the findings and analysis. The first semester focuses primarily on the preparation and implementation of a research proposal, as well as data management strategies. During the second semester, we will emphasize analysis and writing. The final result will be a hybrid product with a 20-25 page research paper, with data visualizations and analysis tables, along with a documented data source, annotated code, well documented Github repository, and open science posting of the project.

Data Science Honors Thesis Seminar: Read More [+]

Objectives & Outcomes

Course Objectives:
- Assist students with project organization and management.
- Convey approaches to effective writing and visual communication.
- Discuss how to formulate and substantiate an argument with evidence.
- Explain approaches to designing a research question and project.
- Explore a variety of analytic and visualization techniques and discuss their appropriateness to different research questions.
- Identify the challenges in data acquisition and management.

Student Learning Outcomes:
- Communicate effectively in written, spoken, and graphical form.
- Develop an understanding of data availability, constraints, and ethics.
- Develop data management skills.
- Develop reproducible research and interpret results.
- Formulate a proposal for a research project.
- Learn how to develop a research question and project.
- Understand how to organize empirical work into a written document.
- Understand how to use empirical evidence to construct an argument.

Rules & Requirements

Prerequisites: There are no specific prerequisites. Students must be accepted into the data science honors program in order to take this course. Students must complete H195A in order to enroll in H195B

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of seminar per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.

Data Science Honors Thesis Seminar: Read Less [-]
DATA 197 Field Studies in Data Science 1 - 4 Units
Terms offered: Fall 2019
Students take part in organized individual field sponsored programs with off-campus organizations or tutoring/mentoring relevant to specific aspects and applications of data science on or off campus. Note Summer CPT or OPT students: written report required. Course may not count toward major requirements but will be counted in the cumulative units toward graduation.
Field Studies in Data Science: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor (see department advisor). Upper-division standing
Repeat rules: Course may be repeated for credit with advisor consent.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of fieldwork per week
Summer:
6 weeks - 2.5-10 hours of fieldwork per week
8 weeks - 2-7.5 hours of fieldwork per week
10 weeks - 1.5-6 hours of fieldwork per week
Additional Details
Subject/Course Level: Data Science, Undergraduate/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Alternative to final exam.
Field Studies in Data Science: Read Less [-]

DATA 198 Directed Group Studies for Advanced Undergraduates 1 - 4 Units
Terms offered: Spring 2024, Fall 2023, Spring 2023
Written proposal must be approved by a faculty sponsor, who will serve as Instructor of Record. Seminars for the group study of selected topics, which will vary from semester to semester. Topics may be initiated by students.
Directed Group Studies for Advanced Undergraduates: Read More [+]
Rules & Requirements
Prerequisites: Instructors may require students to enroll concurrently or have completed Data 8 (COMPSCI/STAT/INFO C8). Upper-division standing and consent of instructor
Repeat rules: Course may be repeated for credit without restriction. Students may enroll in multiple sections of this course within the same semester.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Additional Details
Subject/Course Level: Data Science, Undergraduate/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Studies for Advanced Undergraduates: Read Less [-]
DATA 199 Supervised Independent Study and Research 1 - 4 Units

Terms offered: Prior to 2007

Independent study and research by arrangement with faculty or staff. This course allows students to obtain course credit for participation in undergraduate research. Students may opt either to participate in a semester-long series of workshops which provide a guided research experience with project milestone assignments and regular feedback, or they may opt to work independently with supervision from one faculty research mentor.

Supervised Independent Study and Research: Read More [+]

Objectives & Outcomes

Student Learning Outcomes: Develop and refine skills acquired in other courses in a hands-on, self-directed research project. Identify how to properly manage data and describe best practices in programming and analytics. Integrate feedback from an instructor into research on a regular basis. Learn how to structure and complete a research project working independently.

Rules & Requirements

Prerequisites: Instructors may require students to enroll concurrently or have completed Data 8 (COMPSCI/STAT/INFO C8). Upper-division standing and consent of instructor

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 3-12 hours of independent study per week

Summer: 6 weeks - 7.5-30 hours of independent study per week
8 weeks - 5.5-22.5 hours of independent study per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Alternative to final exam.

Supervised Independent Study and Research: Read Less [-]

DATA 200S Principles and Techniques of Data Science 3 Units

Terms offered: Spring 2024, Fall 2023, Spring 2023

Explores the data science lifecycle: question formulation, data collection and cleaning, exploratory, analysis, visualization, statistical inference, prediction, and decision-making. Focuses on quantitative critical thinking and key principles and techniques: languages for transforming, querying and analyzing data; algorithms for machine learning methods: regression, classification and clustering; principles of informative visualization; measurement error and prediction; and techniques for scalable data processing. Research term project.

Principles and Techniques of Data Science: Read More [+]

Rules & Requirements

Prerequisites: DATA/COMPSCI/INFO/STAT C8; and COMPSCI 61A or COMPSCI/DATA C88C. Corequisites: MATH 54 or EECS 16A

Credit Restrictions: Students will receive no credit for DATA 200S after completing DATA C100, or DATA C200. A deficient grade in DATA 200S may be removed by taking DATA C200.

Hours & Format

Fall and/or spring: 15 weeks - 3-3 hours of lecture, 1-1 hours of discussion, and 0-1 hours of laboratory per week

Additional Details

Subject/Course Level: Data Science, Undergraduate/Graduate

Grading: Letter grade.

Principles and Techniques of Data Science: Read Less [-]
DATA C200 Principles and Techniques of Data Science 4 Units
Terms offered: Spring 2024, Fall 2023, Spring 2023, Spring 2022, Spring 2021, Spring 2020
Explores the data science lifecycle: question formulation, data collection and cleaning, exploratory, analysis, visualization, statistical inference, prediction, and decision-making. Focuses on quantitative critical thinking and key principles and techniques: languages for transforming, querying and analyzing data; algorithms for machine learning methods: regression, classification and clustering; principles of informative visualization; measurement error and prediction; and techniques for scalable data processing. Research term project.
Principles and Techniques of Data Science: Read More [+]

Rules & Requirements
Prerequisites: COMPSCI C8 / INFO C8 / STAT C8 or ENGIN 7; and either COMPSCI 61A or COMPSCI 88. Corequisites: MATH 54 or EECS 16A
Credit Restrictions: Students will receive no credit for DATA C200/COMPSCI C200A/STAT C200C after completing DATA C100.

Hours & Format
Fall and/or spring:
8 weeks - 6 hours of lecture, 2 hours of discussion, and 2 hours of laboratory per week
15 weeks - 3 hours of lecture, 1 hour of discussion, and 1 hour of laboratory per week
Summer:
8 weeks - 6 hours of lecture, 2 hours of discussion, and 2 hours of laboratory per week

Additional Details
Subject/Course Level: Data Science, Undergraduate/Graduate
Grading: Letter grade.
Formerly known as: Statistics C200C/Computer Science C200A
Also listed as: COMPSCI C200A/STAT C200C

DATA 298 Directed Group Studies for Graduates 1 - 4 Units
Terms offered: Not yet offered
DATA 298 provides credit for directed group study by graduate students working closely with an instructor who is a faculty member. Students are responsible for finding an instructor to supervise their work, and they will meet with that instructor weekly or bi-weekly. Faculty members must commit to supervising and evaluating the students’ work and be available to meet regularly as required by the guidelines.
Directed Group Studies for Graduates: Read More [+]

Rules & Requirements
Prerequisites: Instructors may require students to enroll concurrently or have completed Data C8 (COMPSCI/STAT/INFO C8) or Data C200 (COMPSCI C200A/STAT C200C). Graduate standing and consent of instructor
Repeat rules: Course may be repeated for credit without restriction. Students may enroll in multiple sections of this course within the same semester.

Hours & Format
Fall and/or spring:
15 weeks - 1-4 hours of directed group study per week

Additional Details
Subject/Course Level: Data Science, Undergraduate/Graduate
Grading: Letter grade.

Directed Group Studies for Graduates: Read Less [-]