Geophysics

Bachelor of Arts (BA)

The Geophysics major is designed to provide students with theoretical, field, and laboratory experience in studying geodynamic processes and the structure of the Earth and other planets. It is designed for students with good physics and mathematics ability. It provides a solid background in physical science and mathematics with an emphasis on the physics of the Earth.

Declaring the Major

The department strongly encourages students to see the student services advisor as early as possible. Students are accepted into the major with a C average or better. There are a number of scholarships and research opportunities as well as other benefits available to declared majors.

Honors Program

Students in the honors program must fulfill the following additional requirements: 1) maintain a GPA of at least 3.3 in all courses in the major and an overall GPA of at least 3.3 at the University; and 2) carry out an individual research or study project, involving at least three units of EPS H195. The project is chosen in consultation with a departmental advisor, and the written report is judged by the student's research supervisor and a departmental adviser.

Minor Program

For information regarding the requirements, please see the Minor Requirements tab. Program planning and confirmation should be done with the undergraduate major advisor and the geophysics faculty adviser.

Other Majors and Minors Offered by the Department of Earth and Planetary Science

Atmospheric Science (https://guide.berkeley.edu/undergraduate/degreeprograms/atmospheric-science/): BA, Minor

Climate Science (https://guide.berkeley.edu/undergraduate/degreeprograms/climate-science/): Minor

Earth and Planetary Science (https://guide.berkeley.edu/undergraduate/ degree-programs/earth-planetary-science/): Minor

Environmental Earth Science (https://guide.berkeley.edu/undergraduate/ degree-programs/environmental-earth-science/): BA, Minor

Geology (https://guide.berkeley.edu/undergraduate/degree-programs/ geology/): BA, Minor

Marine Science (https://guide.berkeley.edu/undergraduate/degreeprograms/marine-science/): BA, Minor

Planetary Science (https://guide.berkeley.edu/undergraduate/degreeprograms/planetary-science/): BA, Minor

In addition to the University, campus, and college requirements, listed on the College Requirements tab, students must fulfill the below requirements specific to their major program.

General Guidelines

- 1. All courses taken to fulfill the major requirements below must be taken for graded credit, other than courses listed which are offered on a *Pass/No Pass* basis only. Other exceptions to this requirement are noted as applicable.
- 2. No more than two upper division courses may be used to simultaneously fulfill requirements for a student's double major

and no more one course may be used to fulfill minor program requirements with the exception of minors offered outside of the College of Letters & Science.

- A minimum grade point average (GPA) of 2.0 must be maintained in both upper and lower division courses used to fulfill the major requirements.
- For more information on AP/IB Exam Scores & A-Level Course Equivalencies for EPS Majors, please see here (https://docs.google.com/document/d/1ENLPR2Vfocvnc45cw0_pVexG2BEM65Ip1h2eB3ha6E/edit/?usp=sharing).

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

Lower Division Requirements

EPS 50	The Planet Earth	4
MATH 51/1A	Calculus I (MATH 51 as of Fall 2025)	4
MATH 52/1B	Calculus II (MATH 52 as of Fall 2025)	4
MATH 53	Multivariable Calculus	4
MATH 54	Linear Algebra and Differential Equations	4
or PHYSICS 8	9Introduction to Mathematical Physics	
CHEM 1A & 1AL	General Chemistry and General Chemistry Laboratory	5
or CHEM 4A	General Chemistry and Quantitative Analysis	
Choose one of th	e following physics sequences:	
PHYSICS 5A Introductory Mechanics and Relativity & PHYSICS 5Band Introductory Electromagnetism, Waves, and Optics		
& PHYSICS 5	Band Introduction to Experimental Physics I and Introductory Thermodynamics and Quantum	
& PHYSICS 50	CMechanics and Introduction to Experimental Physics II	
& PHYSICS 50	C	
& PHYSICS 7	Physics for Scientists and Engineers Band Physics for Scientists and Engineers and Physics for Scientists and Engineers	
& PHYSICS 70	0	

Upper Division Requirements

E	PS 102	History and Evolution of Planet Earth	4
E	PS 122	Physics of the Earth and Planetary Interiors	3
EPS 150		Case Studies in Earth Systems	2
	lectives, select 1 uggested course	5 upper division units, from the following list of ss: ¹	15
	EPS 100A	Minerals: Their Constitution and Origin [4]	
	EPS 100B	Genesis and Interpretation of Rocks [4]	
	EPS 101	Field Geology and Digital Mapping [4]	
	EPS 104	Mathematical Methods in Geophysics [4]	
	EPS 108	Geodynamics [4]	
	EPS 109	Computer Simulations with Jupyter Notebooks [4]	
	EPS 116	Structural Geology and Tectonics [3]	
	EPS 117	Geomorphology [4]	
	EPS 118	Advanced Field Course [4]	
	EPS 125	Stable Isotope Geochemistry [4]	
	EPS 130	Strong Motion Seismology [3]	
	EPS C162	Planetary Astrophysics [4]	

EPS C178	Applied Geophysics [3]
MATH 121A	Mathematical Tools for the Physical Sciences [4]
or EPS 104	Mathematical Methods in Geophysics
PHYSICS 105	Analytic Mechanics [4]
PHYSICS 110/	Electromagnetism and Optics [4]

¹ All elective courses used to fulfill the major requirements must be approved by the faculty adviser. This list is intended as a guide; the suggested courses are not limited to only courses included in this list.

Students who have a strong interest in an area of study outside their major often decide to complete a minor program. These programs have set requirements.

General Guidelines

- All minors must be declared before the first day of classes in your Expected Graduation Term (EGT). For summer graduates, minors must be declared prior to the first day of Summer Session A.
- 2. All upper-division courses must be taken for a letter grade.
- A minimum of three of the upper-division courses taken to fulfill the minor requirements must be completed at UC Berkeley.
- 4. A minimum grade point average (GPA) of 2.0 is required in the upperdivision courses to fulfill the minor requirements.
- Courses used to fulfill the minor requirements may be applied toward the Seven-Course Breadth requirement, for Letters & Science students.
- No more than one upper division course may be used to simultaneously fulfill requirements for a student's major and minor programs.
- All minor requirements must be completed prior to the last day of finals during the semester in which the student plans to graduate. If students cannot finish all courses required for the minor by that time, they should see a College of Letters & Science adviser.
- All minor requirements must be completed within the unit ceiling. (For further information regarding the unit ceiling, please see the College Requirements tab.)

Requirements

Lower Division

EPS 50	The Planet Earth (or equivalent)	4
Upper Division		
Select a minimun	n of five upper division courses from the following: 1	
EPS 104	Mathematical Methods in Geophysics [4]	
EPS 108	Geodynamics [4]	
EPS 109	Computer Simulations with Jupyter Notebooks [4]	
EPS 122	Physics of the Earth and Planetary Interiors [3]	
EPS 130	Strong Motion Seismology [3]	
EPS C178	Applied Geophysics [3]	

¹ Other courses may be substituted with approval of the faculty adviser.

Undergraduate students must fulfill the following requirements in addition to those required by their major program.

For a detailed lists of L&S requirements, please see Overview tab to the right in this guide or visit the L&S Degree Requirements (https://lsadvising.berkeley.edu/degree-requirements/) webpage. For College advising appointments, please visit the L&S Advising (https:// lsadvising.berkeley.edu/home/) Pages.

University of California Requirements

Entry Level Writing

All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing requirement. Fulfillment of this requirement is also a prerequisite to enrollment in all reading and composition courses at UC Berkeley and must be taken for a letter grade.

American History and American Institutions

The American History and American Institutions requirements are based on the principle that all U.S. residents who have graduated from an American university should have an understanding of the history and governmental institutions of the United States.

Berkeley Campus Requirement

American Cultures

All undergraduate students at Cal need to take and pass this campus requirement course in order to graduate. The requirement offers an exciting intellectual environment centered on the study of race, ethnicity and culture of the United States. AC courses are plentiful and offer students opportunities to be part of research-led, highly accomplished teaching environments, grappling with the complexity of American Culture.

College of Letters & Science Essential Skills Requirements

Quantitative Reasoning

The Quantitative Reasoning requirement is designed to ensure that students graduate with basic understanding and competency in math, statistics, or computer/data science. The requirement may be satisfied by exam or by taking an approved course taken for a letter grade.

Foreign Language

The Foreign Language requirement may be satisfied by demonstrating proficiency in reading comprehension, writing, and conversation in a foreign language equivalent to the second semester college level, either by passing an exam or by completing approved course work taken for a letter grade.

Reading and Composition

In order to provide a solid foundation in reading, writing, and critical thinking the College of Letters and Science requires two semesters of lower division work in composition in sequence. Students must complete parts A & B reading and composition courses in sequential order by the end of their fourth semester for a letter grade.

College of Letters & Science 7 Course Breadth Requirements

Breadth Requirements

The undergraduate breadth requirements provide Berkeley students with a rich and varied educational experience outside of their major program. As the foundation of a liberal arts education, breadth courses give students a view into the intellectual life of the University while introducing them to a multitude of perspectives and approaches to research and scholarship. Engaging students in new disciplines and with peers from other majors, the breadth experience strengthens interdisciplinary connections and context that prepares Berkeley graduates to understand and solve the complex issues of their day.

Unit Requirements

- 120 total units
- Of the 120 units, 36 must be upper division units
- Of the 36 upper division units, 6 must be taken in courses offered outside your major department

Residence Requirements

For units to be considered in "residence," you must be registered in courses on the Berkeley campus as a student in the College of Letters & Science. Most students automatically fulfill the residence requirement by attending classes at Cal for four years, or two years for transfer students. In general, there is no need to be concerned about this requirement, unless you graduate early, go abroad for a semester or year, or want to take courses at another institution or through UC Extension during your senior year. In these cases, you should make an appointment to meet an L&S College adviser to determine how you can meet the Senior Residence Requirement.

Note: Courses taken through UC Extension do not count toward residence.

Senior Residence Requirement

After you become a senior (with 90 semester units earned toward your B.A. degree), you must complete at least 24 of the remaining 30 units in residence in at least two semesters. To count as residence, a semester must consist of at least 6 passed units. Intercampus Visitor, EAP, and UC Berkeley-Washington Program (UCDC) units are excluded.

You may use a Berkeley Summer Session to satisfy one semester of the Senior Residence requirement, provided that you successfully complete 6 units of course work in the Summer Session and that you have been enrolled previously in the college.

Modified Senior Residence Requirement

Participants in the UC Education Abroad Program (EAP), Berkeley Summer Abroad, or the UC Berkeley Washington Program (UCDC) may meet a Modified Senior Residence requirement by completing 24 (excluding EAP) of their final 60 semester units in residence. At least 12 of these 24 units must be completed after you have completed 90 units.

Upper Division Residence Requirement

You must complete in residence a minimum of 18 units of upper division courses (excluding UCEAP units), 12 of which must satisfy the requirements for your major.

Mission

The goal of the Earth and Planetary Science (EPS) BA degree is to provide students with a broad and sound education that provides general and specialized knowledge and is intellectually challenging and stimulating. Upon completion of the degree students are ready to enter graduate school at top-ranking institutions (about half of them choose this path), find employment in the profession (geological and environmental engineering and consulting are major opportunities), continue in public education as teachers, or use their background as a sound basis for a new career such as in public policy, law, or medical sciences.

Learning Goals for the Major

EPS majors acquire knowledge through course work, laboratory training (expertise in experimental techniques), primary field research, library research, and computer applications, with oral presentations and written reports required in many of our classes.

The undergraduate program provides strong technical training for those who wish to pursue professional careers in the earth, environmental, and planetary sciences, as well as training in analytical, creative and critical thinking and communication that serves well those who choose paths in new fields.

Geophysics seeks to understand the vast and complicated body that is the Earth. Because most of the Earth's interior is inaccessible to direct observation, the geophysicist uses the basic principles of physics to devise indirect methods of exploring those parts of the Earth that cannot be reached by shovel or drill bit. Measurements of magnetic fields, electric potential, gravity, seismic waves, and satellite-based geodesy are used to probe the interior and study surface and internal processes of our planet, and to answer questions concerning how continents move, mountains form, earthquakes shake, and volcanoes erupt, as well as improving our understanding of planetary to local scale structure and processes. These questions require an interdisciplinary approach that links the disciplines of mathematics, physics, geology, and chemistry. Moreover, the geophysics study encompasses theoretical and experimental science as well as fieldwork to study geodynamic processes and the structure of the Earth and other planets, and employed methods are used for identification and recovery of natural resources, the characterization of natural hazards from earthquakes and volcanoes, and are used for environmental studies and remediation.

Major maps are experience maps that help undergraduates plan their Berkeley journey based on intended major or field of interest. Featuring student opportunities and resources from your college and department as well as across campus, each map includes curated suggestions for planning your studies, engaging outside the classroom, and pursuing your career goals in a timeline format.

Use the major map below to explore potential paths and design your own unique undergraduate experience:

View the Geophysics Major Map.

Undergraduate Student Services

Anna Atkinson, Undergraduate Major Advisor

epsua@berkeley.edu

Faculty Advisor

Professor Doug Dreger (http://eps.berkeley.edu/people/douglas-dreger/)

ddreger@berkeley.edu

EPS Undergraduate Appointments

To make an appointment, please visit the EPS Student Services page (https://eps.berkeley.edu/student-resources/contact-student-services-advisors/).

EPS 3 The Water Planet 3 Units

Terms offered: Spring 2021, Summer 2020 8 Week Session, Spring 2020

An overview of the processes that control water supply to natural ecosystems and human civilization. Hydrologic cycle, floods, droughts, groundwater. Patterns of water use, threats to water quality, effects of global climate change on future water supplies. Water issues facing California.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Summer: 8 weeks - 6 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

EPS 7 Introduction to Climate Change 3 Units

Terms offered: Fall 2025, Summer 2025 First 6 Week Session, Fall 2024 This course covers the physical processes that determine Earth's past, present, and future climate, with a particular focus on the essentially irreversible climate change (a.k.a., global warming) caused by the burning of coal, oil, and natural gas. Topics will also include the estimation of future warming and impacts, the Earth resources that can be used to combat climate change, and the policies being used to shift towards the use of those resources. **Hours & Format**

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Summer:

3 weeks - 16 hours of lecture per week 6 weeks - 8 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required, with common exam group.

Instructor: David Romps

EPS 10 Earth's Greatest Volcanic Eruptions 3 Units

Terms offered: Summer 2025 Second 6 Week Session A science-based course on the most significant eruptions Earth has produced. Most eruptions discussed will be from within historic time and will involve information from geology (volcanology), geography, archaeology, history, art, and paleoenvironmental records such as treerings and ice-cores. After a two-class introduction to volcanoes, volcanic activity, and volcanology, and the hazards vs benefits of eruptions, each class will feature one of more eruptions of different types from around the world. A science-based interpretation of the eruptions and effects on human-kind and the environment, will be presented. Class participants will learn about one type of natural hazard, its causes, and the variability of volcanism on Earth.

Hours & Format

Summer: 6 weeks - 8 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Self, Manga

EPS C12 The Planets 3 Units

Terms offered: Spring 2025, Spring 2024, Spring 2023

A tour of the mysteries and inner workings of our solar system. What are planets made of? Why do they orbit the sun the way they do? How do planets form, and what are they made of? Why do some bizarre moons have oceans, volcanoes, and ice floes? What makes the Earth hospitable for life? Is the Earth a common type of planet or some cosmic quirk? This course will introduce basic physics, chemistry, and math to understand planets, moons, rings, comets, asteroids, atmospheres, and oceans. Understanding other worlds will help us save our own planet and help us understand our place in the universe.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Summer: 6 weeks - 7.5 hours of lecture and 2.5 hours of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Jeanloz, Dressing

Also listed as: ASTRON C12/L & S C70T

EPS W12 The Planets 3 Units

Terms offered: Summer 2025 8 Week Session, Summer 2024 8 Week Session, Summer 2023 8 Week Session

A tour of the mysteries and inner workings of our solar system. What are planets made of? Why do they orbit the sun the way they do? How do planets form, and what are they made of? Why do some bizarre moons have oceans, volcanoes, and ice floes? What makes the Earth hospitable for life? Is the Earth a common type of planet or some cosmic quirk? This course will introduce basic physics, chemistry, and math to understand planets, moons, rings, comets, asteroids, atmospheres, and oceans. Understanding other worlds will help us save our own planet and help us understand our place in the universe. This course is web-based. **Hours & Format**

Summer: 8 weeks - 6 hours of web-based lecture per week

Online: This is an online course.

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Militzer

Formerly known as: Astronomy W12/Earth and Planetary Science W12

Also listed as: ASTRON W12

EPS 20 Earthquakes in Your Backyard 3 Units

Terms offered: Summer 2025 First 6 Week Session, Summer 2025 Second 6 Week Session, Summer 2024 Second 6 Week Session Introduction to earthquakes, their causes and effects. General discussion of basic principles and methods of seismology and geological tectonics, distribution of earthquakes in space and time, effects of earthquakes, and earthquake hazard and risk, with particular emphasis on the situation in California.

Rules & Requirements

Credit Restrictions: Students will receive no credit for EPS 20 after completing GEOPHYS 20, or EPS C20. A deficient grade in EPS 20 may be removed by taking EPS C20.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture per week

Summer: 6 weeks - 5 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: Geophysics 20

EPS C20 Earthquakes in Your Backyard 3 Units

Terms offered: Fall 2025, Spring 2025, Fall 2024, Spring 2024 Introduction to earthquakes, their causes and effects. General discussion of basic principles and methods of seismology and geological tectonics, distribution of earthquakes in space and time, effects of earthquakes, and earthquake hazard and risk, with particular emphasis on the situation in California.

Hours & Format

Fall and/or spring: 15 weeks - 2-3 hours of lecture and 1-0 hours of discussion per week

Summer: 6 weeks - 7.5 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Also listed as: L & S C70Y

EPS 24 Freshman Seminar in Earth and Planetary Sciences 1 Unit

Terms offered: Spring 2025, Fall 2023, Fall 2022

The freshman seminar in earth and planetary science is designed to provide new students with an opportunity to explore a topic in geology or earth sciences with a faculty member in a small seminar setting. Topics will vary from semester to semester but will include such possible topics as great voyages of geologic discovery and the role of atmospheric sciences in geologic study.

Rules & Requirements

Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of seminar per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final Exam To be decided by the instructor when the class is offered.

EPS 39 Freshman/Sophomore Seminar 2 Units

Terms offered: Spring 2022, Fall 2019, Spring 2019

Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester.

Rules & Requirements

Prerequisites: Priority given to freshmen and sophomores

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of seminar per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final Exam To be decided by the instructor when the class is offered.

Formerly known as: Geology 39

EPS 39A Freshman/Sophomore Seminar 2 - 4 Units

Terms offered: Spring 2018, Spring 2017, Spring 2016

Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester.

Rules & Requirements

Prerequisites: Priority given to freshmen and sophomores

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 2-4 hours of seminar per week

Summer: 6 weeks - 5-10 hours of seminar per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

Formerly known as: Geology 39

EPS 50 The Planet Earth 4 Units

Terms offered: Fall 2025, Spring 2025, Fall 2024

An introduction to the physical and chemical processes that have shaped the earth through time, with emphasis on the theory of plate tectonics. Laboratory work will involve the practical study of minerals, rocks, and geologic maps and exercises on geological processes. **Hours & Format**

Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Summer: 8 weeks - 7.5 hours of lecture and 7.5 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: Geology 50

EPS 80 Environmental Earth Sciences 3 Units

Terms offered: Fall 2025, Summer 2025 Second 6 Week Session, Fall 2024

This course focuses on the processes on and in the earth that shape the environment. Humanity's use of land and oceans is examined based on an understanding of these processes.

Rules & Requirements

Credit Restrictions: Students will receive no credit for 80 after taking Integrative Biology 80 or Paleontology 15.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Summer: 6 weeks - 7.5 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

EPS 81 Extreme Weather and Climate 3 Units

Terms offered: Spring 2025, Spring 2024, Spring 2023 This course provides a fundamental understanding of the extreme weather and climate variability that have affected Earth in recent decades. We begin with an overview of fire weather and hurricanes, using these phenomena to explore general principles that are also relevant to drought, tornadoes, and other extreme weather. Then we examine how atmospheric composition, planetary orbits, and radiation control global climate, and how all of these influence extreme weather. Additional topics include prediction of complex systems, chaos theory, feedbacks, instability, atmospheric aerosols, and air pollution. We use the atmospheres of other planets for comparison, learning more about Earth by seeing just how different planetary climate can be. **Hours & Format**

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Boos

EPS 82 Oceans 3 Units

Terms offered: Fall 2025, Fall 2024, Fall 2023

This course offers multidisciplinary approach to begin answering the question "Why are oceans important to us?" Upon a physical, chemical, and geologic base, we introduce the alien world of sea life, the importance of the ocean to the global carbon cycle, and the principles of ecology with a focus on the important concept of energy flow through food webs. Lectures expand beyond science to include current topics as diverse as music, movies, mythology, biomechanics, policy, and trade. **Rules & Requirements**

Credit Restrictions: Students will receive no credit for EPS 82 after completing EPS N82.

Hours & Format

Fall and/or spring:

15 weeks - 3 hours of lecture and 1 hour of discussion per week 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Summer:

6 weeks - 7.5 hours of lecture and 2.5 hours of discussion per week 8 weeks - 5.5 hours of lecture and 1.5 hours of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Edwards

Formerly known as: Earth and Planetary Science C82/Integrative Biology C82

EPS N82 Introduction to Oceans 3 Units

Terms offered: Summer 2025 First 6 Week Session, Summer 2025 Second 6 Week Session, Summer 2024 Second 6 Week Session The geology, physics, chemistry, and biology of the world oceans. The application of oceanographic sciences to human problems will be explored through special topics such as energy from the sea, marine pollution, food from the sea, and climate change. **Rules & Requirements**

Credit Restrictions: Students will receive no credit for Earth and Planetary Science N82 after taking Earth and Planetary Science/ Integrative Biology/Geography C82.

Hours & Format

Summer:

6 weeks - 6 hours of lecture per week 8 weeks - 6 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam not required.

EPS 84 Sophomore Seminar 1 or 2 Units

Terms offered: Spring 2013, Fall 2012, Spring 2012 Sophomore seminars are small interactive courses offered by faculty members in departments all across the campus. Sophomore seminars offer opportunity for close, regular intellectual contact between faculty members and students in the crucial second year. The topics vary from department to department and semester to semester. Enrollment limited to 15 sophomores.

Rules & Requirements

Prerequisites: At discretion of instructor

Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format

Fall and/or spring:

5 weeks - 3-6 hours of seminar per week 10 weeks - 1.5-3 hours of seminar per week 15 weeks - 1-2 hours of seminar per week

Summer:

6 weeks - 2.5-5 hours of seminar per week 8 weeks - 1.5-3.5 hours of seminar and 2-4 hours of seminar per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final exam required.

EPS 88 PyEarth: A Python Introduction to Earth Science 2 Units

Terms offered: Spring 2025, Fall 2024, Fall 2023

Earthquakes and El Ninos are examples of natural hazards in California. The course uses Python/Jupyter Notebook and real-world observations to introduce students to these and other Earth phenomena and their underlying physics. The students will learn how to access and visualize the data, extract signals, and make probability forecasts. The final module is a project that synthesizes the course material to make a probabilistic forecast. The course will be co-taught by a team of EPS faculty, and the focus of each semester will depend on the expertise of the faculty in charge.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Alternate method of final assessment during regularly scheduled final exam group (e.g., presentation, final project, etc.).

Instructors: Fung, Boos, Dreger

EPS 98 Directed Group Study 1 - 4 Units

Terms offered: Spring 2012, Spring 2009, Spring 2008 Group studies of selected topics which vary from semester to semester. **Rules & Requirements**

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Formerly known as: Geology and Geophysics 98

EPS 100A Minerals: Their Constitution and Origin 4 Units

Terms offered: Fall 2025, Fall 2024, Fall 2023

Introduction to structural, compositional, and physical properties of minerals, their analogs and related substances, their genesis in various geological and synthetic processes, and laboratory techniques to identify and investigate minerals. One field trip to selected mineral deposits and visits to laboratories.

Rules & Requirements

Prerequisites: Some background in chemistry and physics

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture and 6 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: Geology 100A

EPS 100B Genesis and Interpretation of Rocks 4 Units

Terms offered: Spring 2025, Spring 2024, Spring 2023 Introduction to the principal geologic environments where rocks are formed and displayed. Igneous, sedimentary, and metamorphic processes discussed in the context of global tectonics. **Hours & Format**

Fall and/or spring: 15 weeks - 2 hours of lecture and 4 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

EPS C100 Communicating Ocean Science 4 Units

Terms offered: Spring 2020, Spring 2018, Spring 2016, Spring 2015 For undergraduates interested in improving their ability to communicate their scientific knowledge by teaching ocean science in elementary schools or science centers/aquariums. The course will combine instruction in inquiry-based teaching methods and learning pedagogy with six weeks of supervised teaching experience in a local school classroom or the Lawrence Hall of Science with a partner. Thus, students will practice communicating scientific knowledge and receive mentoring on how to improve their presentations.

Rules & Requirements

Prerequisites: One course in introductory biology, geology, chemistry, physics, or marine science required and interest in ocean science; junior, senior, or graduate standing; consent of instructor required for sophomores

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of fieldwork per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Rhew

Formerly known as: Earth and Planetary Science C100/Geography C146/Integrative Biology C100

Also listed as: GEOG C146/INTEGBI C100

EPS 101 Field Geology and Digital Mapping 4 Units

Terms offered: Fall 2025, Fall 2024, Fall 2023

Geological mapping, field observation, and problem-solving in the Berkeley hills and environs leading to original interpretation of geological processes and history from stratigraphic, structural, and lithological investigations. Integration of the Berkeley hills geology into the Coast Ranges and California as a whole through field trips to key localities. Training in digital field mapping, global positioning systems, and laser surveying. Interdisciplinary focus encourages participation by nonmajors. **Rules & Requirements**

Prerequisites: 50 or equivalent introductory course in Earth and Planetary Science

Hours & Format

Fall and/or spring: 15 weeks - 7 hours of fieldwork and 2 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam not required.

Formerly known as: Geology 101

EPS 102 History and Evolution of Planet Earth 4 Units

Terms offered: Fall 2025, Fall 2024, Fall 2023

Formation and evolution of the earth. Nucleosynthesis; formation of the solar system; planetary accretion; dating the earth and solar system; formation of the core, mantle, oceans, and atmosphere; plate tectonics; heat transfer and internal dynamics; stratigraphic record of environment, and evolution; climate history and climate change. **Rules & Requirements**

Prerequisites: 50

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

EPS 103 Introduction to Aquatic and Marine Geochemistry 4 Units

Terms offered: Spring 2024, Spring 2023, Spring 2022

Introduction to marine geochemistry: the global water cycle; processes governing the distribution of chemical species within the hydrosphere; ocean circulation; chemical mass balances, fluxes, and reactions in the marine environment from global to submicron scales; carbon system equilibrium chemistry and biogeochemistry of fresh and salt walter; applications of natural and anthropogenic stable and radioactive tracers; internal ocean processes. Students participate in a one day field trip to sample and analyze waters in the vicinity of Tomales Bay and Point Reyes.

3 hours of lecture and 1.5 hours of discussion week, and a 10 hour field trip.

Rules & Requirements

Prerequisites: Chemistry 1A, Mathematics 1A or 16A. C82 recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Bishop

EPS 104 Mathematical Methods in Geophysics 4 Units

Terms offered: Spring 2024, Spring 2023, Spring 2022 Linear systems. Linear inverse problems, least squares; generalized inverse, resolution; Fourier series, integral transforms; time series analysis, spherical harmonics; partial differntial equations of geophysics; functions of a complex variable; probability and significance tests, maximum likelihood methods. Intended for students in geophysics and other physical sciences.

Rules & Requirements

Prerequisites: Mathematics 53-54

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: Geophysics 104

EPS 108 Geodynamics 4 Units

Terms offered: Spring 2025, Spring 2023, Spring 2021 Basic principles in studying the physical properties of earth materials and the dynamic processes of the earth. Examples are drawn from tectonics, mechanics of earthquakes, etc., to augment course material. **Rules & Requirements**

Prerequisites: EPS 50, Physics 7A, or Mathematics 53, 54

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

EPS 109 Computer Simulations with Jupyter Notebooks 4 Units

Terms offered: Fall 2025, Fall 2023, Fall 2022

Introduction to modern computer simulation methods and their application to selected Earth and Planetary Science problems. In handson computer labs, students will learn about numerical algorithms, learn to program and modify provided programs, and display the solution graphically. This is an introductory course and no programming experience is required. Examples include fractals in geophysics, properties of materials at high pressure, celestial mechanics, and diffusion processes in the Earth. Topics range from ordinary and partial differential equations to molecular dynamics and Monte Carlo simulations.

Rules & Requirements

Prerequisites: Math 1A or equivalent

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

EPS 113 Biological Oceanography and Biogeochemistry 4 Units

Terms offered: Spring 2024, Spring 2023, Spring 2022 We will survey the biological oceanography underlying geochemical transformations in the sea. Students will develop a strong understanding of evolution, the central dogma of molecular biology, cell structure across the domains of life, population ecology, the metabolic strategies employed by marine organisms, and the biomarkers of life in the ocean. These biological concepts will be the foundation for understanding geochemical shifts as the earth was oxygenated, changes in inorganic nutrient pools with depth and location, nitrogen cycling, Southern Ocean silica leakage, the cryptic sulfur cycle, redox chemistry leveraged by organisms at hydrothermal vents, and the biological carbon pump. **Hours & Format**

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

EPS 114 Volcanology 4 Units

Terms offered: Not yet offered

The composition, generation, and cooling of magmas to form igneous rocks. The physical and thermodynamic properties of silicate liquids. **Rules & Requirements**

Credit Restrictions: Students will receive no credit for EPS 114 after completing EPS 214. A deficient grade in EPS 114 may be removed by taking EPS 214.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 4 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Wieser

EPS 115 Stratigraphy and Earth History 4 Units

Terms offered: Spring 2025, Spring 2022, Spring 2020 Collecting, analyzing, and presenting stratigraphic data; dating and correlating sedimentary rocks; recognizing ancient environments and reconstructing Earth history; seismic and sequence stratigraphy; event stratigraphy and neocatastrophism; applications of stratigraphy to climate change, petroleum geology, and archaeology. **Rules & Requirements**

Prerequisites: 50, 100A, 100B, or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Alvarez

Formerly known as: Geology 115

EPS 116 Structural Geology and Tectonics 3 Units

Terms offered: Fall 2024, Fall 2022, Fall 2020

Introduction to the geometry and mechanics of brittle and ductile geologic structures; their origins and genetic relation to stress fields and their use as kinematic indicators; case histories of selected regions to elucidate tectonic evolution in different plate tectonic settings. Laboratory exercises will focus on analysis of hand specimens and structural relations portrayed on geologic maps. Several trips to observe geologic structures in the field to supplement laboratory exercises. **Rules & Requirements**

Prerequisites: 50

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Instructor: Burgmann

EPS 117 Geomorphology 4 Units

Terms offered: Fall 2025, Fall 2024, Fall 2023 Quantitative examination of landforms, runoff generation, weathering, mechanics of soil erosion by water and wind, mass wasting, glacial and periglacial processes and hillslope evolution. **Rules & Requirements**

Prerequisites: Consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

EPS 118 Advanced Field Course 4 Units

Terms offered: Spring 2024, Spring 2022, Spring 2021 Advanced geological mapping, intensive field observation, and problem solving in the field areas selected by instructors. Includes preparation of final reports.

Rules & Requirements

Prerequisites: 50, 100A-100B, 101, or consent of instructor; 119 is strongly recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of discussion per week

 $\ensuremath{\textbf{Summer:}}$ 6 weeks - 7.5 hours of lecture and 5 hours of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam not required.

Instructor: Brimhall

Formerly known as: Geology 118

EPS 119 Geologic Field Studies 2 Units

Terms offered: Spring 2025, Fall 2023, Fall 2021 Two to four weekend field trips to localities of geological interest. **Rules & Requirements**

Prerequisites: 101 and consent of instructor

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 0 hours of fieldwork per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam not required.

Formerly known as: Geology 119

EPS 122 Physics of the Earth and Planetary Interiors 3 Units

Terms offered: Spring 2024, Spring 2022, Spring 2020 Gravity field, density distribution, and internal seismic structure of the Earth and planets. Constitution, composition, temperature distribution, and energetics of the Earth's interior. The geomagnetic field and the geodynamo, and concepts in seismic imaging and geophysical fluid dynamics. This

course welcomes physics, computer science, engineering and applied maths majors.

Rules & Requirements

Prerequisites: Physics 7A-B, Mathematics 53-54, or equivalent

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

EPS 124 Isotopic Geochemistry 4 Units

Terms offered: Spring 2025, Spring 2023, Spring 2021 An overview of the use of natural isotopic variations to study earth, planetary, and environmental problems. Topics include geochronology, cosmogenic isotope studies of surficial processes, radiocarbon and the carbon cycle, water isotopes in the water cycle, and radiogenic and stable isotope studies of planetary evolution, mantle dynamics, volcanoes, groundwater, and geothermal systems. The course begins with a short introduction to nuclear processes and includes simple mathematical models used in isotope geochemistry. **Rules & Requirements**

Prerequisites: Chemistry 1A-1B, Mathematics 1A-1B

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: David Shuster

EPS 125 Stable Isotope Geochemistry 4 Units

Terms offered: Spring 2024, Spring 2022, Spring 2020

This course provides an introduction to the principles of stable isotope geochemistry and the application of these principles to problems in Earth and planetary science. This course provides a foundation for the physical, chemical, and biological processes that cause isotopes to fractionate in nature including the kinetic theory of gases, equilibrium thermodynamics, and the kinetics of chemical reactions. These principles will be applied to the study of problems related to the water cycle, paleoclimate, igneous petrology, biogeochemical cycles in the past and present, and planetary science.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Stolper

EPS 127 Coastal Processes 3 Units

Terms offered: Not yet offered

This course explores the dynamic processes that shape coastal landscapes, with a primary focus

on California's coasts. We will cover fundamentals of wave mechanics and sediment transport

and investigate the physical forces that shape coastal environments. Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Douglas

EPS C129 Biometeorology 3 Units

Terms offered: Fall 2024, Fall 2022, Fall 2020

This course describes how the physical environment (light, wind, temperature, humidity) of plants and soil affects the physiological status of plants and how plants affect their physical environment. Using experimental data and theory, it examines physical, biological, and chemical processes affecting transfer of momentum, energy, and material (water, CO2, atmospheric trace gases) between vegetation and the atmosphere. Plant biometeorology instrumentation and measurements are also discussed.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Baldocchi

Also listed as: ESPM C129

EPS 130 Strong Motion Seismology 3 Units

Terms offered: Spring 2025, Spring 2024, Spring 2023 Generation of seismic waves. Synthetic accelerograms. Instrumentation to measure strong ground motion. Estimation of seismic motion at a site. Ground motion spectra. Influence of soils and geologic structures. Seismic risk mapping.

Rules & Requirements

Prerequisites: Mathematics 54, or equivalent and consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: Geophysics 130

EPS 131 Geochemistry 4 Units

Terms offered: Fall 2025, Fall 2024, Fall 2023

Chemical reactions in geological processes. Thermodynamic methods for predicting chemical equilibria in nature. Isotopic and chemical tracers of transport processes in the earth. Chemistry of the solid earth, oceans, and atmosphere.

Rules & Requirements

Prerequisites: 100A-100B, Chemistry 1A-1B

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: David Shuster

EPS 150 Case Studies in Earth Systems 2 Units

Terms offered: Fall 2025, Spring 2025, Fall 2024

Analysis and discussion of three research problems on the interactions of solid earth, hydrologic, chemical, and atmospheric processes. Emphasis is on the synthesis and application of the student's disciplinary knowledge to a new integrative problem in the earth sciences. **Rules & Requirements**

Prerequisites: 50, senior standing or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam not required.

EPS C162 Planetary Astrophysics 4 Units

Terms offered: Fall 2025, Spring 2025, Spring 2024

Physics of planetary systems, both solar and extra-solar. Star and planet formation, radioactive dating, small-body dynamics and interaction of radiation with matter, tides, planetary interiors, atmospheres, and magnetospheres. High-quality oral presentations may be required in addition to problem sets and a final exam. **Rules & Requirements**

Prerequisites: Mathematics 53, 54; Physics 7A-7B-7C

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Chiang, Dressing, Militzer

Also listed as: ASTRON C162

EPS C178 Applied Geophysics 3 Units

Terms offered: Fall 2024, Fall 2022, Fall 2021 The theory and practice of geophysical methods for determining the subsurface distribution of physical rock and soil properties. Measurements of gravity and magnetic fields, electrical and electromagnetic fields, and seismic velocity are interpreted to map the subsurface distribution of density, magnetic susceptibility, electrical conductivity, and mechanical properties. **Hours & Format**

Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Rector

Also listed as: CIV ENG C178

EPS C180 Air Pollution 3 Units

Terms offered: Spring 2024, Spring 2023, Spring 2022

This course is an introduction to air pollution and the chemistry of earth's atmosphere. We will focus on the fundamental natural processes controlling trace gas and aerosol concentrations in the atmosphere, and how anthropogenic activity has affected those processes at the local, regional, and global scales. Specific topics include stratospheric ozone depletion, increasing concentrations of green house gasses, smog, and changes in the oxidation capacity of the troposphere.

Rules & Requirements

Prerequisites: CHEM 1A, CHEM 1B, and PHYSICS 8A or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Goldstein

Also listed as: CIV ENG C106/ESPM C180

EPS C181 Atmosphere, Ocean, and Climate Dynamics 3 Units

Terms offered: Fall 2025, Fall 2024, Fall 2023

This course examines the processes that determine the structure and circulation of the Earth's atmosphere and ocean, and how they control regional and global climate. The approach is deductive rather than descriptive: to determine the properties and behavior of the atmosphere and ocean based on the laws of physics and fluid dynamics. Topics will include interaction between radiation and atmospheric composition; the role of water in the energy and radiation balance; governing equations for atmospheric and oceanic motion, mass conservation, and thermodynamic energy balance; geostrophic flow, quasigeostrophic motion, baroclinic instability, and dynamics of extratropical cyclones and wind-driven ocean gyres.

Rules & Requirements

Prerequisites: Mathematics 53, 54; Physics 7A-7B-7C

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructors: Chiang, Fung, Boos

Also listed as: GEOG C139

EPS C182 Atmospheric Chemistry and Physics Laboratory 3 Units

Terms offered: Spring 2024, Spring 2023, Spring 2022 Fluid dynamics, radiative transfer, and the kinetics, spectroscopy, and measurement of atmospherically relevant species are explored through laboratory experiments, numerical simulations, and field observations. **Rules & Requirements**

Prerequisites: Earth and Planetary Science 50 and 102 with grades of C- or higher (one of which may be taken concurrently) or two of the following: Chemistry 120A, 120B, C130, or 130B with grades of C- or higher (one of which may be taken concurrently)

Credit Restrictions: Deficiency in C182 may be removed by successfully completing 125. Consent of instructor is required to enroll in C182 after completing 125.

Hours & Format

Fall and/or spring: 15 weeks - 1.5 hours of lecture and 5 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Formerly known as: Chemistry C182/Earth and Planetary Science C182

Also listed as: CHEM C182

EPS C183 Carbon Cycle Dynamics 3 Units

Terms offered: Spring 2025, Fall 2023, Fall 2021

The focus is the (unsolved) puzzle of the contemporary carbon cycle. Why is the concentration of atmospheric CO2 changing at the rate observed? What are the terrestrial and oceanic processes that add and remove carbon from the atmosphere? What are the carbon management strategies under discussion? How can emission protocols be verified? Students are encouraged to gain hands-on experience with the available data, and learn modeling skills to evaluate hypotheses of carbon sources and sinks.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam not required.

Instructor: Fung

Also listed as: ESPM C170

EPS H195 Senior Honors Course 3 Units

Terms offered: Fall 2024, Fall 2014, Spring 2013

Original research and preparation of an acceptable thesis. May be taken during two consecutive semesters of senior year and may be substituted for six units of the upper division requirement with consent of major adviser.

Rules & Requirements

Prerequisites: Limited to honors candidates

Repeat rules: Course may be repeated for credit up to a total of 6 units.

Hours & Format

Fall and/or spring: 15 weeks - 0-0 hours of independent study per week

Summer:

6 weeks - 0-0 hours of independent study per week 8 weeks - 0-0 hours of independent study per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Letter grade. Final exam not required.

EPS 197 Field Study 1 - 4 Units

Terms offered: Fall 2010

Written proposal signed by faculty sponsor and approved by major faculty advisor. Supervised experience relevant to specific aspects of students' EPS specialization in off-campus organization. Regular meetings with faculty sponsor and written report required.

Rules & Requirements

Prerequisites: Upper division standing and declared major in Earth and Planetary Science

Credit Restrictions: Enrollment is restricted; see the Introduction to Courses and Curricula section of this catalog.

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 3-12 hours of fieldwork per week

Summer:

6 weeks - 7.5-30 hours of fieldwork per week 8 weeks - 6-24 hours of fieldwork per week 10 weeks - 4.5-18 hours of fieldwork per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

EPS 198 Directed Group Study 1 - 4 Units

Terms offered: Spring 2024, Fall 2023, Spring 2023 Group studies of selected topics which vary from semester to semester. **Rules & Requirements**

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

Formerly known as: Geology 198

EPS 199 Supervised Independent Study and Research 1 - 4 Units

Terms offered: Spring 2025, Fall 2020, Fall 2015 Enrollment is restricted by regulations. **Rules & Requirements**

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-4 hours of independent study per week

Summer:

6 weeks - 2.5-10 hours of independent study per week 8 weeks - 1.5-7.5 hours of independent study per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Undergraduate

Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.

EPS 200 Problems in Hydrogeology 4 Units

Terms offered: Spring 2022, Spring 2021, Fall 2019 Current problems in fluid flow, heat flow, and solute transport in the earth. Pressure- and thermal-driven flow, instability, convection, interaction between fluid flow and chemical reactions. Pore pressure; faulting and earthquakes; diagenesis; hydrocarbon migration and trapping; flow-associated mineralization; contaminant problems. **Rules & Requirements**

Prerequisites: Physics 7A-7B, Chemistry 1A-1B, Math 53 and 54; open to senior undergraduates with appropriate prerequisites

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geophysics C200 and Geology C200

EPS 203 Introduction to Aquatic and Marine Geochemistry 4 Units

Terms offered: Spring 2023, Spring 2022, Spring 2021

Introduction to marine geochemistry: the global water cycle; processes governing the distribution of chemical species within the hydrosphere; ocean circulation; chemical mass balances, fluxes, and reactions in the marine environment from global to submicron scales; carbon system equilibrium chemistry and biogeochemistry of fresh and salt walter; applications of natural and anthropogenic stable and radioactive tracers; internal ocean processes. Students participate in a one day field trip to sample and analyze waters in the vicinity of Tomales Bay and Point Reyes. 3 hours of lecture and 1.5 hours of discussion week, and a 10 hour field trip.

Rules & Requirements

Prerequisites: Chemistry 1A, Mathematics 1A, or 16A. C82 recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: Bishop

EPS 204 Elastic Wave Propagation 3 Units

Terms offered: Fall 2012, Fall 2007, Fall 2004

Wave propagation in elastic solids; effects of anelasticity and anistropy; representation theorems; reflection and refraction; propagation in layered media; finite-difference and finite-element methods.

Rules & Requirements

Prerequisites: 104 or equivalent; 121; Physics 105

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geophysics 204

EPS 207 Laboratory in Observational Seismology 3 Units

Terms offered: Fall 2023, Spring 2022, Spring 2021 Group problem solving of current seismological topics. Analysis, inversion, and numerical modeling of seismic waveform data to investigate questions regarding the physics of the earthquake source and seismic wave propagation. Application of current developments and techniques in seismological research.

Rules & Requirements

Prerequisites: 121 or 130 or 204 or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geophysics 207

EPS 209 Matlab Applications in Earth Science 2 Units

Terms offered: Spring 2011, Fall 2002

Introduction to Matlab programming with toolboxes. Applications come from Earth sciences and related fields including biology. Topics range from image processing, riverbed characterization, landslide risk analysis, signal processing, geospatial and seismic data analysis, and machine learning to parallel computation. Designed for beginning graduate students.

Rules & Requirements

Prerequisites: Some programming experience in any language

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of lecture and 1 hour of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

EPS 210 Exploration, Ore Petrology, and Geochemistry 4 Units

Terms offered: Fall 2012, Fall 2011, Spring 2010

Overview of geological, petrological, and geochemical analysis of ore forming processes including sedimentary, magmatic, hydrothermal, and geothermal resources. Geochemical rock buffers and hydrothermal phase equilibria. Electro-geochemistry of near surface oxidation of primary ores related to climate change, hydrological evolution, and tectonics. Exploration for earth materials for conventional and sustainable technologies including multiple junction semiconductor photo-voltaic cells. Mass balance modeling of ore-forming systems and soils. Environmental management of exploration sites. Lab includes macroscopic and Xray identification of ore and alteration minerals and ore microscopy. Field trips use digital GIS mapping methods for rock type, structure, mineralization, and wall rock alteration. Integration interpretation of geophysics with geology.

Rules & Requirements

Prerequisites: 101 or 271; 100A-100B; 118 recommended

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: Brimhall

Formerly known as: Geology 205

EPS 212 Advanced Stratigraphy and Tectonics 3 Units

Terms offered: Spring 2011, Spring 2009, Spring 2008 Evolution of the earth in response to internal, surficial and extraterrestrial processes.

Rules & Requirements

Prerequisites: Consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of seminar per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geology 212

EPS 214 Igneous Petrology 4 Units

Terms offered: Spring 2024, Spring 2020, Spring 2017 The composition, generation, and cooling of magmas to form igneous rocks. The physical and thermodynamic properties of silicate liquids. **Rules & Requirements**

Prerequisites: Consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 4 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geology 214

EPS 215 Geomorphology 4 Units

Quantitative examination of landforms, runoff generation, weathering, mechanics of soil erosion by water and wind, mass wasting, glacial and periglacial processes and hillslope evolution as well as principles of scientific writing and communication.

Rules & Requirements

Credit Restrictions: Students will receive no credit for EPS 215 after completing EPS 117, or EPS 217. A deficient grade in EPS 215 may be removed by taking EPS 117, or EPS 217.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: MADISON DOUGLAS

Terms offered: Fall 2025

EPS 216 Active Tectonics 3 Units

Terms offered: Fall 2025, Fall 2023, Fall 2021

This course is a graduate course designed to introduce students in the earth sciences to the geology of earthquakes, including tectonic geomorphology, paleoseismology and the analysis and interpretation of geodetic measurements of active deformation. While the focus will be primarily on seismically active faults, we will also discuss deformation associated with landslides, regional isostatic rebound, and volcanoes, as well as measurements of global plate motions. We will address methods and applications in paleoseismology, tectonic geomorphology, and geodesy. The course will address measurement techniques (e.g., GPS, leveling, etc.), data analysis and inversion, and subsequent modeling and interpretation of the data. The integration of geodetic measurements with geologic and seismologic data allows an improved understanding of active processes.

Rules & Requirements

Prerequisites: 116 or equivalent, Physics 7A or equivalent, or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geology 207

EPS 217 Fluvial Geomorphology 4 Units

Terms offered: Spring 2020, Spring 2019, Spring 2018 Application of fluid mechanics to sediment transport and development of river morphology. Form and process in river meanders, the pool-riffle sequence, aggradation, grade, and baselevel. **Rules & Requirements**

Prerequisites: Consent of instructor

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geology 217

EPS 220 Advanced Concepts in Mineral Physics 3 Units

Terms offered: Fall 2022, Fall 2021, Spring 2020 A combined seminar and lecture course covering advanced topics related to mineral physics. The interface between geophysics with the other physical sciences is emphasized. Topics vary each semester. **Rules & Requirements**

Prerequisites: Consent of instructor

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geophysics 220

EPS 224 Isotopic Geochemistry 4 Units

Terms offered: Spring 2025, Spring 2024, Spring 2023 An overview of the use of natural isotopic variations to study earth, planetary, and environmental problems. Topics include geochronology, cosmogenic isotope studies of surficial processes, radiocarbon and the carbon cycle, water isotopes in the water cycle, and radiogenic and stable isotope studies of planetary evolution, mantle dynamics, volcanoes, groundwater, and geothermal systems. The course begins with a short introduction to nuclear processes and includes simple mathematical models used in isotope geochemistry. **Rules & Requirements**

Prerequisites: Chemistry 1A-1B, Mathematics 1A-1B

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: David Shuster

EPS 225 Topics in High-Pressure Research 2 Units

Terms offered: Spring 2023, Spring 2022, Fall 2021

Analysis of current developments and techniques in experimental and theoretical high-pressure research, with applications in the physical sciences. Topics vary each semester. **Rules & Requirements**

Prerequisites: Consent of instructor

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geophyics 225

EPS 229 Introduction to Climate Modeling 3 Units

Terms offered: Fall 2022, Spring 2021, Spring 2018

This course emphasizes the fundamentals of the climate system via a hierarchy of climate models. Topics will include energy balance, numerical techniques, climate observations, atmospheric and oceanic circulation and heat transports, and parameterizations of eddy processes. The model hierarchy will also explore nonlinear and stochastic processes, and biogeochemistry. Students will build computational models to investigate climate feedbacks, climate sensitivity, and response times. **Rules & Requirements**

Repeat rules: Course may be repeated for credit with instructor consent.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: Fung

Formerly known as: Earth and Planetary Science C229/Integrative Biology C229

EPS 230 Radiation and Its Interactions with Climate 3 Units

Terms offered: Fall 2023, Fall 2021, Fall 2019

Introduction to role of radiative processes in structure and evolution of the climate system. Electromagnetism; solar and terrestrial radiation; interactions of radiation with Earth's atmosphere, ocean, and land surface; greenhouse and runaway greenhouse effects; radiative balance of the climate system; energy-balance climate models; effects of clouds and aerosols; interactions of radiation with atmospheric and oceanic dynamics; radiative processes and paleoclimate; radiative processes and anthropogenic global warming.

Rules & Requirements

Prerequisites: Physics 105, 110A, 110B

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: Collins

EPS 236 Geological Fluid Mechanics 4 Units

Terms offered: Fall 2023, Fall 2022, Fall 2021

An advanced course in the application of fluid mechanics in the earth sciences, with emphasis on the design and scaling of laboratory and numerical models. Principals of inviscid and viscous fluid flow; dynamic similarity; boundary layers; convection; instabilities; gravity currents; mixing and chaos; porous flow. Applications to mantle convection, magma dynamics, atmosphere and ocean dynamics, sediment/debris flows, and hydrogeology. Topics may vary from year to year. **Rules & Requirements**

Prerequisites: Continuum/fluid mechanics at the level of 108 or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geophysics 238

EPS C241 Stable Isotope Ecology 5 Units

Terms offered: Spring 2024, Spring 2023, Spring 2022, Spring 2021, Spring 2020, Spring 2019, Spring 2016

Course focuses on principles and applications of stable isotope chemistry as applied to the broad science of ecology. Lecture topics include principles of isotope behavior and chemistry, and isotope measurements in the context of terrestrial, aquatic, and marine ecological processes and problems. Students participate in a set of laboratory exercises involving preparation of samples of choice for isotopic analyses, the use of the mass spectrometer and optical analysis systems, and the anlaysis of data.

Rules & Requirements

Prerequisites: Graduate standing

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructors: Amundson, Dawson, Mambelli

Also listed as: ESPM C220/INTEGBI C227

EPS C242 Glaciology 4 Units

Terms offered: Spring 2024, Spring 2021, Spring 2020, Spring 2018 A review of the mechanics of glacial systems, including formation of ice masses, glacial flow mechanisms, subglacial hydrology, temperature and heat transport, global flow, and response of ice sheets and glaciers. We will use this knowledge to examine glaciers as geomorphologic agents and as participants in climate change.

Rules & Requirements

Prerequisites: Graduate standing or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: Cuffey

Formerly known as: 241

Also listed as: GEOG C241

EPS C249 Solar System Astrophysics 3 Units

Terms offered: Fall 2019, Fall 2018, Fall 2017

The physical foundations of planetary sciences. Topics include planetary interiors and surfaces, planetary atmospheres and magnetospheres, and smaller bodies in our solar system. The physical processes at work are developed in some detail, and an evolutionary picture for our solar system, and each class of objects, is developed. Some discussion of other (potential) planetary systems is also included. **Rules & Requirements**

Prerequisites: 149, 169, C160A or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructors: Chiang, de Pater

Also listed as: ASTRON C249

EPS 250 Advanced Topics in Earth and Environmental Sciences 3 Units

Terms offered: Fall 2016, Fall 2014, Fall 2013 Review of recent literature and discussion of ongoing research at the interface between earth science and environmental science. **Rules & Requirements**

Prerequisites: Consent of instructor

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of seminar per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

EPS 251 Carbon Cycle Dynamics 3 Units

Terms offered: Spring 2025, Fall 2023, Fall 2021

In this course, we will focus on the (unsolved) puzzle of the contemporary carbon cycle. Why is the concentration of atmospheric CO2 changing at the rate observed? What are the terrestrial and oceanic processes that add and remove carbon from the atmosphere? What are the processes responsible for long-term storage of carbon on land and in the sea? Emphasis will be placed on the observations and modeling needed to evaluate hypotheses about carbon sources and sinks. Past records will be examined for clues about sensitivity of carbon processes to climate variations.

Hours & Format

Fall and/or spring: 15 weeks - 6 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geology 219

EPS 254 Advanced Topics in Seismology and Geophysics 1 Unit

Terms offered: Fall 2025, Spring 2025, Fall 2024

Lectures on various topics representing current advances in seismology and geophysics, including local crustal and earthquake studies, regional tectonics, structure of the earth's mantle, and core and global dynamics. **Rules & Requirements**

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geophysics 250

EPS 255 Advanced Topics in Earth and Planetary Science 1 Unit

Terms offered: Fall 2025, Spring 2025, Fall 2024 Lectures on various topics representing current advances in all aspects of earth and planetary science. **Rules & Requirements**

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1.5 hours of colloquium per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Offered for satisfactory/unsatisfactory grade only.

EPS 256 Earthquake of the Week 2 Units

Terms offered: Fall 2025, Spring 2025, Fall 2024 Each week, the seismicity of the previous week, in California and worldwide, is reviewed. Tectonics of the region as well as source parameters and waveforms of interest are discussed and placed in the context of ongoing research in seismology. **Rules & Requirements**

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Formerly known as: Geophysics 255

EPS 260 Research in Earth Science 2 Units

Terms offered: Fall 2025, Fall 2024, Fall 2023 Weekly presentations to introduce new graduate students and senior undergraduates to current research conducted in the Department of Earth and Planetary Science. **Rules & Requirements**

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Offered for satisfactory/unsatisfactory grade only.

EPS 271 Field Geology and Digital Mapping 4 Units

Terms offered: Fall 2025, Fall 2024, Fall 2023

Geological mapping, field observation, and problem solving in the Berkeley hills and environs leading to original interpretation of geological processes and history from stratigraphic, structural, and lithological investigations. Integration of the Berkeley hills geology into the tectonic and paleo-climatic record of the Coast Ranges and California as a whole through systematic field mapping in key localities and reading of original literature. Training in digital field mapping, use of digital base maps, and use of global positioning systems.

Rules & Requirements

Prerequisites: 50 or equivalent introductory course for majors

Credit Restrictions: Students will receive no credit for 271 after taking 101.

Hours & Format

Fall and/or spring: 15 weeks - 7 hours of fieldwork and 2 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: Brimhall

EPS C276 Seismic Hazard Analysis and Design Ground Motions 3 Units

Terms offered: Spring 2025, Spring 2023, Spring 2021 Deterministic and probabilistic approaches for seismic hazard analysis. Separation of uncertainty into aleatory variability and epistemic uncertainty. Discussion of seismic source and ground motion characterization and hazard computation. Development of time histories for dynamic analyses of structures and seismic risk computation, including selection of ground motion parameters for estimating structural response, development of fragility curves, and methods for risk calculations.

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructor: Abrahamson

Also listed as: CIV ENG C276

EPS 280 Research 1 - 12 Units

Terms offered: Fall 2025, Summer 2025 3 Week Session, Spring 2025 Individual conferences to be arranged. Provides supervision in the preparation of an original research paper or dissertation. **Rules & Requirements**

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-12 hours of independent study per week

Summer:

6 weeks - 3-30 hours of independent study per week 8 weeks - 2-23 hours of independent study per week 10 weeks - 2-18 hours of independent study per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

EPS 290 Seminar 1 - 6 Units

Terms offered: Fall 2025, Spring 2025, Fall 2024 Topics will be announced each semester. **Rules & Requirements**

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 2-6 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

EPS C292 Planetary Science Seminar 1 Unit

Terms offered: Fall 2025, Spring 2025, Fall 2024, Spring 2024, Fall 2023 The departments of Astronomy and Earth and Planetary Science offer a joint research seminar in advanced topics in planetary science, featuring speakers drawn from graduate students, postdoctoral researchers,

faculty, and visiting scholars. Topics will span planetary interiors; surface morphology; atmospheres; dynamics; planet formation; and astrobiology. Speakers will vary from semester to semester. Meetings will be held once a week for 1 hour each, and the schedule of speakers will be determined on the first day of class. To pass the class, participants will be required to give a 30-minute presentation, either on their own research or on recent results from the literature.

Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-1 hours of seminar per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Offered for satisfactory/unsatisfactory grade only.

Also listed as: ASTRON C292

EPS C295Z Energy Solutions: Carbon Capture and Sequestration 3 Units

Terms offered: Fall 2018, Spring 2017, Spring 2015, Spring 2014, Spring 2013

After a brief overview of the chemistry of carbon dioxide in the land, ocean, and atmosphere, the course will survey the capture and sequestration of CO2 from anthropogenic sources. Emphasis will be placed on the integration of materials synthesis and unit operation design, including the chemistry and engineering aspects of sequestration. The course primarily addresses scientific and engineering challenges and aims to engage students in state-of-the-art research in global energy challenges.

Rules & Requirements

Prerequisites: Chemistry 4B or 1B, Mathematics 1B, and Physics 7B, or equivalents

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: Letter grade.

Instructors: Bourg, DePaolo, Long, Reimer, Smit

Also listed as: CHEM C236/CHM ENG C295Z

EPS 298 Directed Group Study for Graduates 1 - 9 Units

Terms offered: Fall 2025, Fall 2024, Fall 2023 Rules & Requirements

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 0 hours of independent study per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Graduate

Grading: The grading option will be decided by the instructor when the class is offered.

Formerly known as: Geology 298

EPS C301 Communicating Ocean Science 4 Units

Terms offered: Spring 2021, Spring 2020, Spring 2019, Spring 2015, Fall 2014, Spring 2014, Spring 2013

For graduate students interested in improving their ability to communicate their scientific knowledge by teaching ocean science in elementary schools or science centers/aquariums. The course will combine instruction in inquiry-based teaching methods and learning pedagogy with six weeks of supervised teaching experience in a local school classroom or the Lawrence Hall of Science with a partner. Thus, students will practice communicating scientific knowledge and receive mentoring on how to improve their presentations.

Rules & Requirements

Prerequisites: One course in introductory biology, geology, chemistry, physics, or marine science required and interest in ocean science, junior, senior, or graduate standing; consent of instructor required for sophomores

Hours & Format

Fall and/or spring: 15 weeks - 2.5 hours of lecture, 1 hour of discussion, and 2 hours of fieldwork per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Professional course for teachers or prospective teachers

Grading: Letter grade.

Instructor: Ingram

Also listed as: GEOG C301/INTEGBI C215

EPS 375 Professional Preparation: Supervised Teaching of Geology and Geophysics 1 - 6 Units

Terms offered: Fall 2021, Fall 2020, Fall 2019 Discussion, curriculum, class observation, and practice teaching in geology, geophysics, and earth science. **Rules & Requirements**

Prerequisites: Graduate standing and appointment as graduate student instructor

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1 hour of discussion per week

Additional Details

Subject/Course Level: Earth and Planetary Science/Professional course for teachers or prospective teachers

Grading: Offered for satisfactory/unsatisfactory grade only.

Formerly known as: Earth and Planetary Science 300