Nutritional Sciences: Physiology and Metabolism

Bachelor of Science (BS)
The Department of Nutritional Sciences and Toxicology offers three undergraduate major program specializations: Physiology and Metabolism, Dietetics, and Toxicology leading to a Bachelor of Science (BS) degree. NOTE: The Nutritional Science - Dietetics major specialization is in the process of transitioning to a graduate program following the ACEND guidelines which will require a graduate degree for participation in the required dietetic internship for licensure. Students graduating after Spring 2023 are encouraged to pursue the Physiology and Metabolism specialization in the major, as described below.

The Physiology and Metabolism and Toxicology specializations offer ideal preparations for health-related careers such as medicine, pharmacy, optometry, and dentistry. The curricula include many courses required for professional school admission. NST graduates who have entered health-related professional schools report appreciation for the in-depth preparation afforded by these specializations.

Now is an exciting time to explore the sciences of nutrition and toxicology. The media have highlighted many questions about the role of diet in development and aging, the safety of genetically modified foods, links among diet, cancer, and chronic diseases, and the problems of global malnutrition.

The curriculum, driven by NST faculty research, covers a breadth of topics including functions and mechanisms of nutrient actions to the benefits and hazards of chemical agents, cultural and socio-economic determinants of human diets, and development of programs and policies to address human and environmental health and safety.

Overview of Specialization
The Physiology and Metabolism specialization provides a strong foundation in the biological and chemical sciences. The advanced course work focuses on the biochemistry and physiology of nutrients, phytochemicals, and diet-borne toxicants. The Physiology and Metabolism specialization addresses the following topics: nutrient absorption, distribution, and metabolism; functions of nutrients in human health and disease; cellular and molecular regulatory mechanisms by which humans respond to changes in diet; dietary patterns related to health and disease; conceptual and technical processes of nutrition research.

Admission to the Major
Advice on admission for freshmen and transfer students can be found on the Rausser College of Natural Resources Prospective Student website (https://nature.berkeley.edu/prospective-students/). Freshmen students apply to the Nutritional Science B.S. major and then declare their specialization in Physiology and Metabolism once they have completed the required subset of prerequisites for this major specialization (https://nature.berkeley.edu/sites/default/files/FINAL%2520FOR%2520CNR%2520Student%2520Declaring%2520Major%25202011-15.pdf). Freshmen applying to Rausser College may also select the Rausser College undeclared option and declare the major by the end of their fourth semester. Transfer students may apply directly to the major and indicate their intended specialization through the UC application.

Information for current Berkeley students who would like to declare the major after admission, including information on a change of major or change of college, please see Rausser College's Change of College page (https://nature.berkeley.edu/advising/change-college/).

Rausser College Honors Program
The honors program is individual research, NUSCTX H196, for two semesters under the supervision of a faculty member. The supervised independent honors research is specific to aspects of the Nutritional Sciences and Toxicology major, followed by an oral presentation, and written thesis report. Acceptance in the Rausser College Honors Program is required through an application process. Students who are interested in the Honors program should apply during their junior or senior year.

Minor Program
The department offers a minor program in Nutritional Sciences. The course work for the minor addresses topics in Human Nutrition and Nutrient Function. Elective options range from Nutrition in the Community to Metabolic Regulation to Medical Nutrition Therapy. The minor is best suited for students already pursuing a bioscience degree: a background in chemistry, organic chemistry, biology, and biochemistry is necessary to be prepared to do upper division work in this field. Visit the Nutritional Sciences minor page (https://nature.berkeley.edu/advising/minors/nutritional-sciences/#:~:text=The%20Department%20of%20Nutritional%20Sciences,Metabolic%20Regulation%20to%20Human%20Diet) for information regarding how to declare the minor.

In addition to the University, campus, and college requirements, listed on the College Requirements tab, students must fulfill the below requirements specific to their major program.

All students must complete R1A & R1B (or equivalent Reading and Comprehension course) before the end of their Sophomore year.

NOTE: The curriculum has been revised effective Fall 2016. Students admitted prior to Fall 16 and following the previous curriculum should refer to the 20 (http://guide.berkeley.edu/archive/2015-16/undergraduate/degree-programs/nutritional-science/#majorrequirementstext) 15-16 Guide (http://guide.berkeley.edu/archive/2015-16/undergraduate/degree-programs/nutritional-science/#majorrequirementstext)

The Rausser College of Natural Resources (RCNR) Undergraduate Handbook (https://nature.berkeley.edu/handbook/) serves as a guide to the academic policies and information that students need in order to be successful while completing their coursework at Berkeley:

Physiology and Metabolism Specialization
For Breadth, you are required to take 14 additional units of course work in American Cultures, Arts & Literature, Historical Studies, International Studies, Philosophy & Values, Social & Behavioral Sciences, or Foreign Language. Please refer to the LS& seven course breadth categories here (https://lsadvising.berkeley.edu/seven-course-breadth/):
Lower Division Requirements

Select one sequence from the following:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 16A</td>
<td>4</td>
</tr>
<tr>
<td>& MATH 16B</td>
<td>4</td>
</tr>
<tr>
<td>& STAT 2</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1A</td>
<td>4</td>
</tr>
<tr>
<td>& MATH 1B</td>
<td>4</td>
</tr>
<tr>
<td>& STAT 2</td>
<td>4</td>
</tr>
<tr>
<td>MATH 10A</td>
<td>5</td>
</tr>
<tr>
<td>& MATH 10B</td>
<td>5</td>
</tr>
<tr>
<td>NUSCTX 10</td>
<td>4</td>
</tr>
<tr>
<td>or NUSCTX 10</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Human Nutrition</td>
<td></td>
</tr>
<tr>
<td>MCCELLBI 32</td>
<td>4</td>
</tr>
<tr>
<td>& 32L</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Human Physiology</td>
<td></td>
</tr>
<tr>
<td>BIOLOGY 1A</td>
<td>4</td>
</tr>
<tr>
<td>& 1AL</td>
<td>4</td>
</tr>
<tr>
<td>General Biology Lecture</td>
<td></td>
</tr>
<tr>
<td>& General Biology Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Complete all of the following:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A</td>
<td>5</td>
</tr>
<tr>
<td>& 1AL</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>5</td>
</tr>
<tr>
<td>& 3AL</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 3B</td>
<td>5</td>
</tr>
<tr>
<td>& 3BL</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 8A</td>
<td>4</td>
</tr>
<tr>
<td>NUSCTX 10</td>
<td>3</td>
</tr>
<tr>
<td>or NUSCTX 10</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Human Nutrition</td>
<td></td>
</tr>
<tr>
<td>MCCELLBI 32</td>
<td>5</td>
</tr>
<tr>
<td>& 32L</td>
<td>5</td>
</tr>
<tr>
<td>Introduction to Human Physiology Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIOLOGY 1A</td>
<td>5</td>
</tr>
<tr>
<td>& 1AL</td>
<td>5</td>
</tr>
<tr>
<td>General Biology Lecture</td>
<td></td>
</tr>
<tr>
<td>& General Biology Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Upper Division Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCCELLBI 102</td>
<td>4</td>
</tr>
<tr>
<td>Survey of the Principles of Biochemistry and Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>NUSCTX 103</td>
<td>4</td>
</tr>
<tr>
<td>Nutrient Function and Metabolism</td>
<td></td>
</tr>
<tr>
<td>NUSCTX 160</td>
<td>4</td>
</tr>
<tr>
<td>Metabolic Bases of Human Health and Diseases</td>
<td></td>
</tr>
<tr>
<td>NUSCTX 170</td>
<td>4</td>
</tr>
<tr>
<td>Experimental Nutrition Laboratory</td>
<td></td>
</tr>
<tr>
<td>NUSCTX 190</td>
<td>1</td>
</tr>
<tr>
<td>Introduction to Research in Nutritional Sciences</td>
<td></td>
</tr>
<tr>
<td>Electives: Select 14 units from the Approved Electives List:</td>
<td></td>
</tr>
<tr>
<td>NUSCTX 104</td>
<td>2</td>
</tr>
<tr>
<td>Food, Culture, and the Environment</td>
<td></td>
</tr>
<tr>
<td>NUSCTX W104</td>
<td>3</td>
</tr>
<tr>
<td>Food, Culture, and the Environment AC</td>
<td></td>
</tr>
<tr>
<td>NUSCTX 108A</td>
<td>3</td>
</tr>
<tr>
<td>Introduction and Application of Food Science</td>
<td></td>
</tr>
<tr>
<td>NUSCTX 110</td>
<td>4</td>
</tr>
<tr>
<td>Toxicology</td>
<td></td>
</tr>
<tr>
<td>NUSCTX C114</td>
<td>3</td>
</tr>
<tr>
<td>Pesticide Chemistry and Toxicology</td>
<td></td>
</tr>
<tr>
<td>NUSCTX 115</td>
<td>2</td>
</tr>
<tr>
<td>Principles of Drug Action</td>
<td></td>
</tr>
<tr>
<td>NUSCTX 161A</td>
<td>4</td>
</tr>
<tr>
<td>Medical Nutrition Therapy</td>
<td></td>
</tr>
<tr>
<td>NUSCTX 161B</td>
<td>4</td>
</tr>
<tr>
<td>Medical Nutrition Therapy II</td>
<td></td>
</tr>
<tr>
<td>NUSCTX 166</td>
<td>3</td>
</tr>
<tr>
<td>Nutrition in the Community</td>
<td></td>
</tr>
<tr>
<td>NUSCTX 193</td>
<td>1</td>
</tr>
<tr>
<td>Introduction to Research in Toxicology</td>
<td></td>
</tr>
<tr>
<td>NUSCTX H196</td>
<td>4</td>
</tr>
<tr>
<td>Honors Research</td>
<td></td>
</tr>
<tr>
<td>NUSCTX 199</td>
<td>4-8</td>
</tr>
<tr>
<td>Supervised Independent Study and Research</td>
<td></td>
</tr>
<tr>
<td>PLANTBI C103</td>
<td>3</td>
</tr>
<tr>
<td>Bacterial Pathogenesis</td>
<td></td>
</tr>
<tr>
<td>PLANTBI C112</td>
<td>4</td>
</tr>
<tr>
<td>General Microbiology</td>
<td></td>
</tr>
<tr>
<td>or PB HLTH 16</td>
<td>2</td>
</tr>
<tr>
<td>Public Health Microbiology</td>
<td></td>
</tr>
<tr>
<td>PB HLTH 168</td>
<td>2</td>
</tr>
<tr>
<td>Public Health Microbiology Laboratory</td>
<td></td>
</tr>
<tr>
<td>PLANTBI C114</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Comparative Virology</td>
<td></td>
</tr>
<tr>
<td>INTEGBI 117</td>
<td>2</td>
</tr>
<tr>
<td>Medical Ethnobotany</td>
<td></td>
</tr>
</tbody>
</table>

Lower Division Prerequisites

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3A</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1B</td>
<td>3</td>
</tr>
</tbody>
</table>
Minor Requirements

NUSCTX 10 Introduction to Human Nutrition or NUSCTX 103 Introduction to Human Nutrition: Managing Life
NUSCTX 103 Nutrient Function and Metabolism
NUSCTX 160 Metabolic Bases of Human Health and Diseases
Select two or more of the following, for at least 5 units of electives:
NUSCTX 104 Food, Culture, and the Environment
or NUSCTX 108A Introduction and Application of Food Science
NUSCTX 110 Toxicology
NUSCTX C114 Pesticide Chemistry and Toxicology
NUSCTX 115 Principles of Drug Action
NUSCTX 121 Computational Toxicology
NUSCTX C159 Course Not Available
NUSCTX 161A Medical Nutrition Therapy
NUSCTX 166 Nutrition in the Community
NUSCTX 190 Introduction to Research in Nutritional Sciences
NUSCTX 193 Introduction to Research in Toxicology
NUSCTX H196 Honors Research
NUSCTX 199 Supervised Independent Study and Research

General Guidelines

1. All courses taken to fulfill the major requirements below must be taken for graded credit, other than courses listed which are offered on a Pass/No Pass basis only. Other exceptions to this requirement are noted as applicable.
2. A minimum cumulative grade point average (GPA) of 2.0 is required.
3. A minimum GPA of 2.0 in upper division major requirements is required.
4. At least 15 of the 30 required upper division units must be taken in a Rausser College of Natural Resources department (except for students majoring in Environmental Economics and Policy; please see the EEP major advisor for further information) (NST-Dietetics has 44 total upper division units required).
5. A maximum of 16 units of independent study (courses numbered 97, 98, 99, 197, 198, and 199) may count toward graduation, with a maximum of 4 units of independent study per semester.
6. No more than 1/3 of the total units attempted at UC Berkeley may be taken Pass/No Pass. This includes units in the Education Abroad Program and UC Intercampus Visitor or Exchange Programs.
7. A maximum of 4 units of physical education courses will count toward the 120 units required for graduation.

For full details around all requirements, please see our Student Handbook (https://nature.berkeley.edu/handbook/).

Reading and Composition (http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/reading-composition-requirement/)

In order to provide a solid foundation in reading, writing and critical thinking all majors in the College require two semesters of lower division work in composition. Students must complete a first-level reading and composition course by the end of their second semester and a second-level course by the end of their fourth semester.

Foreign Language (http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/foreign-language-requirement/): EEP Majors only

The Foreign Language requirement is only required by Environmental Economics and Policy (EEP) majors. It may be satisfied by demonstrating proficiency in reading comprehension, writing, and conversation in a foreign language equivalent to the second semester college level, either by passing an exam or by completing approved course work.

Quantitative Reasoning (http://guide.berkeley.edu/undergraduate/colleges-schools/natural-resources/quantitative-reasoning-requirement/): EEP Majors only

The Quantitative Reasoning requirement is only required by Environmental Economics and Policy (EEP) majors. The requirement may be satisfied by exam or by taking an approved course.

Undergraduate Breadth

Undergraduate breadth units provide Berkeley students with a rich and varied educational experience outside of their major program. Breadth courses are built into RCNR major requirements and each major requires a different number of breadth courses and categories. The EEP major is the only RCNR major that requires the entire 7 course breadth as outlined by Letters & Science. Refer to the major snapshots on each RCNR major page (https://nature.berkeley.edu/advising/majors-minors/) for for additional information.

High School Exam Credit

Units Requirements

Students must complete at least 120 semester units of courses subject to certain guidelines:

- At least 36 units must be upper division courses, including a minimum of 15 units of upper division courses from a Rausser College of Natural Resources department (NUSCTX, ESPM, PLANTBI, ENVECON).
- A maximum of 16 units of Special Studies coursework (courses numbered 97, 98, 99, 197, or 199) is allowed towards the 120 units; a maximum of four units is allowed in a given semester.
- A maximum of 4 units of Physical Education from any school attended will count towards the 120 units.
- Students may receive unit credit for courses graded P (including P/ NP units taken through EAP) up to a limit of one-third of the total units taken and passed on the Berkeley campus at the time of graduation.

Semester Unit Minimum

All RCNR students must enroll in at least 12 units each fall and spring semester.
Semester Unit Maximum
To request permission to take more than 20.5 units in a semester, please see the major advisor.

Semester Limit
Students admitted as freshmen must graduate within 8 fall/spring semesters at UC Berkeley. Students admitted as transfer students must graduate within 4 fall/spring semesters at UC Berkeley. Students who go on EAP and UCDC can petition for additional semesters. Summer session, UC Extension and non-UC study abroad programs do not count towards this semester limit. Students approved for double majors or simultaneous degrees in two colleges may be granted an additional semester. RCNR does not limit the number of total units a student can accrue (no unit cap).

Senior Residence Requirement
After the term in which you achieve and exceed 90 units (senior status), you must complete at least 24 of the remaining 30 units in residence at the Rausser College of Natural Resources over at least 2 semesters. To count as residence, a semester must consist of at least 6 passed units taken while the student is a member of RCNR. At least one of the two terms must be a fall or spring semester. Senior residence terms do not need to be completed consecutively. All courses offered on campus for the fall, spring, and summer terms by Berkeley departments and programs and all Berkeley online (W) courses count. Inter-campus Visitor, Education Abroad Program, UC Berkeley Washington Program, and UC Berkeley Extension units do not count toward this requirement.

Students may use Summer Session to satisfy one semester of the Senior Residence Requirement, provided that six units of coursework are completed.

Modified Senior Residence Requirement
Participants in a fall, spring or summer UC Education Abroad Program (UCEAP), Berkeley Summer Abroad, or the UC Berkeley Washington Program may meet a modified Senior Residence Requirement by completing 24 of their final 60 semester units in residence (excluding UCEAP). At least 12 of these 24 units must be completed after senior status is reached. International travel study programs sponsored by Summer Sessions and education abroad programs offered outside of the UC system do not qualify for modified senior residence.

Most students automatically satisfy the residence requirement by attending classes here for four years. In general, there is no need to be concerned about this requirement, unless students go abroad for a semester or year or want to take courses at another institution or through University Extension during their senior year. In these cases, students should make an appointment to see an advisor to determine how they can meet the Senior Residence Requirement.

Grade Requirements
- A 2.0 UC GPA is required for graduation
- A 2.0 average in all upper division courses required of the major program is required for graduation
- A grade of at least C- is required in all courses for the major

Nutritional Science and Toxicology Learning Goals
1. To provide preparation in critical thinking, problem solving, and analytical skills.
2. To provide insight and in-depth information on the interaction of natural and man-made toxicants with people and their impact on human health and disease (depth).
3. To provide strong academic preparation for successful contributions to research, education, industry and government, and/or participation in advanced studies in health and biosciences (breadth).
4. To inspire students to advance the health and well-being of citizens (value).

Major Maps help undergraduate students discover academic, co-curricular, and discovery opportunities at UC Berkeley based on intended major or field of interest. Developed by the Division of Undergraduate Education in collaboration with academic departments, these experience maps will help you:

- Explore your major and gain a better understanding of your field of study
- Connect with people and programs that inspire and sustain your creativity, drive, curiosity and success
- Discover opportunities for independent inquiry, enterprise, and creative expression
- Engage locally and globally to broaden your perspectives and change the world
- Reflect on your academic career and prepare for life after Berkeley

Use the major map below as a guide to planning your undergraduate journey and designing your own unique Berkeley experience.

View the Nutritional Sciences Major Map PDF. (https://vcue.berkeley.edu/sites/default/files/nutritional_sciences.pdf)

In the Rausser College of Natural Resources, we provide holistic, individual advising services to prospective and current students who are pursuing major and minors in our college. We assist with a range of topics including course selection, academic decision-making, achieving personal and academic goals, and maximizing the Berkeley experience.

If you are looking to explore your options, or you are ready to declare a major, double major, or minor, contact the undergraduate advisor for your intended major. Visit our website (https://nature.berkeley.edu/advising/meet-cnr-advisors/) to explore all of our advising services.

Undergraduate Advisor, Nutritional Science & Toxicology
Jay Sevilla
nst.ugrad@berkeley.edu
260 Mulford Hall
(510) 642-6730

Expand all course descriptions [+]Collapse all course descriptions [-]
NUSCTX 10 Introduction to Human Nutrition
3 Units
Terms offered: Fall 2023, Summer 2023 Second 6 Week Session, Fall 2022
This course focuses on relationships between diet and health, and responses of the human body to diet and food components, including macro and micro nutrients, water, phytochemicals, and alcohol. This course also provides an overview of the interplay between nutrients and physiological and behavioral responses. Lectures, which address contributions of diet to optimal health or disease risk, are based on current nutritional, biochemical, and medical knowledge. Goals include enabling students to make informed decisions about their nutritional needs and current issues concerning nutrition.

Introduction to Human Nutrition: Read More [+]

Rules & Requirements

Credit Restrictions: Students will receive no credit for NUSCTX 10 after completing NUTRSCI 10, NUTRSCI S10X, or NUSCTX 10S. A deficient grade in NUSCTX 10 may be removed by taking NUSCTX 10S.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week

Summer:
6 weeks - 6 hours of lecture and 1.5 hours of discussion per week
8 weeks - 4 hours of lecture and 2 hours of discussion per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Introduction to Human Nutrition: Read Less [-]

NUSCTX 10S Introduction to Human Nutrition: Managing Life 3 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
The course will center on how the body processes nutrients, as well as other components of diet such as water, alcohol, and plant constituents. We will explore how these processes can have a lasting effect on our health and behavior. Students will gain a general understanding of basic human nutrition, how key biological, physical, social and psychological factors affect how we eat. The goal is that students gain sufficient knowledge to be able to make informed dietary choices based on individual nutritional needs, and to understand how these choices can have a long lasting impact on one’s life. The lecture will be delivered in two modalities 1) In-person lectures 2) Lectures will be streamed and recorded for viewing later.

Introduction to Human Nutrition: Managing Life: Read More [+]

Rules & Requirements

Credit Restrictions: Students will receive no credit for NUSCTX 10S after completing NUSCTX 10. A deficient grade in NUSCTX 10S may be removed by taking NUSCTX 10.

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Aponte

Introduction to Human Nutrition: Managing Life: Read Less [-]
NUSCTX 11 Introduction to Toxicology 3 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Discussion of principles for the evaluation of toxic hazard of natural and man-made substances present in the environment, the workplace, food, drink, and drugs. The bases for species selectivity, individual variations in sensitivity and resistance, and the combined effects of toxic agents will be addressed. Issues related to the impact of toxic agents in modern society will be emphasized.

Introduction to Toxicology: Read More [+]

Rules & Requirements
Prerequisites: Open to students pursuing science and non science majors

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/ Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Vulpe, Nomura, Wang

Introduction to Toxicology: Read Less [-]

NUSCTX 20 Personal Food Security and Wellness 2 Units
Terms offered: Fall 2023, Spring 2023, Fall 2022
Food insecurity is broadly defined as having unreliable access to adequate foods resulting in disrupted eating patterns or reduced food intake due to a lack of money and other resources for food. NST 20 will improve nutrition-related behaviors and support students in need of improving their food security status. Students whom have limited cooking and food preparation experience will acquire foundational nutrition knowledge and basic cooking skills to be able to prepare healthful and affordable meals in consideration of existing factors, such as: food availability; food budgeting; and time management.

Personal Food Security and Wellness: Read More [+]

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 2 hours of laboratory per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/ Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Vulpe, Nomura, Wang

Personal Food Security and Wellness: Read Less [-]

NUSCTX 24 Freshman Seminar 1 Unit
Terms offered: Fall 2023, Spring 2023, Fall 2022
The Freshman Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Freshman seminars are offered in all campus departments, and topics vary from department to department and semester to semester.

Freshman Seminar: Read More [+]

Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/ Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final Exam To be decided by the instructor when the class is offered.
Instructor: Chang
Formerly known as: Nutritional Sciences 24

Freshman Seminar: Read Less [-]

NUSCTX 30 Sports Nutrition 3 Units
Terms offered: Summer 2023 Second 6 Week Session, Summer 2021 First 6 Week Session, Summer 2020 Second 6 Week Session
A survey course of nutrition with an emphasis on the relationships among diet, physical activity, and health; exploration of the changes in the metabolism of carbohydrates, lipids, protein and water; discussion of the function of vitamins and minerals; practical application of evidence-based dietary recommendations for common sports and varying physical intensities.

Sports Nutrition: Read More [+]

Rules & Requirements
Prerequisites: None

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Summer:
6 weeks - 9 hours of lecture per week
8 weeks - 6 hours of lecture per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/ Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Deegan

Sports Nutrition: Read Less [-]
NUSCTX 98 Directed Group Study 1 - 3 Units
Terms offered: Fall 2023, Spring 2019, Fall 2016
Study of special topics in nutritional sciences that are not covered in depth in regular courses.
Directed Group Study: Read More [+]
Rules & Requirements
Prerequisites: Lower division standing and consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of directed group study per week
Summer: 6 weeks - 3-8 hours of directed group study per week
8 weeks - 2-6 hours of directed group study per week
Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Formerly known as: Nutritional Sciences 98
Directed Group Study: Read Less [-]

NUSCTX 103 Nutrient Function and Metabolism 4 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Delivery of nutrients from foods to mammalian cells; major metabolic pathways; function of nutrients in energy metabolism, nitrogen and lipid metabolism, structural tissues and regulation; essentiality, activation, storage, excretion, and toxicity of nutrients.
Nutrient Function and Metabolism: Read More [+]
Rules & Requirements
Prerequisites: Required: Bio 1A, Recommended: MCB 32 and 102
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Sul, Chen
Nutrient Function and Metabolism: Read Less [-]

NUSCTX 104 Food, Culture, and the Environment 2 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
This nutrition course with an anthropological perspective examines why we eat what we eat by addressing environmental, socio-economic, political, cultural, and personal components of the human diet. Cuisines from a sampling of countries and regions are discussed.
Food, Culture, and the Environment: Read More [+]
Rules & Requirements
Prerequisites: 10 recommended
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week
Summer: 6 weeks - 5 hours of lecture per week
Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Food, Culture, and the Environment: Read Less [-]
NUSCTX 104AC Human Food Practices AC 3 Units
Terms offered: Prior to 2007
This course will broadly address the historical, ecological, socioeconomic, biological, political, cultural, and personal components of the human diet in addition to nutrition problems, programs, and consumer protection. It is a nutrition course with an anthropological slant that examines why we eat what we eat and contributes to the pursuit of multidisciplinary degrees in nutrition policy and planning. As an American Cultures course, we will also discuss cuisines from a variety of different countries and regions, with a specific focus on those in America, and examine how race and ethnicity affect diet, food access, and relationship with food. Introduction to Human Nutrition (NST10) is recommended as a prerequisite.

Rules & Requirements
Prerequisites: Nutritional Sciences and Toxicology 10 (Recommended)
Requirements this course satisfies: Satisfies the American Cultures requirement

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 8 weeks - 4 hours of lecture and 2 hours of discussion per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Rasmussen

Human Food Practices AC: Read Less [-]

NUSCTX W104 Food, Culture, and the Environment AC 3 Units
Terms offered: Summer 2023 8 Week Session, Summer 2022 8 Week Session, Summer 2021 8 Week Session
This course will broadly address the historical, ecological, socioeconomic, biological, political, and cultural environments impacting the human diet in addition to nutrition problems, programs, and consumer protection. It is a nutrition course with an anthropological slant that examines why we eat what we eat and contributes to the pursuit of multidisciplinary degrees in nutrition policy and planning. As an American Cultures course, we will discuss cuisines from a variety of different countries and regions, with a specific focus on those in America, and examine how race and ethnicity affect diet, food access, and the human relationship with food.

Food, Culture, and the Environment AC: Read More [+]
NUSCTX 105 Mediterranean Nutrition and Food System 3 Units
Terms offered: Summer 2023 10 Week Session, Summer 2022 10 Week Session
Studies consistently demonstrate that the Mediterranean dietary pattern reduces risk of chronic disease and adherence rates are higher compared to other diets prescribed to promote health. More recently, the Mediterranean diet is highlighted as a diet with a relatively lower environmental impact. This course will examine the key elements of the Mediterranean diet, compare different types of Mediterranean diets, and discuss how beneficial aspects of this diet are found around the world. Additionally, students in this course will study food systems through specific ingredients produced on the beautiful and culturally rich island of Chios, Greece, where the course is based.

Mediterranean Nutrition and Food System: Read More [+]

Hours & Format
Summer: 4 weeks - 6 hours of lecture, 12 hours of discussion, and 4 hours of fieldwork per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Rasmussen

NUSCTX 108A Introduction and Application of Food Science 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Evaluation of the chemical, physical, functional, and nutritional properties of foods. Emphasis on how these properties, and preparation, processing, and storage, influence quality characteristics of food products.

Introduction and Application of Food Science: Read More [+]

Rules & Requirements
Prerequisites: Molecular and Cell Biology 102 (may be taken concurrently), or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Rasmussen

NUSCTX 108B Application of Food Science Laboratory 1 Unit
Terms offered: Fall 2022, Fall 2021, Fall 2020
Experimental evaluation of the chemical, physical, functional, and nutritional properties of foods, and the changes occurring during preparation that affect quality characteristics of food products.

Application of Food Science Laboratory: Read More [+]

Rules & Requirements
Prerequisites: 108A or concurrent enrollment

Hours & Format
Fall and/or spring: 15 weeks - 3.5 hours of laboratory per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Reaver

NUSCTX 110 Toxicology 4 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020
A comprehensive survey of the principles of modern toxicology and their applications in evaluating the safety of foods, additives and environmental contaminants. Mechanisms of metabolic activation, detoxification, gene regulation, and selective toxicity are emphasized.

Toxicology: Read More [+]

Rules & Requirements
Prerequisites: BIOLOGY 1A, 1AL, and Chemistry 3B (or equivalent courses)

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Wang, Nomura

Toxicology: Read Less [-]
NUSCTX C114 Pesticide Chemistry and Toxicoology 3 Units
Chemical composition of pesticides and related compounds, their mode of action, resistance mechanisms, and methods of evaluating their safety and activity.

Pesticide Chemistry and Toxicoology: Read More [+]

Rules & Requirements

Prerequisites: Introductory courses in organic chemistry and biology, or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Casida

Also listed as: ESPM C148

Pesticide Chemistry and Toxicoology: Read Less [-]

NUSCTX 115 Principles of Drug Action 2 Units
Terms offered: Spring 2022, Spring 2021, Spring 2020
Basic principles and quantitative aspects of drug action and risk/benefit as applied to the discovery, design, and development of human therapeutics. The course will highlight the importance of integrating pharmacology, toxicology, and pharmacokinetics to create effective and safe treatments for human disease. Special emphasis will be placed on pharmacogenomics and variation in individual response.

Principles of Drug Action: Read More [+]

Rules & Requirements

Prerequisites: 110, and Molecular and Cell Biology 102

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Casida

Principles of Drug Action: Read Less [-]

NUSCTX 120 Eating Behavior and Disordered Eating 2 Units
Terms offered: Fall 2023, Spring 2012, Spring 2011
This course will be to provide the tools necessary to begin the processes of understanding the interplay between our physiological needs for food and the external factors affecting our behavior that can override our body's needs. We will cover some basic concepts of nutrient metabolism, that relates to our physiology which is affected by environmental and social factors. Broad areas included will be: The importance of food as energy, Gut-brain axis and food intake regulation, Self-induced restrictive eating behavior and semi starvation, Programing of eating patterns, and the use of nutrients as a drug.

Eating Behavior and Disordered Eating: Read More [+]

Rules & Requirements

Prerequisites: NUSCTX 10 or NUSCTX 10S recommended but not required

Hours & Format

Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate

Grading/Final exam status: Letter grade. Alternative to final exam.

Instructor: Aponte

Eating Behavior and Disordered Eating: Read Less [-]

NUSCTX 121 Computational Toxicology 3 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Introducing the use of bioinformatics tools useful in linking the molecular structure of chemicals to the toxicity they induce in biological systems. Discussions on the highly interactive process of collecting, organizing, and assimilating chemistry and toxicology information - and the use of computer programs to visualize, browse, and interpret this information to discover chemical structure-toxicity correlations. The importance of these concepts in drug discovery and development and food safety will be emphasized.

Computational Toxicology: Read More [+]

Rules & Requirements

Prerequisites: BIOLOGY 1A, 1AL, and Chemistry 3B (or equivalent courses), NST 110 also recommended

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Johnson

Computational Toxicology: Read Less [-]
NUSCTX 135 Food Systems Organization and Management 4 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Principles of organization and management applied to institutional food service systems: production and delivery systems, management of resources, quality assurance, equipment, layout, marketing, personnel management, fiscal management. Laboratory experiences, projects and field work in institutional situations.

Rules & Requirements
Prerequisites: Consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of fieldwork per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Rasmussen

Food Systems Organization and Management: Read Less [-]

NUSCTX 145 Nutrition Education and Counseling 2 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
This course will focus on communicating nutrition messages through nutrition education and nutrition counseling. Students will develop and implement theory-based nutrition education interventions and conduct mock counseling sessions for various populations and conditions. Strategies for effective nutrition instruction, counseling, and behavior change will be discussed.

Rules & Requirements
Prerequisites: 161A and 161B or concurrent enrollment in these courses. Dietetic majors only

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: McCoin

Nutrition Education and Counseling: Read Less [-]

NUSCTX 160 Metabolic Bases of Human Health and Diseases 4 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
The physiological bases of human nutrient homeostasis and common disorders resulting from over and under nutrition will be discussed with a specific focus on macronutrients. Topics related to nutrient deficiency and excess will include adaptation to starvation and the effects of caloric restriction on life-span, obesity and its complications, lipoprotein metabolism and cardiovascular disease, as well as a detailed discussion of the causes, disease mechanisms, and treatment of diabetes mellitus.

Rules & Requirements
Prerequisites: Required: Bio 1A, Recommended: MCB 102 or 103

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Stahl, Napoli

Metabolic Bases of Human Health and Diseases: Read Less [-]

NUSCTX 161A Medical Nutrition Therapy 4 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020
This fall course serves as the first of a two part series that addresses the nutritional component of treating disease. The Nutrition Care Process of the Academy of Nutrition and Dietetics provides the framework for nutritional status assessment, diagnosis, nutrition intervention, and evaluation. Disease pathophysiology, diagnosis, medical and pharmacological treatments, and nutritional therapies for prevention and treatment are explored for conditions common throughout the lifecycle. The first part focuses on cardiovascular disease. Additional diseases are addressed in 161B in the spring semester. This course will provide an opportunity to apply knowledge of MNT through case studies and various activities.

Rules & Requirements
Prerequisites: 103 and 160

Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: McCoin

Medical Nutrition Therapy: Read Less [-]
NUSCTX 161B Medical Nutrition Therapy II 4 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
This is the second course of a two part series that is a continuation of addressing nutrition as a component of disease treatment. The Nutrition Care Process will be applied and disease pathophysiology, diagnosis, medical and pharmacological treatments and nutritional therapies for prevention and treatment will be explored for various disease states. Medical Nutrition Therapy II: Read More [+]

Rules & Requirements

Prerequisites: Nutritional Science and Toxicology 103, 160, and 161A, or consent of instructor

Hours & Format

Fall and/or spring: 15 weeks - 4 hours of lecture per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/ Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Medical Nutrition Therapy II: Read Less [-]

NUSCTX 166 Nutrition in the Community 3 Units
Terms offered: Fall 2022, Fall 2021, Fall 2020
This course addresses basic nutrition in the context of the community. It explores nutrition programs that serve various segments of the population and the relationships of these programs to nutrition policy at the local, national, and international levels. Community assessment is used as the basis for program planning, implementation, and evaluation. The specific needs of population groups (infants, children, women, and the elderly) are considered and questions of food security are investigated. Nutrition in the Community: Read More [+]

Rules & Requirements

Prerequisites: 10 recommended; upper division standing required

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/ Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Henderson

Nutrition in the Community: Read Less [-]

NUSCTX 170 Experimental Nutrition Laboratory 4 Units
Terms offered: Fall 2023, Spring 2023, Fall 2022
Basic principles and techniques used in human and animal nutrition research. Students design, execute, and analyze experiments. Experimental Nutrition Laboratory: Read More [+]

Rules & Requirements

Prerequisites: Nutritional Sciences and Toxicology 103 and a course in statistics

Credit Restrictions: Students will receive no credit for Nutritional Sciences and Toxicology 170 after taking Nutritional Science and Toxicology 171. A deficient grade in Nutritional Sciences 170 may be removed by taking Nutritional Sciences and Toxicology 170.

Hours & Format

Fall and/or spring: 15 weeks - 8 hours of laboratory per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/ Undergraduate

Grading/Final exam status: Letter grade. Final exam not required.

Instructor: Leitman

Experimental Nutrition Laboratory: Read Less [-]

NUSCTX 171 Nutrition and Toxicology Laboratory 4 Units
Terms offered: Fall 2019, Fall 2018, Fall 2017
Basic principles and techniques used in human and animal nutrition and toxicology research. Students design, execute, and analyze experiments. Nutrition and Toxicology Laboratory: Read More [+]

Rules & Requirements

Prerequisites: Nutritional Sciences and Toxicology 110

Credit Restrictions: Students will receive no credit for Nutritional Sciences and Toxicology 171 after taking Nutritional Sciences and Toxicology 170 or Nutritional Sciences 170. A deficient grade in Nutritional Sciences 171 may be removed by taking Nutritional Sciences and Toxicology 171.

Hours & Format

Fall and/or spring: 15 weeks - 8 hours of laboratory per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/ Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Leitman

Nutrition and Toxicology Laboratory: Read Less [-]
NUSCTX 190 Introduction to Research in Nutritional Sciences 1 Unit
Terms offered: Fall 2023, Spring 2023, Fall 2022
Students will be asked to prepare an oral and written report on a topic selected from the current research literature in nutritional sciences.
Introduction to Research in Nutritional Sciences: Read More [+]

Rules & Requirements
Prerequisites: 103

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate

Grading/Final exam status: Letter grade. Final exam not required.

Formerly known as: Nutritional Sciences 190
Introduction to Research in Nutritional Sciences: Read Less [-]

NUSCTX 192 Junior Seminar in Dietetics 1 Unit
Terms offered: Fall 2021, Fall 2020, Fall 2019
This seminar course explores the professional roles and responsibilities of dietitians as well as career opportunities within the field. Current issues in the practice of dietetics will be discussed. Students will do research and present an oral report to the class. Each student will begin to develop his or her professional portfolio.
Junior Seminar in Dietetics: Read More [+]

Rules & Requirements
Prerequisites: Upper division standing and consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Junior Seminar in Dietetics: Read Less [-]

NUSCTX 193 Introduction to Research in Toxicology 1 Unit
Terms offered: Spring 2022, Spring 2021, Spring 2020
Students will be asked to prepare an oral and written report on a topic selected from the current research literature in toxicology.
Introduction to Research in Toxicology: Read More [+]

Rules & Requirements
Prerequisites: 110 or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Instructor: Kubo
Formerly known as: Nutritional Sciences 193
Introduction to Research in Toxicology: Read Less [-]

NUSCTX 194 Senior Seminar in Dietetics 2 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
This course will cover the changes that are occurring in the field of dietetics. Students will explore revisions of the national nutritional standards and guidelines, issues related to complementary and alternative nutrition practices, the area of genomics as it is expected to affect practice, professional ethics in the changing health care environment, reimbursement for professional services, legislation related to the field of dietetics, and other emerging issues.
Senior Seminar in Dietetics: Read More [+]

Rules & Requirements
Prerequisites: Upper division standing and consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate

Grading/Final exam status: Letter grade. Final exam required.

Senior Seminar in Dietetics: Read Less [-]
NUSCTX H196 Honors Research 4 Units
Terms offered: Spring 2018, Fall 2016, Spring 2016
Supervised independent honors research specific to aspects of the Nutritional Science and Toxicology major, followed by an oral presentation, and a written report.
Honors Research: Read More [+]
Rules & Requirements
Prerequisites: Upper division standing and minimum GPA. See CNR Honors website for current minimum GPA. http://nature.berkeley.edu/site/honors_program.php
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 12 hours of independent study per week
Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Formerly known as: Nutritional Sciences H196
Honors Research: Read Less [-]

NUSCTX 197 Field Study in Food and Nutritional Sciences 1 - 4 Units
Terms offered: Summer 2023 10 Week Session, Summer 2022 10 Week Session, Fall 2016
Supervised experience in off-campus organizations relevant to specific aspects of foods and nutritional sciences. Regular individual meetings with faculty sponsor and written reports required.
Field Study in Food and Nutritional Sciences: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of fieldwork per week
Summer:
6 weeks - 1-9 hours of fieldwork per week
8 weeks - 1-7 hours of fieldwork per week
Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Formerly known as: Nutritional Sciences 197
Field Study in Food and Nutritional Sciences: Read Less [-]

NUSCTX 198 Directed Group Study 1 - 3 Units
Terms offered: Fall 2023, Fall 2022, Fall 2020
Study of special topics in food science or nutrition that are not covered in depth in regular courses.
Directed Group Study: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of directed group study per week
Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Formerly known as: Nutritional Sciences 198
Directed Group Study: Read Less [-]

NUSCTX 199 Supervised Independent Study and Research 1 - 4 Units
Terms offered: Fall 2021, Fall 2017, Fall 2016
Upper division laboratory and independent research under the direction of a faculty supervisor. Written report required upon completion of the project.
Supervised Independent Study and Research: Read More [+]
Rules & Requirements
Prerequisites: Upper division standing and consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Summer:
6 weeks - 1-3 hours of independent study per week
8 weeks - 1-3 hours of independent study per week
Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Formerly known as: Nutritional Sciences 199
Supervised Independent Study and Research: Read Less [-]
NUSCTX 200 Advanced Organismal Nutrition and Metabolism 3 Units
Terms offered: Spring 2011, Spring 2010, Spring 2009
Critical analysis of concepts and research methods relating to nutritional metabolism and its regulation in intact organisms is studied. Areas covered include the basis of nutrient requirements and nutritional assessment, integration of metabolic pathways, research techniques, nutritional diseases, and specific topics such as calcium, vitamins, and trace elements.

Rules & Requirements
Prerequisites: 103, 160, and Molecular and Cell Biology 102 or equivalent

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week

NUSCTX 201 Metabolic Regulation 2 Units
Terms offered: Fall 2023
This course will provide a graduate-level view of metabolism spanning the physiological, biochemical and molecular aspects of metabolic homeostasis. The course will emphasize four areas: history of metabolism research across primarily mammalian species; past and current available methodological tools to understand metabolism; established and emerging principles of metabolic regulation, with lessons learned from classic physiological and biochemical investigations, isotope tracing and modern molecular techniques and the clinical assessment of metabolism and targeting of metabolic regulation/signaling, including the therapeutic application of diet, pharmaceuticals, cell therapies, tissue culture/engineering, and genetic medicine.

Rules & Requirements
Prerequisites: Consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

NUSCTX 208 Foods 4 Units
Terms offered: Not yet offered
The course will begin by discovering the science of foods; the functional role of foods as ingredients; and the impact on food quality, acceptability and compatibility as measured by sensory evaluation methods. Students will then integrate their knowledge of chemistry and food science by modifying recipes for wellness and disease prevention and management. Students will explore food preparation techniques and world cuisines to further their appreciation of foods, eating patterns, and food trends across cultures. Students will apply principles of food safety and sanitation to the procurement, storage and production of foods. This course is designed to prepare MNSD students for supervised practice internships and a career as a registered dietitian.

Objectives & Outcomes
Course Objectives:
Applies an understanding of complementary and integrative nutrition by exploring culinary medicine and functional foods (1.9.2).
Applies and demonstrates an understanding of agricultural practices and processes (3.4).
Applies principles of food safety and sanitation to the storage, production and service of food (3.3).
Demonstrates knowledge of and is able to manage food preparation techniques (1,12).
Develops and leads implementation of risk management strategies and programs. (5.5)
Gains a foundational knowledge on public and global health issues and nutritional needs by examining the sustainability and global supply of ingredients. (1.16, 1.16.2).
Integrates knowledge of chemistry and food science as it pertains to food and nutrition product development and when making modifications to food. (1.4).
Integrates the principles of cultural competence within own practice and when directing services (1.7).
The objective of the course is to provide an opportunity for students to meet the following Accreditation Council for Education in Nutrition and Dietetics competencies (competency number):
Applies knowledge of microbiology and food safety (1.3).

Rules & Requirements
Prerequisites: graduate student standing, course reserved for students in the MNSD program

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 6 hours of laboratory per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Letter grade.

Foods: Read Less [—]
NUSCTX 210 Research Methods & Analysis in Nutritional Science 4 Units
Terms offered: Fall 2023
This course will familiarize students with current methodologies of assessing nutritional status through molecular biology, clinical/biochemical analysis, and dietary experimentation and analysis. Upon completion of this course, students will understand the work of a nutrition scientist, including asking scientific questions and generating hypotheses, using creativity and critical thinking to develop experimental design and execute laboratory procedures, as well as interpreting data and presenting (written and oral) findings from results obtained. Throughout the course, students will perform several nutritional assessments and compare and contrast the results to those obtained from a controlled analytical method and/or specimen.
Research Methods & Analysis in Nutritional Science: Read More [+]

Objectives & Outcomes
Course Objectives: Applies an understanding of environmental, molecular factors (e.g., genes, proteins, metabolites) and food in the development and management of disease. (1.1)
Applies current research and evidence-informed practice to services. (6.3)
Applies knowledge of math and statistics. (1.10)
Applies scientific methods utilizing ethical research practices when reviewing, evaluating, and conducting research. (6.2)
Demonstrates computer skills and uses nutrition informatics in the decision making process. (1.13)
Incorporates critical thinking skills in practice. (6.1)
Uses effective communication, collaboration and advocacy skills. (7.2)

Rules & Requirements
Prerequisites: graduate student standing, course reserved for students in the MNSD program

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 6 hours of laboratory per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Letter grade.
Research Methods & Analysis in Nutritional Science: Read Less [-]

NUSCTX 211A Introduction to Research in Nutritional Sciences 4 - 8 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Supervised experimental work under the direction of individual faculty members, which introduces experimental methods and research approaches in metabolic biology/nutritional biochemistry.
Introduction to Research in Nutritional Sciences: Read More [+]

Rules & Requirements
Prerequisites: Restricted to graduate students in the metabolic biology graduate program with the consent of the principal investigator

Hours & Format
Fall and/or spring: 15 weeks - 4-4 hours of laboratory per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Letter grade. This is part one of a year long series course. A provisional grade of IP (in progress) will be applied and later replaced with the final grade after completing part two of the series.
Instructor: Napoli
Introduction to Research in Nutritional Sciences: Read Less [-]

NUSCTX 211B Introduction to Research in Nutritional Sciences 4 - 8 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Closely supervised experimental work under the direction of individual faculty members; an introduction to experimental methods and research approaches in areas of nutritional sciences.
Introduction to Research in Nutritional Sciences: Read More [+]

Rules & Requirements
Prerequisites: Restricted to graduate students in the nutrition program; consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 4-4 hours of laboratory per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Letter grade. This is part two of a year long series course. Upon completion, the final grade will be applied to both parts of the series.
Instructor: Napoli
Introduction to Research in Nutritional Sciences: Read Less [-]
NUSCTX 220 Molecular Toxicology 4 Units
Terms offered: Spring 2012, Spring 2011, Spring 2010
Molecular toxicology attempts to understand the mechanisms by which hazardous compounds cause their toxic effects. The course will focus on our understanding of the important tissue and cellular components involved in chemical exposure from entry to effect to exit. Topics include metabolism and mechanisms of toxins, toxicogenomics, toxin effects in individuals and groups, and tools to predict toxicology.

Molecular Toxicology: Read More [+]

Rules & Requirements
Prerequisites: 110 or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Letter grade.
Instructor: Vulpe

Molecular Toxicology: Read Less [-]

NUSCTX 235 Food Systems Management 4 Units
Terms offered: Fall 2023
Principles of organization and management applied to institutional food service systems will be discussed and applied in this graduate level course. Topics will range from production and delivery systems, management of resources, quality assurance, equipment, layout, marketing, personnel management and fiscal management. Students will apply concepts through laboratory experiences, projects and engagement with institutional settings. ServSafe certification exam must be completed by the end of the semester.

Food Systems Management: Read More [+]

Objectives & Outcomes
Course Objectives:
- Applies knowledge of math and statistics.
- Applies principles of food safety and sanitation to the storage, production and service of food.
- Demonstrates knowledge of and is able to manage food preparation techniques.
- Demonstrates computer skills and uses nutrition informatics in the decision making process.
- Oversees the purchasing, receipt and storage of products used in food production and services.
- Applies a framework to assess, develop, implement and evaluate products, programs and services.
- Applies and demonstrates an understanding of agricultural practices and processes.
- Applies knowledge of social, psychological and environmental aspects of eating and food.
- Integrates knowledge of maximizing sustainability, food and water waste, reusable/ biodegradable items, local and global produce sourcing and access to food.
- Applies principles of organization management.
- Applies project management principles to achieve project goals and objectives.
- Demonstrates leadership skills to guide practice.
- Develops and leads implementation of risk management strategies and programs.
- Directs the production and distribution of quantity and quality food products.
- Leads quality and performance improvement activities to measure, evaluate and improve program services, products and initiatives.

Rules & Requirements
Prerequisites: graduate student standing, course reserved for students in the MNSD program

Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of discussion per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Letter grade.

Food Systems Management: Read Less [-]
NUSCTX 245 Counseling in Nutritional Sciences 2 Units

Terms offered: Not yet offered

This graduate level course will focus on applying behavior change theory in nutrition counseling. Strategies for effective nutrition counseling and behavior change will be discussed. Students will apply the Nutrition Care Process and utilize appropriate Medical Nutrition Therapy and theory-driven interventions to address behavior change. Integrated practice will occur through mock counseling sessions and role playing activities for various populations and conditions. This course is designed to prepare MNSD students for supervised practice internships and a career as a Registered Dietitian Nutritionist.

Counseling in Nutritional Sciences: Read More [+]

Objectives & Outcomes

Course Objectives:

- Applies knowledge of nutritional health promotion and disease prevention for individuals, groups and populations. (1.15)
- Applies knowledge of social, psychological and environmental aspects of eating and food. (1.6)
- Assumes professional responsibilities to provide safe, ethical and effective nutrition services. (7.1)
- Implements or coordinates nutritional interventions for individuals, groups or populations. (2.4)
- Integrates knowledge of nutrition and physical activity in the provision of nutrition care across the life cycle. (1.14)
- Integrates the principles of cultural competence within own practice and when directing services. (1.7)
- Uses effective communication, collaboration and advocacy skills. (7.2)
- Utilizes the nutrition care process with individuals, groups or populations in a variety of practice settings. (2.3)

Rules & Requirements

Prerequisites: NST 261, Nutritional Assessment and the Lifespan, graduate student standing, course reserved for students in the MNSD program

Hours & Format

Fall and/or spring: 7 weeks - 2 hours of lecture and 2 hours of workshop per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Graduate

Grading: Letter grade.

Counseling in Nutritional Sciences: Read Less [-]

NUSCTX 250 Advanced Topics in Metabolic Biology 3 Units

Terms offered: Spring 2023, Spring 2022, Spring 2021

Overview lectures and discussion of primary literature will be combined in this course to provide a working knowledge of principles, regulation, and experimental approaches in metabolic biology. Select topics ranging from molecular mechanism of metabolite synthesis and cellular signaling to integrative physiology of organismal metabolic homeostasis will be discussed with a particular emphasis on their connection to human diseases.

Advanced Topics in Metabolic Biology: Read More [+]

Objectives & Outcomes

Course Objectives:

- Use selective topics in metabolic biology to provide a working understanding of basic concepts and technical approaches in metabolic biology.

Student Learning Outcomes: Students learning outcomes will be focused on their ability to derive basic concepts and technical approaches in metabolic biology from the lectures and primary literature discussion.

Rules & Requirements

Prerequisites: Molecular and Cell Biology 102 or equivalent

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Graduate

Grading: Letter grade.

Instructor: Nomura

Advanced Topics in Metabolic Biology: Read Less [-]
NUSCTX 260 Metabolic Bases of Human Health and Diseases Graduate Level 4 Units

Terms offered: Spring 2023, Spring 2022, Spring 2021

The physiological bases of human nutrient homeostasis and common disorders resulting from over and under nutrition will be discussed with a specific focus on macronutrients. Topics related to nutrient deficiency and excess will include adaptation to starvation and the effects of caloric restriction on life-span, obesity and its complications, lipoprotein metabolism and cardiovascular disease, as well as a detailed discussion of the causes, disease mechanisms, and treatment of diabetes mellitus. Metabolic Bases of Human Health and Diseases Graduate Level: Read More [+]

Objectives & Outcomes

Course Objectives: After completing the lectures and discussion sessions, students will have developed an advanced understanding of the contribution of nutrients and metabolic pathway regulation to the development of human diseases. This will be a direct extension and disease oriented application of the general metabolic pathways discussed in NST103. After this unit, the students will have gained insights into basic concepts in metabolic biology, their relationship to common disorders such as diabetes, cancer, and cardiovascular disease as well as the basis for metabolism based pharmacological interventions. In addition critical reading of primary literature and the presentation of advanced topics in metabolic biology will be practiced.

Rules & Requirements

Prerequisites: MCB110, NST103 or equivalent

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Graduate

Grading: Letter grade.

Instructors: Stahl, Napoli, Krauss

Metabolic Bases of Human Health and Diseases Graduate Level: Read Less [-]

NUSCTX 261 Nutrition Care Process and the Lifespan 4 Units

Terms offered: Fall 2023

Course explores nutritional status across the lifespan. The NCP will be utilized as a framework to explore nutritional care throughout the lifespan. Students will determine nutritional status by considering anthropometrics and physical assessment, biochemical data, clinical findings, dietary intake, complementary and integrative therapies, and physical activity. Disease pathophysiology, diagnosis, medical and pharmacological treatments, and nutritional therapies and nutrition-related pharmacotherapy will be discussed for conditions common across the lifespan. Students will be responsible for utilizing medical terminology and documentation and for identifying relevant current research to support their nutritional recommendations. Nutrition Care Process and the Lifespan: Read More [+]

Objectives & Outcomes

Course Objectives: Applies an understanding of anatomy, physiology and biochemistry. (1.2) Applies an understanding of environmental, molecular factors (e.g. genes, proteins, metabolites) and food in the development and management of disease. (1.1) Applies an understanding of the impact of complementary and integrative nutrition on drugs, disease, health and wellness. (1.9) Applies current research and evidence-informed practice to services. (6.3) Applies knowledge of medical terminology when communicating with individuals, groups and other health professionals. (1.11) Applies knowledge of nutritional health promotion and disease prevention for individuals, groups and populations. (1.15) Applies knowledge of pathophysiology and nutritional biochemistry to physiology, health and disease. (1.5) Applies knowledge of pharmacology to recommend, prescribe and administer medical nutrition therapy. (1.8) Applies knowledge of social, psychological and environmental aspects of eating and food. (1.6)

Implements or coordinates nutritional interventions for individuals, groups or populations. (2.4) Incorporates critical thinking skills in practice. (6.1) Integrates knowledge of nutrition and physical activity in the provision of nutrition care across the life cycle. (1.14) Integrates nutritional biochemistry knowledge to make informed food and nutrition decisions for optimal health. (1.4.2) Prescribes, recommends and administers nutrition-related pharmacotherapy. (2.5) Selects, develops and/or implements nutritional screening tools for individuals, groups or populations. (2.2) Utilizes the nutrition care process with individuals, groups or populations in a variety of practice settings. (2.3)

Rules & Requirements

Prerequisites: graduate student standing, course reserved for students in the MNSD program

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of discussion per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Graduate

Grading: Letter grade.

Nutrition Care Process and the Lifespan: Read Less [-]
NUSCTX 262 Medical Nutrition Therapy 4 Units
Terms offered: Not yet offered
The Nutrition Care Process of the Academy of Nutrition and Dietetics will be used to explore disease pathophysiology, diagnosis, medical and pharmacological treatments, and nutritional therapies. Students will examine and apply an understanding of complementary and integrative nutritional therapies on drugs, disease, and health. The conditions that will be studied include cardiovascular disease, upper and lower gastrointestinal diseases, hepatic disease, renal disease, diabetes, diseases of the pancreas, cancer, HIV/AIDS, pulmonary disease, and critical illness. Students will be responsible for utilizing medical terminology and documentation and for identifying relevant current research to support their nutritional recommendations.

Medical Nutrition Therapy: Read More [+]

Objectives & Outcomes

Course Objectives:
1. Applies an understanding of anatomy, physiology and biochemistry. (1.2)
2. Applies an understanding of environmental, molecular factors (e.g. genes, proteins, metabolites) and food in the development and management of disease. (1.1)
3. Applies an understanding of the impact of complementary and integrative nutrition on drugs, disease, health and wellness. (1.9)
4. Applies current research and evidence-informed practice to services. (6.3)
5. Applies knowledge of math and statistics. (1.10)
6. Applies knowledge of medical terminology when communicating with individuals, groups and other health professionals. (1.11)
7. Applies knowledge of nutritional health promotion and disease prevention for individuals, groups and populations. (1.15)
8. Applies knowledge of pathophysiology and nutritional biochemistry to physiology, health and disease. (1.5)
9. Applies knowledge of pharmacology to recommend, prescribe and administer medical nutrition therapy. (1.8)
10. Implements or coordinates nutritional interventions for individuals, groups or populations. (2.4)
11. Incorporates critical thinking skills in practice. (6.1)
12. Integrates nutritional biochemistry knowledge to make informed food and nutrition decisions for optimal health. (1.4.2)
13. Prescribes, recommends and administers nutrition-related pharmacotherapy. (2.5)
14. Utilizes the nutrition care process with individuals, groups or populations in a variety of practice settings. (2.3)

Rules & Requirements

Prerequisites: graduate student standing, course reserved for students in the MNSD program

Hours & Format

Fall and/or spring: 10 weeks - 6 hours of lecture and 2 hours of discussion per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Graduate

Grading: Letter grade.

NUSCTX 266 Nutrition in the Community 3 Units
Terms offered: Not yet offered
Course addresses nutrition in the context of the community and population. It explores nutrition programs that serve various segments of the population and the relationships of these programs to nutrition policy at the local, national, and international levels. The course provides an opportunity for community assessment, program planning, implementation, and evaluation. The history, science, current issues and innovations involved in improving nutrition among various communities will be presented. Nutritional concerns, including food security and global health, will be discussed. This course is designed to prepare MNSD students for supervised practice internships and a career as a RDN.

Nutrition in the Community: Read More [+]

Objectives & Outcomes

Course Objectives:
1. Applies a framework to assess, develop, implement and evaluate products, programs and services. (2.1)
2. Applies knowledge of nutritional health promotion and disease prevention for individuals, groups and populations. (1.15)
3. Applies knowledge of social, psychological and environmental aspects of eating and foods. (1.6)
4. Engages in legislative and regulatory activities that address community, population and global nutrition health and nutrition policy. (4.2)
5. Gains a foundational knowledge on public and global health issues and nutritional needs. (1.16)
6. Implements or coordinates nutritional interventions for individuals, groups or populations. (2.4)
7. Utilizes program planning steps to develop, implement, monitor and evaluate community and population programs. (4.1)

Rules & Requirements

Prerequisites: graduate student standing, course reserved for students in the MNSD program

Hours & Format

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Graduate

Grading: Letter grade.

Medical Nutrition Therapy: Read Less [-]
NUSCTX 290 Advanced Seminars in Nutritional Sciences 2 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Advanced study of topics in nutritional sciences. More than one section may be taken simultaneously.
Advanced Seminars in Nutritional Sciences: Read More [+]

Rules & Requirements
Prerequisites: Graduate standing
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Letter grade.
Advanced Seminars in Nutritional Sciences: Read Less [-]

NUSCTX 292 Graduate Research Colloquium 1 Unit
Terms offered: Fall 2023, Spring 2023, Fall 2022
Presentations by graduate students of research proposals and results of their research. Participation in discussion and evaluation of others’ presentations is required.
Graduate Research Colloquium: Read More [+]

Rules & Requirements
Prerequisites: Graduate standing
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-2 hours of colloquium per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Graduate Research Colloquium: Read Less [-]

NUSCTX 293 Research Seminar 1 Unit
Terms offered: Fall 2023, Fall 2022, Fall 2021
Presentation and discussion of faculty research projects and experimental techniques in metabolic biology/nutritional biochemistry. Intended primarily for first year graduate students.
Research Seminar: Read More [+]

Rules & Requirements
Prerequisites: Graduate standing or consent of instructor

Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Research Seminar: Read Less [-]

NUSCTX 294 Dietetics Professional Practice 2 Units
Terms offered: Not yet offered
This course is intended to enhance student understanding and appreciation of professional responsibilities and conduct as future dietetic professionals. Current topics in the field of nutritional sciences and dietetics will be discussed. The course will provide a platform for students to begin to prepare for the registered dietitian nutritionist credentialing examination.
Dietetics Professional Practice: Read More [+]

Objectives & Outcomes
Course Objectives: Demonstrates coding and billing procedures to obtain payment for nutrition services under alternate health care payment models. (2.3.27)
Demonstrates leadership skills to guide practice. (5.1)
Develops and leads implementation of risk management strategies and programs. (5.5)
Engages in legislative and regulatory activities that address community, population and global nutrition health and nutrition policy. (4.2)
Uses effective communication, collaboration and advocacy skills. (7.2)

Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Letter grade.
Dietetics Professional Practice: Read Less [-]
NUSCTX 295 Capstone Project in Nutritional Sciences 11 Units

Terms offered: Not yet offered
The Capstone course gives students the opportunity to synthesize their graduate level course work by connecting their academic knowledge from their coursework to a capstone research project. Students will learn new research techniques and approaches and broaden their exposure to nutrition research. The project will entail a technical research poster and presentation of their work.

Capstone Project in Nutritional Sciences: Read More +

Objectives & Outcomes

Course Objectives: Applies an understanding of environmental, molecular factors (e.g. genes, proteins, metabolites) and food in the development and management of disease. (1.1)
Applies current research and evidence-informed practice to services. (6.3)
Applies knowledge of math and statistics. (1.10)
Applies project management principles to achieve project goals and objectives. (5.3)
Applies scientific methods utilizing ethical research practices when reviewing, evaluating, and conducting research. (6.2)
Demonstrates computer skills and uses nutrition informatics in the decision making process (1.13)
Incorporates critical thinking skills in practice. (6.1)
Uses effective communication, collaboration and advocacy skills. (7.2)

Hours & Format

Summer: 10 weeks - 40 hours of laboratory per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Letter grade.
Instructor: King

Capstone Project in Nutritional Sciences: Read Less -

NUSCTX 296A Research Review in Nutritional Sciences and Toxicology 2 Units

Terms offered: Spring 2023, Spring 2022, Spring 2021
Review of current literature and discussion of original research.
Research Review in Nutritional Sciences and Toxicology: Read More +

Rules & Requirements

Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-2 hours of seminar per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.

Research Review in Nutritional Sciences and Toxicology: Read Less -

NUSCTX 296B Research Review in Nutritional Sciences and Toxicology 2 Units

Terms offered: Spring 2023, Spring 2022, Spring 2021
Review of current literature and discussion of original research.
Research Review in Nutritional Sciences and Toxicology: Read More +

Rules & Requirements

Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-2 hours of seminar per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.

Research Review in Nutritional Sciences and Toxicology: Read Less -

NUSCTX 296C Research Review in Nutritional Sciences and Toxicology 2 Units

Terms offered: Spring 2023, Spring 2022, Spring 2021
Review of current literature and discussion of original research.
Research Review in Nutritional Sciences and Toxicology: Read More +

Rules & Requirements

Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 1-2 hours of seminar per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.

Research Review in Nutritional Sciences and Toxicology: Read Less -
NUSCTX 296D Research Review in Nutritional Sciences and Toxicology 2 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Review of current literature and discussion of original research.

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-2 hours of seminar per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.

Research Review in Nutritional Sciences and Toxicology: Read Less [-]

NUSCTX 296E Research Review in Nutritional Sciences and Toxicology 2 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Review of current literature and discussion of original research.

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-2 hours of seminar per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.

Research Review in Nutritional Sciences and Toxicology: Read Less [-]

NUSCTX 296F Research Review in Nutritional Sciences and Toxicology 2 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Review of current literature and discussion of original research.

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.

Hours & Format
Fall and/or spring: 15 weeks - 1-2 hours of seminar per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.

Research Review in Nutritional Sciences and Toxicology: Read Less [-]
NUSCTX 296H Research Review in Nutritional Sciences and Toxicology 2 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Review of current literature and discussion of original research.

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-2 hours of seminar per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.

Research Review in Nutritional Sciences and Toxicology: Read More [+]

NUSCTX 296I Research Review in Nutritional Sciences and Toxicology 2 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Review of current literature and discussion of original research.

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-2 hours of seminar per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.

Research Review in Nutritional Sciences and Toxicology: Read Less [-]

NUSCTX 296J Research Review in Nutritional Sciences and Toxicology 2 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Review of current literature and discussion of original research.

Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-2 hours of seminar per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.

Research Review in Nutritional Sciences and Toxicology: Read Less [-]
NUSCTX 296L Research Review in Nutritional Sciences and Toxicology 2 Units
Terms offered: Spring 2023, Spring 2022, Spring 2021
Review of current literature and discussion of original research.
Research Review in Nutritional Sciences and Toxicology: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-2 hours of seminar per week
Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Offered for satisfactory/unsatisfactory grade only.
Research Review in Nutritional Sciences and Toxicology: Read Less [-]

NUSCTX 298 Directed Group Studies 1 - 4 Units
Terms offered: Fall 2023, Spring 2023, Fall 2022
Special study in various fields of metabolic biology. Topics vary depending on interests of graduate students and availability of staff.
Directed Group Studies: Read More [+]
Rules & Requirements
Prerequisites: Graduate standing and consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Letter grade.
Directed Group Studies: Read Less [-]

NUSCTX 299 Nutritional Sciences and Toxicology Research 1 - 12 Units
Terms offered: Fall 2023, Summer 2023 Second 6 Week Session, Spring 2023
Nutritional Sciences and Toxicology Research: Read More [+]
Rules & Requirements
Prerequisites: Graduate standing and consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Summer:
6 weeks - 2.5-30 hours of independent study per week
8 weeks - 1.5-22.5 hours of independent study per week
10 weeks - 1.5-18 hours of independent study per week
Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Graduate
Grading: Letter grade.
Formerly known as: Nutritional Sciences 299
Nutritional Sciences and Toxicology Research: Read Less [-]

NUSCTX 302 Professional Preparation: Supervised Teaching Experience in Nutrition 1 - 4 Units
Terms offered: Fall 2023, Spring 2023, Fall 2022
Practical supervised experience in teaching nutrition and food science at the university level; planning, presentation, and evaluation of instructional units.
Professional Preparation: Supervised Teaching Experience in Nutrition: Read More [+]
Rules & Requirements
Prerequisites: 301 (may be taken concurrently) and consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of fieldwork per week
Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Professional course for teachers or prospective teachers
Grading: Letter grade.
Instructor: Bjeldanes
Formerly known as: Nutritional Sciences 302
Professional Preparation: Supervised Teaching Experience in Nutrition: Read Less [-]
NUSCTX 375 Professional Preparation: Teaching in Nutritional Sciences 1 - 2 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Creative approaches to teaching nutrition to diverse audiences are emphasized. Participants will identify needs of target populations, formulate educational objectives, design and/or use motivational teaching strategies, and evaluate the impact of their teaching on knowledge, attitudes, and behavior. Undergraduates may teach nutrition to elementary school children. Graduates may become teaching assistants. Professional Preparation: Teaching in Nutritional Sciences: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Credit Restrictions: Students will receive no credit for NUSCTX 375 after completing NUTRSCI 301.

Hours & Format
Fall and/or spring: 15 weeks - 1-1 hours of lecture per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Professional course for teachers or prospective teachers
Grading: Letter grade.
Formerly known as: Nutritional Sciences and Toxicology 301

Professional Preparation: Teaching in Nutritional Sciences: Read Less [-]

NUSCTX 400 Supervised Practice in Dietetics 2 - 12 Units
Terms offered: Not yet offered
This course will allow students the opportunity to apply their knowledge from their academic courses, build and practice skills, and demonstrate competency as an entry-level registered dietitian nutritionist under the supervision of a qualified professional.

Supervised Practice in Dietetics: Read More [+]
Objectives & Outcomes
Course Objectives: The objective of the course and its rotations is to demonstrate competency in the Accreditation Council for Education in Nutrition and Dietetics (ACEND) competency performance indicators. Each rotation’s specific competencies, and the level of mastery (knows, shows or does) can be found on the program’s curriculum map.

Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes. Students may enroll in multiple sections of this course within the same semester.

Hours & Format
Fall and/or spring: 15 weeks - 3-18 hours of internship per week

Additional Details
Subject/Course Level: Nutritional Sciences and Toxicology/Other professional
Grading: Offered for satisfactory/unsatisfactory grade only.

Supervised Practice in Dietetics: Read Less [-]
NUSCTX 602 Individual Study for Doctoral Students 1 - 8 Units
Terms offered: Fall 2023, Fall 2022, Fall 2021
Individual study in consultation with the major field adviser intended to provide an opportunity for qualified students to prepare themselves for the various examinations required for candidates for the Ph.D.

Rules & Requirements

Prerequisites: Graduate standing and consent of instructor

Credit Restrictions: Course does not satisfy unit or residence requirements for doctoral degree.

Repeat rules: Course may be repeated for credit without restriction.

Hours & Format

Fall and/or spring: 15 weeks - 0-0 hours of independent study per week

Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week

Additional Details

Subject/Course Level: Nutritional Sciences and Toxicology/Graduate examination preparation

Grading: Offered for satisfactory/unsatisfactory grade only.

Individual Study for Doctoral Students: Read More [+]