Bioengineering/Materials Science and Engineering Joint Major

University of California, Berkeley

About the Program

Bachelor of Science (BS)

The joint major programs are designed for students who wish to undertake study in two areas of engineering in order to qualify for employment in either field or for positions in which competence in two fields is required. These curricula include the core courses in each of the major fields. While they require slightly increased course loads, they can be completed in four years. Both majors are shown on the student's transcript of record.

The Bioengineering/Materials Science and Engineering Joint Major is for students who have a keen interest in the field of biomaterials. Students will study the design and synthesis of novel materials that will define new paradigms in biomaterials from the molecular through macroscopic levels, and will also receive a broad-based learning experience that will include exposure to fundamental courses in engineering and life sciences. This joint major aims to allow the student to understand the interface between the two major fields. Students taking this double major will successfully compete for jobs in the field of biomaterials in the academe, industry, and government.

Admission to the Joint Major

Admission directly to a joint major is closed to freshmen and junior transfer applicants. Students interested in a joint program may apply to change majors during specific times in their academic progress. Please see the College of Engineering joint majors website for complete details.

Visit Department Website

Major Requirements

In addition to the University, campus, and college requirements, students must fulfill the below requirements specific to their major program.

General Guidelines

  1. All courses taken in satisfaction of major requirements must be taken for a letter grade.

  2. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.

  3. A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.

  4. A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

For a detailed plan of study by year and semester, please see the Plan of Study tab.

Lower Division Requirements

MATH 1ACalculus4
MATH 1BCalculus4
MATH 53Multivariable Calculus4
MATH 54Linear Algebra and Differential Equations4
General Chemistry
and General Chemistry Laboratory 1
or CHEM 4A General Chemistry and Quantitative Analysis
Chemical Structure and Reactivity
and Organic Chemistry Laboratory 1
or CHEM 12A Organic Chemistry
PHYSICS 7APhysics for Scientists and Engineers4
PHYSICS 7BPhysics for Scientists and Engineers4
BIO ENG 10Introduction to Biomedicine for Engineers4
BIO ENG 11Engineering Molecules 13
BIO ENG 26Introduction to Bioengineering1
ENGIN 7Introduction to Computer Programming for Scientists and Engineers4
or COMPSCI 61A The Structure and Interpretation of Computer Programs
MAT SCI 45Properties of Materials3
MAT SCI 45LProperties of Materials Laboratory1

CHEM 4A and CHEM 12A are intended for students majoring in chemistry or a closely-related field.

Upper Division Requirements

Please note that technical courses listed below fulfill only one requirement.

ENGIN 40Engineering Thermodynamics3-4
or CHEM 120B Physical Chemistry
BIO ENG 102Biomechanics: Analysis and Design4
BIO ENG 103Engineering Molecules 24
BIO ENG 104Biological Transport Phenomena4
BIO ENG 110Biomedical Physiology for Engineers4
or BIO ENG 114 Cell Engineering
BIO ENG C118Biological Performance of Materials4
MAT SCI 102Bonding, Crystallography, and Crystal Defects3
MAT SCI 103Phase Transformations and Kinetics3
Materials Characterization
and Materials Characterization Laboratory
MAT SCI 130Experimental Materials Science and Design3
or BIO ENG 115 Tissue Engineering Lab
MAT SCI 151Polymeric Materials3
MAT SCI Electives: Select two courses from the following: 16-7
Properties of Electronic Materials [4]
Corrosion (Chemical Properties) [3]
Mechanical Behavior of Engineering Materials [3]
Experimental Materials Science and Design [3]
Nanomaterials in Medicine [3] 3
BIO ENG Elective: Select one of the following: 13-4
Biomedical Physiology for Engineers [4]
Functional Biomaterials Development and Characterization [4]
Cell Engineering [4]
Tissue Engineering Lab [4]
Structural Aspects of Biomaterials [4]
BioMEMS and Medical Devices [4]
Basic Principles of Drug Delivery [3]
Introduction of Bionanoscience and Bionanotechnology [4]
Nanomaterials in Medicine [3] 3
Bioengineering Design Project or Research: Select one of the following:3-4
BioMems and BioNanotechnology Laboratory [4]
Synthetic Biology Laboratory [4]
Practical Light Microscopy [3]
Senior Design Projects [4]
Honors Undergraduate Research [3,4]
Undergraduate Design Research [4]
Ethics requirement, select one of the following: 23-4
Ethics in Science and Engineering [3]
Ethics, Engineering, and Society [3]
Engineering, The Environment, and Society [4]
Environmental Philosophy and Ethics [4]
Bioethics and Society [4]
Introduction to Science, Technology, and Society [4]
Effective Personal Ethics for the Twenty-First Century [3]
Ethical Theories [4]
Moral Psychology [4]

Cannot be a course you have taken to fulfill another requirement.


The Ethics requirement will also fulfill one Humanities/Social Sciences requirement. See College Requirements tab.


BIO ENG C157/MAT SCI C157 can count as either a BioE Elective or MSE Elective, but not both.

College Requirements

Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions: 

  1. Completion of the requirements of one engineering major program of study. 
  2. A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
  3. The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
  4. All technical courses (math, science, and engineering) that can fulfill requirements for the student's major must be taken on a letter graded basis (unless they are only offered P/NP). 
  5. Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed five semesters to complete their degree requirements. Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters. 
  6. Adhere to all college policies and procedures as they complete degree requirements.
  7. Complete the lower division program before enrolling in upper division engineering courses. 

Humanities and Social Sciences (H/SS) Requirement

To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement, which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two Reading and Composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. See the humanities and social sciences section of our website for details.

Class Schedule Requirements

  • Minimum units per semester: 12.0
  • Maximum units per semester:  20.5
  • Minimum technical courses: College of Engineering undergraduates must include at least two letter graded technical courses (of at least 3 units each) in their semester program. Every semester students are expected to make satisfactory progress in their declared major. Satisfactory progress is determined by the student's Engineering Student Services Advisor. (Note: For most majors, normal progress will require enrolling in 3-4 technical courses each semester). Students who are not in compliance with this policy by the end of the fifth week of the semester are subject to a registration block that will delay enrollment for the following semester. 
  • All technical courses (math, science, engineering) that satisfy requirements for the major must be taken on a letter-graded basis (unless only offered as P/NP).

Minimum Academic (Grade) Requirements

  • Minimum overall and semester grade point averages of 2.00 (C average) are required of engineering undergraduates. Students will be subject to dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00. 
  • Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester.
  • A minimum overall grade point average of 2.00 and a minimum 2.00 grade point average in upper division technical course work required for the major are required to earn a Bachelor of Science in the College of Engineering.

Unit Requirements

To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:

  • Completion of the requirements of one engineering major program of study. 
  • A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed to count towards the B.S. degree, and no more than 4 units in any single term can be counted.
  • A maximum of 4 units of physical education from any school attended will count towards the 120 units.
  • Passed (P) grades may account for no more than one third of the total units completed at UC Berkeley, Fall Program for Freshmen (FPF), UC Education Abroad Program (UCEAP), or UC Berkeley Washington Program (UCDC) toward the 120 overall minimum unit requirement. Transfer credit is not factored into the limit. This includes transfer units from outside of the UC system, other UC campuses, credit-bearing exams, as well as UC Berkeley Extension XB units.

Normal Progress

Students in the College of Engineering must enroll in a full-time program and make normal progress each semester toward the bachelor's degree. The continued enrollment of students who fail to achieve minimum academic progress shall be subject to the approval of the dean. (Note: Students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.) 

UC and Campus Requirements

University of California Requirements

Entry Level Writing

All students who will enter the University of California as freshmen must demonstrate their command of the English language by satisfying the Entry Level Writing Requirement (ELWR). The UC Entry Level Writing Requirement website provides information on how to satisfy the requirement

American History and American Institutions

The American History and Institutions (AH&I) requirements are based on the principle that a US resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.

Campus Requirement

American Cultures

The American Cultures requirement is a Berkeley campus requirement, one that all undergraduate students at Berkeley need to pass in order to graduate. You satisfy the requirement by passing, with a grade not lower than C- or P, an American Cultures course. You may take an American Cultures course any time during your undergraduate career at Berkeley. The requirement was instituted in 1991 to introduce students to the diverse cultures of the United States through a comparative framework. Courses are offered in more than fifty departments in many different disciplines at both the lower and upper division level.


Plan of Study

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the College Requirements and Major Requirements tabs.

CHEM 1A & CHEM 1AL, or CHEM 4A15CHEM 3A & CHEM 3AL, or CHEM 12A15
BIO ENG 261Reading and Composition Part B Course64
Reading and Composition Part A Course64 
 18 17
MATH 534MATH 544
Humanities/Social Sciences course63-4MAT SCI 45L81
 Humanities/Social Sciences course63-4
 15-16 14-15
BIO ENG 1024BIO ENG 1044
BIO ENG 1034MAT SCI 1033
MAT SCI 1023BIO ENG 110 or 1144
ENGIN 40 or CHEM 120B93-4BIO ENG 100 or Humanities/Social Sciences course with ethics content2,63-4
 14-15 14-15
BIO ENG 115 or MAT SCI 1303-4Bioengineering Design Project or Research43-4
BIO ENG C1184MAT SCI Elective33-4
MAT SCI Elective33-4BIO ENG Elective53-4
Humanities/Social Sciences course63-4MAT SCI 104
 MAT SCI 1513
 13-16 16-19
Total Units: 121-131

CHEM 4A and CHEM 12A are intended for students majoring in chemistry or a closely-related field. Note: Prerequisites to CHEM 12A include CHEM 1A and 1AL and 1B (or 4A and 4B).


Students must take one course with ethics content. This may be fulfilled within the Humanities/Social Sciences requirement by taking one of the following courses: BIO ENG 100, ENGIN 125, ENGIN 157AC/IAS 157AC, ESPM 161, ESPM 162, HISTORY C182C/ISF C100G/STS C100, L&S 160B, PHILOS 104, PHILOS 107.


Students must choose two of the following MAT SCI Electives: MAT SCI 111, MAT SCI 112, MAT SCI 113, MAT SCI 130MAT SCI C157 (C157 can count as either a BioE elective or MSE Elective, but not both).


Bioengineering Design Project or Research: Choose one of the following: BIO ENG 121LBIO ENG 140LBIO ENG 168LBIO ENG 192BIO ENG H194BIO ENG 196 


Students must choose one of the following BIO ENG Electives: BIO ENG 110BIO ENG 111, BIO ENG 114, BIO ENG 115, BIO ENG C117, BIO ENG 121, BIO ENG 124, BIO ENG 150 BIO ENG C157 (C157 can count as either a BioE elective or MSE Elective, but not both).


The Humanities/Social Sciences (H/SS) requirement includes two approved Reading & Composition (R&C) courses and four additional approved courses, with which a number of specific conditions must be satisfied. R&C courses must be taken for a letter grade (C- or better required). The first half (R&C Part A) must be completed by the end of the freshman year; the second half (R&C Part B) must be completed by no later than the end of the sophomore year. The remaining courses may be taken at any time during the program. See for complete details and a list of approved courses.


Junior transfer admits are exempt from completing BIOENG 10.


MAT SCI 45/45L can be taken in either the Fall or Spring semesters. Both offerings deliver the same fundamental content.  The Fall offering draws more examples from hard materials (e.g. semiconductors, metals and ceramics), whereas the Spring offering will draw more examples from soft materials (e.g. polymers and biomaterials).


CHEM 120A is a prerequisite for CHEM 120B.

Student Learning Goals



Since our founding in 1998, the BioE faculty have been working to create an integrated, comprehensive program. Much thought has been put into the question, “What does every bioengineer need to know?” The faculty have been engaged in considerable dialogue over the years about what needs to be included, in what order, and how to do so in a reasonable time frame. Balancing depth with breadth has been the key challenge, and we have reached a point where the pieces have come together to form a coherent bioengineering discipline.

Learning Goals
  1. Describe the fundamental principles and methods of engineering.
  2. Understand the physical, chemical, and mathematical basis of biology.
  3. Appreciate the different scales of biological systems.
  4. Apply the physical sciences and mathematics in an engineering approach to biological systems.
  5. Effectively communicate scientific and engineering data and ideas, both orally and in writing.
  6. Demonstrate the values of cooperation, teamwork, social responsibility, and lifelong learning necessary for success in the field.
  7. Design a bioengineering solution to a problem of technical, scientific. or societal importance.
  8. Demonstrate advanced knowledge in a specialized field of bioengineering.

Materials Science

Measured Curricular Outcomes
  1. Be able to apply general math, science and engineering skills to the solution of engineering problems.
  2. Be aware of the social, safety and environmental consequences of their work, and be able to engage in public debate regarding these issues.
  3. Be able to apply core concepts in materials science to solve engineering problems.
  4. Be knowledgeable of contemporary issues relevant to materials science and engineering.
  5. Be able to select materials for design and construction.
  6. Understand the importance of life-long learning.
  7. Be able to design and conduct experiments, and to analyze data.
  8. Understand the professional and ethical responsibilities of a materials scientist and engineer.
  9. Be able to work both independently and as part of a team.
  10. Be able to communicate effectively while speaking, employing graphics, and writing.
  11. Possess the skills and techniques necessary for modern materials engineering practice.
Educational Objectives for Graduates

Stated succinctly, graduates from the program will have the following skills: 

  1. Know the fundamental science and engineering principles relevant to materials.
  2. Understand the relationship between nano/microstructure, characterization, properties and processing, and design of materials.
  3. Have the experimental and computational skills for a professional career or graduate study in materials.
  4. Possess a knowledge of the significance of research, the value of continued learning, and environmental/social issues surrounding materials.
  5. Be able to communicate effectively, to work in teams and to assume positions as leaders.


Bioengineering/Materials Science and Engineering

Faculty and Instructors

* Indicates this faculty member is the recipient of the Distinguished Teaching Award.


Chris Anderson, Associate Professor. Synthetic biology.
Research Profile

Adam Arkin, Professor. Systems and synthetic biology, environmental microbiology of bacteria and viruses, bioenergy, biomedicine, bioremediation.
Research Profile

James Casey, Professor. Continuum mechanics, finite elasticity, continuum thermodynamics, plasticity, theories of elastic-plastic materials, history of mechanics, dynamics.
Research Profile

Iain Clark, Assistant Professor. High throughput analysis of single cells, microfluidics, microbiology, immunology.
Research Profile

Irina M. Conboy, Professor. Stem cell niche engineering, tissue repair, stem cell aging and rejuvenation.
Research Profile

Steven Conolly, Professor. Instrumentation, medical imaging reconstruction, contrast, MRI, Magnetic Particle Imaging.
Research Profile

Derfogail Delcassian, Assistant Professor. Immunoengineering, 3d printing, immunochemistry.
Research Profile

John Dueber, Professor. Synthetic biology, Metabolic Engineering.
Research Profile

Daniel Fletcher, Professor. Bioengineering, optical and force microscopy, microfabrication, biophysics, mechanical properties of cells.
Research Profile

Teresa Head-Gordon, Professor. Computational chemistry, biophysics, bioengineering, biomolecules, materials, catalysis, computational science.
Research Profile

Kevin Healy, Professor. Bioengineering, biomaterials engineering, bioinspired materials, regenerative medicine, stem cell engineering, microphysiological systems, organs on a chip, drug screening and discovery.
Research Profile

Amy Herr, Professor. Microfluidics, bioanalytical separations, diagnostics, electrokinetic transport, engineering design.
Research Profile

Ian Holmes, Professor. Computational biology.
Research Profile

Patrick Hsu, Assistant Professor. Postmitotic genome, therapeutic macromolecule delivery, human neuroscience.
Research Profile

Richard Karp, Professor. Computational molecular biology, genomics, DNA molecules, structure of genetic regulatory networks, combinatorial and statsitical methods.
Research Profile

Jay Keasling, Professor. Microorganism metabolic engineering for environmentally friendly product .
Research Profile

Tony M. Keaveny, Professor. Biomechanics of bone, orthopaedic biomechanics, design of artificial joints, osteoporosis, finite element modeling, clinical biomechanics.
Research Profile

Sanjay Kumar, Professor. Biomaterials, molecular and cellular bioengineering, stem cells, cancer biology, translational medicine.
Research Profile

Liana Lareau, Assistant Professor. Computational biology, molecular biology.
Research Profile

Seung-Wuk Lee, Professor. Nanotechnology, bio-inspired nanomaterials, synthetic viruses, regenerative tissue engineering materials, drug delivery vehicles.
Research Profile

Dorian Liepmann, Professor. Bioengineering, mechanical engineering, bioMEMS, biosensors, microfluid dynamics, experimental biofluid dynamics, hemodynamics, valvular heart disease, cardiac flows, arterial flows.
Research Profile

Gerard Marriott, Professor. Molecular Biophysics and Integrated Bioimaging, Cellular and Tissue Imaging.
Research Profile

Phillip Messersmith, Professor. Biomaterials, adhesion, polymers, self-assembly, biomimetics, biomedical devices.
Research Profile

Mohammad Mofrad, Professor. Nuclear pore complex and nucleocytoplasmic transport, mechanobiology of disease, cellular mechanotransduction, integrin-mediated focal adhesions.
Research Profile

Niren Murthy, Professor. Molecular imaging, drug delivery.
Research Profile

Lisa Pruitt, Professor. Tissue biomechanics, biomaterial science, fatigue and fracture micromechanisms, orthopedic polymers for total joint replacement, synthetic cartilage.
Research Profile

Shankar Sastry, Professor. Embedded and cyberphysical systems, artificial intelligence, ar/vr, computer science, robotics, arial robots, cybersecurity, cyber defense, homeland defense, nonholonomic systems, control of hybrid systems, sensor networks, interactive visualization, robotic telesurgery, rapid prototyping.
Research Profile

David Schaffer, Professor. Neuroscience, biomolecular engineering, bioengineering, stem cell biology, gene therapy.
Research Profile

Aaron Streets, Assistant Professor. Biological systems, microfluidics, microscopy, genomics.
Research Profile

Moriel Vandsburger, Professor. Bioengineering, molecular MRI, MRI.
Research Profile

Michael Yartsev, Assistant Professor. Neuroscience, engineering.
Research Profile

Emeritus Faculty

Thomas F. Budinger, Professor Emeritus. Image processing, biomedical electronics, quantitative aging, cardiovascular physiology, bioastronautics, image reconstruction, nuclear magnetic resonance, positron emission, tomography, reconstruction tomography, inverse problem mathematics.
Research Profile

Luke Lee, Professor Emeritus. Biophotonics, biophysics, bionanoscience, molecular imaging, single cell analysis, bio-nano interfaces, integrated microfluidic devices (iMD) for diagnostics and preventive personalized medicine.
Research Profile

Boris Rubinsky, Professor Emeritus. Medical imaging, biotechnology, biomedical engineering, low temperature biology, micro and nano bionic technologies, electrical impedance tomography, bio-electronics, biomedical devices biomedical numerical analysis, bio-heat and mass transfer, electroporation light imaging.
Research Profile

Kimmen Sjolander, Professor Emeritus. Computational biology, algorithms, phylogenetic tree reconstruction, protein structure prediction, multiple sequence alignment, evolution, bioinformatics, hidden Markov models, metagenomics, statistical modeling, phylogenomics, emerging and neglected diseases, machine-learning, genome annotation, metagenome annotation, systems biology, functional site prediction, ortholog identification.
Research Profile

Matthew Tirrell, Professor Emeritus. Self-assembled structures for diagnostic and therapeutic applications, electrostatic self-assembly.
Research Profile

* Indicates this faculty member is the recipient of the Distinguished Teaching Award.


Joel W. Ager, Adjunct Professor. Sustainable energy conversion, electronic materials, catalytic and photoelectrocatalytic materials.

Zakaria Y. Al Balushi, Assistant Professor. Electronic, Magnetic and Optical Materials, Quantum Materials Synthesis and Optoelectronics.
Research Profile

Mark D. Asta, Professor. Computational materials science.
Research Profile

Jillian Banfield, Professor. Nanoscience, Bioremediation, genomics, biogeochemistry, carbon cycling, geomicrobiology, MARS, minerology.
Research Profile

Robert Birgeneau, Professor. Physics, phase transition behavior of novel states of matter.
Research Profile

Gerbrand Ceder, Professor. Energy storage, computational modeling, machine learning.
Research Profile

Daryl Chrzan, Professor. Materials science and engineering, computational materials science, metals and metallic compounds, defects in solids, growth of nanostructures.
Research Profile

Thomas M. Devine, Professor. Synthesis of nanomaterials, nuclear power, oil production, secondary batteries for electric vehicles, computer disk drives, and synthesis and characterization of metal oxide nanowires, corrosion resistance of materials.
Research Profile

Oscar D. Dubon, Professor. Magnetic, optical materials, processing, properties in electronic.
Research Profile

Kevin Healy, Professor. Bioengineering, biomaterials engineering, tissue engineering, bioinspired materials, tissue and organ regeneration, stem cell engineering, microphysiological systems, organs on a chip, drug screening and discovery, multivalent bioconjugate therapeutics.
Research Profile

Frances Hellman, Professor. Condensed matter physics and materials science.
Research Profile

Lane W. Martin, Professor. Complex Oxides, novel electronic materials, thin films, materials processing, materials characterization, memory, logic, information technologies, energy conversion, thermal properties, dielectrics, ferroelectrics, pyroelectrics, piezoelectrics, magnetics, multiferroics, transducers, devices.
Research Profile

Phillip B. Messersmith, Professor. Biologically inspired materials, regenerative medicine, biointerfacial phenomena, biological materials, medical adhesion, polymers.
Research Profile

Andrew M. Minor, Professor. Metallurgy, nanomechanics, in situ TEM, electron microscopy of soft materials.
Research Profile

Ahmad Omar, Assistant Professor. Natural and synthetic soft condensed matter systems.
Research Profile

Kristin A. Persson, Professor. Lithium-ion Batteries.
Research Profile

R. Ramesh, Professor. Processing of complex oxide heterostructures, nanoscale characterization/device structures, thin film growth and materials physics of complex oxides, materials processing for devices, information technologies.
Research Profile

Robert O. Ritchie, Professor. Structural materials, mechanical behavior in biomaterials, creep, fatigue and fracture of advanced metals, intermetallics, ceramics.
Research Profile

Miquel B. Salmeron, Adjunct Professor. Molecules, lasers, atoms, materials science and engineering, matter, scanning, tunneling, atomic force microscopies, x-ray photoelectron spectroscopy.
Research Profile

Mary Scott, Assistant Professor. Structural materials, Electronic, Magnetic and Optical Materials, and Chemical and Electrochemical Materials.
Research Profile

Junqiao Wu, Professor. Semiconductors, nanotechnology, energy materials.
Research Profile

Ting Xu, Professor. Polymer, nanocomposite, biomaterial, membrane, directed self-assembly, drug delivery, protein therapeutics, block copolymers, nanoparticles.
Research Profile

Peidong Yang, Professor. Materials chemistry, sensors, nanostructures, energy conversion, nanowires, miniaturizing optoelectronic devices, photovoltaics, thermoelectrics, solid state lighting.
Research Profile

Jie Yao, Associate Professor. Optical materials, Nanophotonics, optoelectronics.
Research Profile

Haimei Zheng, Associate Adjunct Professor. Nanoscience, solid-liquid interfaces, chemical and electrochemical processes, catalysis, nanomaterials characterization, in situ liquid phase electron microscopy.

Xiaoyu (Rayne) Zheng, Associate Professor.


Matthew Sherburne, Lecturer. Computational (DFT, Machine Learning, High Throughput) Materials Science and Engineering applied to the Discovery, Design and Development of materials for sustainability. The main areas are Perovskite for solar energy, Catalytic materials for CO2 reduction (catalytic work also includes biofuels and pharmaceuticals), and 2D materials for clean water.

Emeritus Faculty

Lutgard De Jonghe, Professor Emeritus. Ceramic properties, advanced ceramics, silicon carbide, densification studies, microstructure development.
Research Profile

Fiona Doyle, Professor Emeritus. Electrochemistry, mineral processing, solution processing of materials, interfacial chemistry, extractive metallurgy, remediation of abandoned mines.
Research Profile

James W. Evans, Professor Emeritus. Production of materials, particularly fluid flow, reaction kinetics, mass transport, electrochemical, electromagnetic phenomena governing processes for producing materials, metals, storing energy.
Research Profile

* Douglas W. Fuerstenau, Professor Emeritus. Mineral processing, extractive metallurgy, application of surface, colloid chemistry to mineral/water systems, fine particle science, technology, principles of comminution, flotation, pelletizing, hydrometallurg, extraction of metals.
Research Profile

Andreas M. Glaeser, Professor Emeritus. Ceramic joining, TLP bonding, brazing, reduced-temperature joining, ceramic-metal joining, ceramic processing, surface and interface properties of ceramics, thermal barrier coatings.
Research Profile

* Ronald Gronsky, Professor Emeritus. Internal structure of materials, engineering applications.
Research Profile

Marshal F. Merriam, Professor Emeritus.

* J. W. Morris, Professor Emeritus. Structural materials, computational materials, the limits of strength, deformation mechanisms, non-destructive testing with SQUID microscopy, mechanisms of grain refinement in high strength steels, lead-free solders for microelectronics.
Research Profile

Matthew Tirrell, Professor Emeritus.

Eicke R. Weber, Professor Emeritus. Optical materials, magnetic materials, semiconductor thin film growth, device processing in electronic materials.
Research Profile

Contact Information

Department Office, Bioengineering and Materials Science & Engineering

306 Stanley Hall

Phone: 510-642-5833

Fax: 510-642-5835

Visit Department Website

Department of Materials Science and Engineering

210 Hearst Memorial Mining Building

Phone: 510-642-3801

Fax: 510-643-5792

Department of Bioengineering

306 Stanley Hall

Phone: 510-642-5833

Fax: 510-642-5835

Department Chair, Materials Science and Engineering

Lane Martin

216 Hearst Memorial Mining Building

Engineering Student Services Advisor

Shareena Samson

230 Bechtel Engineering Ctr.

Department Chair, Bioengineering

Sanjay Kumar, PhD

274A Stanley Hall

Phone: 510-642-5833

Back to Top