Electrical Engineering and Computer Sciences/Materials Science and Engineering Joint Major
About the Program
Bachelor of Science (BS)
The joint major programs are designed for students who wish to undertake study in two areas of engineering in order to qualify for employment in either field or for positions in which competence in two fields is required. These curricula include the core courses in each of the major fields. While they require slightly increased course loads, they can be completed in four years. Both majors are shown on the student's transcript of record.
For students interested in materials and devices, a joint major in Electrical Engineering and Computer Sciences (EECS)/Materials Science and Engineering (MSE) can be valuable. The program combines the study of materials from a broad perspective, as taught in MSE, with the study of their applications in electronic devices and circuits, as taught in EECS.
Admission to the Joint Major
Admission directly to a joint major is closed to freshmen and junior transfer applicants. Students interested in a joint program may apply to change majors during specific times in their academic progress. Please see the College of Engineering joint majors website for complete details.
Introductory Mechanics and Relativity and Introductory Electromagnetism, Waves, and Optics and Introduction to Experimental Physics I and Introductory Thermodynamics and Quantum Mechanics and Introduction to Experimental Physics II
This program is geared toward students who would like to pursue an education beyond the BS/BA, allowing them to achieve greater breadth and depth of knowledge and do some research. It is not intended for students who have definitely decided to pursue a PhD immediately following graduation. Those students are advised to apply for a PhD program at Berkeley or elsewhere during their senior year. Students who have been accepted into the five-year BA/MS or BS/MS are free to change their minds later and apply to enter the PhD program or apply to a PhD program at another university. Their subsequent admission to the PhD program is competitive with our other PhD applicants.
The program is focused on interdisciplinary training at a graduate level; with at least 8 units of course work outside EECS required. Students will emerge as leaders in their technical and professional fields.
Program is focused on interdisciplinary study and more experience in aligned technical fields such as physics, materials science, statistics, biology, etc., and/or professional disciplines such as management of technology, business law, and public policy.
Participants, if admitted to the program, must begin the graduate portion in the semester immediately following the conferral of their bachelor's degree.
Participation in the program is permitted for only one additional year (two semesters) beyond the bachelor's degree.
Participation is only available to Berkeley EECS and CDSS Computer Science undergraduates.
Participants in program are self-funded.
Participants in program may serve as Graduate Student Instructors with the approval of their faculty research advisor and the 5th Year MS Committee.
For further information regarding this program, please see the Department's website.
Materials Science and Engineering Five-Year BS/MS
The five-year combined Bachelor of Science/Master of Science program augments the existing four-year undergraduate program with a fifth year of graduate study that provides a professionally-oriented component, preparing students for careers in engineering or engineering management within the business, government, and/or industrial sectors. In this program, students earn a bachelor's degree and subsequently, a Master of Science degree under Plan II (without thesis) of the Academic Senate. This five-year program emphasizes interdisciplinary study through an independent project coupled to coursework. The program is open to undergraduate Materials Science and Engineering majors (both single or joint majors) only.
Unit Requirements (minimum 24 units)
At least 12 units must be graduate units in major subject (200+ level)
Individual study or research
At least 1 unit/semester (2 units total)
No more than 2 units/semester (4 units total)
Remaining 12 units may be letter graded upper-division or graduate courses approve by major field advisor.
A grade of B or better in three of five core course categories (thermodynamics, structure or phase transformations, characterization, processing and properties) at the 200+ level
Minimum 3.0 GPA must be maintained
Each course may only satisfy one category
An independent project will be performed as part of a required two course sequence, MSE 296A&B, under the supervision of a faculty member. Students are encouraged to identify faculty supervisors as soon as possible, but by no later than the beginning of the ninth semester. Students will be required to complete both a project report and an oral presentation.
For further information regarding this program, please see the department's website.
College Requirements
Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions:
A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
All technical courses (math, science, and engineering) that can fulfill requirements for the student's major must be taken on a letter graded basis (unless they are only offered P/NP).
Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed five semesters to complete their degree requirements. Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters.
Complete lower division technical courses before enrolling in upper division technical courses.
Humanities and Social Sciences (H/SS) Requirement
To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement, which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two Reading and Composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. See the humanities and social sciences section of our website for details.
Class Schedule Requirements
Minimum units per semester: 12.0
Maximum units per semester: 20.5
Minimum technical courses: College of Engineering undergraduates must include at least two letter graded technical courses (of at least 3 units each) in their semester program. Every semester students are expected to make normal progress in their declared major. Normal progress is determined by the student's Engineering Student Services Advisor. (Note: For most majors, normal progress will require enrolling in 3-4 technical courses required of your current major each semester.) Students who are not in compliance with this policy by the end of the fifth week of the semester are subject to a registration block that will delay enrollment for the following semester.
All technical courses (math, science, engineering) that satisfy requirements for the major must be taken on a letter-graded basis (unless only offered as P/NP).
Minimum Academic Requirements
Students must have a minimum overall and semester grade point average of 2.00 (C average). Students will be subject to suspension or dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00.
Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester.
A minimum overall grade point average of 2.00 and a minimum 2.00 grade point average in upper division technical course work required for the major are required to earn a Bachelor of Science in the College of Engineering.
Students must make normal degree progress toward the Bachelor of Science degree and their officially declared major.
Unit Requirements
To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:
Completion of the requirements of one engineering major program of study.
A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed to count towards the B.S. degree, and no more than 4 units in any single term can be counted.
A maximum of 4 units of physical education from any school attended will count towards the 120 units.
Passed (P) grades may account for no more than one third of the total units completed at UC Berkeley, Fall Program for First Semester (FPF), UC Education Abroad Program (UCEAP), or UC Berkeley Washington Program (UCDC) toward the 120 overall minimum unit requirement. Transfer credit is not factored into the limit. This includes transfer units from outside of the UC system, other UC campuses, credit-bearing exams, as well as UC Berkeley Extension XB units.
Normal Progress
Students in the College of Engineering must enroll in a full-time program and make normal progress each semester toward their declared major. Students who fail to achieve normal academic progress shall be subject to suspension or dismissal. (Note: Students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.)
All students who will enter the University of California as freshmen must demonstrate their command of the English language by satisfying the Entry Level Writing Requirement (ELWR). The UC Entry Level Writing Requirement website provides information on how to satisfy the requirement.
The American History and Institutions (AH&I) requirements are based on the principle that a US resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.
The American Cultures requirement is a Berkeley campus requirement, one that all undergraduate students at Berkeley need to pass in order to graduate. You satisfy the requirement by passing, with a grade not lower than C- or P, an American Cultures course. You may take an American Cultures course any time during your undergraduate career at Berkeley. The requirement was instituted in 1991 to introduce students to the diverse cultures of the United States through a comparative framework. Courses are offered in more than fifty departments in many different disciplines at both the lower and upper division level.
Plan of Study
For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.,), please see the College Requirements and Major Requirements tabs.
Students may choose to take the Physics 7 series or the Physics 5 series. Students who fulfill Physics 7A with an AP exam score, transfer work, or at Berkeley may complete the physics requirement by taking either Physics 7B and 7C, or Physics 5B/5BL and 5C/5CL. Students who take Physics 5A must take Physics 5B/5BL and 5C/5CL to complete the physics requirement. Completion of Physics 5A and Physics 7B and 7C will not fulfill the physics requirement.
The Humanities/Social Sciences (H/SS) requirement includes two approved Reading & Composition (R&C) courses and four additional approved courses, with which a number of specific conditions must be satisfied. R&C courses must be taken for a letter grade (C- or better required). The first half (R&C Part A) must be completed by the end of the freshman year; the second half (R&C Part B) must be completed by no later than the end of the sophomore year. The remaining courses may be taken at any time during the program. See engineering.berkeley.edu/hss for complete details and a list of approved courses.
5
MAT SCI 45/MAT SCI 45L can be taken in either the Fall or Spring semesters. Both offerings deliver the same fundamental content. The Fall offering draws more examples from hard materials (e.g. semiconductors, metals and ceramics), whereas the Spring offering will draw more examples from soft materials (e.g. polymers and biomaterials).
6
CHEM 4A is intended for students majoring in chemistry or a closely related field.
Student Learning Goals
Electrical Engineering and Computer Sciences
MISSION
Preparing graduates to pursue postgraduate education in electrical engineering, computer science, or related fields.
Preparing graduates for success in technical careers related to electrical and computer engineering, or computer science and engineering.
Preparing graduates to become leaders in fields related to electrical and computer engineering or computer science and engineering.
LEARNING GOALS
An ability to apply knowledge of mathematics, science, and engineering.
An ability to configure, apply test conditions, and evaluate outcomes of experimental systems.
An ability to design systems, components, or processes that conform to given specifications and cost constraints.
An ability to work cooperatively, respectfully, creatively, and responsibly as a member of a team.
An ability to identify, formulate, and solve engineering problems.
An understanding of the norms of expected behavior in engineering practice and their underlying ethical foundations.
An ability to communicate effectively by oral, written, and graphical means.
An awareness of global and societal concerns and their importance in developing engineering solutions.
An ability to independently acquire and apply required information, and an appreciation of the associated process of life-long learning.
A knowledge of contemporary issues.
An in-depth ability to use a combination of software, instrumentation, and experimental techniques practiced in circuits, physical electronics, communication, networks and systems, hardware, programming, and computer science theory.
Materials Science
Measured Curricular Outcomes
The program is designed around a set of curricular outcomes.
Be able to apply general math, science and engineering skills to the solution of engineering problems.
Be aware of the social, safety and environmental consequences of their work, and be able to engage in public debate regarding these issues.
Be able to apply core concepts in materials science to solve engineering problems.
Be knowledgeable of contemporary issues relevant to materials science and engineering.
Be able to select materials for design and construction.
Understand the importance of life-long learning.
Be able to design and conduct experiments, and to analyze data.
Understand the professional and ethical responsibilities of a materials scientist and engineer.
Be able to work both independently and as part of a team.
Be able to communicate effectively while speaking, employing graphics, and writing.
Possess the skills and techniques necessary for modern materials engineering practice.
Educational Objectives for Graduates
Stated succinctly, graduates from the program will have the following skills:
Know the fundamental science and engineering principles relevant to materials.
Understand the relationship between nano/microstructure, characterization, properties and processing, and design of materials.
Have the experimental and computational skills for a professional career or graduate study in materials.
Possess a knowledge of the significance of research, the value of continued learning, and environmental/social issues surrounding materials.
Be able to communicate effectively, to work in teams and to assume positions as leaders.
Terms offered: Fall 2022, Fall 2021, Fall 2017
The Freshman Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments, and topics may vary from department to department and semester to semester. Freshman Seminar: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week
Terms offered: Fall 2011
A Berkeley Electrical Engineering and Computer Sciences degree opens the door to many opportunities, but what exactly are they? Graduation is only a few years away and it's not too early to find out. In this seminar students will hear from practicing engineers who recently graduated. What are they working on? Are they working in a team? What do they wish they had learned better? How did they find their jobs? What Electrical Engineers Do--Feedback from Recent Graduates: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week
Terms offered: Spring 2025, Spring 2023, Fall 2022
Freshman and sophomore seminars offer lower division students the opportunity to explore an intellectual topic with a faculty member and a group of peers in a small-seminar setting. These seminars are offered in all campus departments; topics vary from department to department and from semester to semester. Enrollment limits are set by the faculty, but the suggested limit is 25. Freshman/Sophomore Seminar: Read More [+]
Rules & Requirements
Prerequisites: Priority given to freshmen and sophomores
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 2-4 hours of seminar per week
Terms offered: Fall 2013, Summer 2013 8 Week Session, Spring 2013
Introduction to the principles of electrical engineering, starting from the basic concepts of voltage and current and circuit elements of resistors, capacitors, and inductors. Kirchhoff's voltage and current laws with Thevenin and Norton equivalents. Operational amplifiers with feedback. Semiconductor devices including diodes and MOSFETS and their IV characteristics. Applications of diodes for rectification, and design of MOSFETs in common source amplifiers. Digital logic gates and design using CMOS as well as simple flip-flops. Speed and scaling issues for CMOS. The course includes as motivating examples designs of high level applications including logic circuits, amplifiers, power supplies, and communication links.
Terms offered: Spring 2020, Spring 2019, Fall 2018
Electronics has become pervasive in our lives as a powerful technology with applications in a wide range of fields including healthcare, environmental monitoring, robotics, or entertainment. This course teaches how to build electronic circuits that interact with the environment through sensors and actuators and how to communicate wirelessly with the internet to cooperate with other devices and with humans. In the laboratory students design and build representative samples such as solar harvesters, robots, that exchange information with or are controlled from the cloud. Electronics for the Internet of Things: Read More [+]
Objectives & Outcomes
Course Objectives: Electronics has become a powerful and ubiquitous technology supporting solutions to a wide range of applications in fields ranging from science, engineering, healthcare, environmental monitoring, transportation, to entertainment. The objective of this course is to teach students majoring in these and related subjects how to use electronic devices to solve problems in their areas of expertise. Through the lecture and laboratory, students gain insight into the possibilities and limitations of the technology and how to use electronics to help solve problems. Students learn to use electronics to interact with the environment through sound, light, temperature, motion using sensors and actuators, and how to use electronic computation to orchestrate the interactions and exchange information wirelessly over the internet.
Student Learning Outcomes: Deploy electronic sensors and interface them to microcontrollers through digital and analog channels as well as common protocols (I2C, SPI),
Design, build and test electronic devices leveraging these concepts.
Interact with the internet and cloud services using protocols such as http, MQTT, Blynk,
Interface DC motors, steppers and servos to microcontrollers,
Represent information with voltage, current, power, and energy and how to measure these quantities with laboratory equipment,
To use and program low-cost and low-power microcontrollers for sensing, actuation, and information processing, and find and use program libraries supporting these tasks
Understand and make basic low-pass and high-pass filters, Wheatstone bridge etc.
Use electronics to sense and actuate physical parameters such as temperature, humidity, sound, light, and motion,
Terms offered: Spring 2025, Fall 2022, Spring 2022
Sophomore seminars are small interactive courses offered by faculty members in departments all across the campus. Sophomore seminars offer opportunity for close, regular intellectual contact between faculty members and students in the crucial second year. The topics vary from department to department and semester to semester. Enrollment limited to 15 sophomores. Sophomore Seminar: Read More [+]
Rules & Requirements
Prerequisites: At discretion of instructor
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 5 weeks - 3-6 hours of seminar per week 10 weeks - 1.5-3 hours of seminar per week 15 weeks - 1-2 hours of seminar per week
Summer: 6 weeks - 2.5-5 hours of seminar per week 8 weeks - 1.5-3.5 hours of seminar per week
Terms offered: Summer 2024 3 Week Session, Spring 2016, Fall 2015
Students take part in organized individual field sponsored programs with off-campus companies or tutoring/mentoring relevant to specific aspects and applications of computer science on or off campus. Note Summer CPT or OPT students: written report required. Course does not count toward major requirements, but will be counted in the cumulative units toward graduation. Field Study: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor (see department adviser)
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of fieldwork per week
Summer: 6 weeks - 2.5-10 hours of fieldwork per week 8 weeks - 2-7.5 hours of fieldwork per week
Terms offered: Spring 2025, Fall 2024, Spring 2024
This course covers the fundamental circuit and device concepts needed to understand analog integrated circuits. After an overview of the basic properties of semiconductors, the p-n junction and MOS capacitors are described and the MOSFET is modeled as a large-signal device. Two port small-signal amplifiers and their realization using single stage and multistage CMOS building blocks are discussed. Sinusoidal steady-state signals are introduced and the techniques of phasor analysis are developed, including impedance and the magnitude and phase response of linear circuits. The frequency responses of single and multi-stage amplifiers are analyzed. Differential amplifiers are introduced. Microelectronic Devices and Circuits: Read More [+]
Terms offered: Fall 2017, Fall 2016, Fall 2015
An introduction to the kinematics, dynamics, and control of robot manipulators, robotic vision, and sensing. The course covers forward and inverse kinematics of serial chain manipulators, the manipulator Jacobian, force relations, dynamics, and control. It presents elementary principles on proximity, tactile, and force sensing, vision sensors, camera calibration, stereo construction, and motion detection. The course concludes with current applications of robotics in active perception, medical robotics, and other areas. Introduction to Robotics: Read More [+]
Terms offered: Spring 2017, Spring 2016
This course is a sequel to Electrical Engineering C106A/Bioengineering C125, which covers kinematics, dynamics and control of a single robot. This course will cover dynamics and control of groups of robotic manipulators coordinating with each other and interacting with the environment. Concepts will include an introduction to grasping and the constrained manipulation, contacts and force control for interaction with the environment. We will also cover active perception guided manipulation, as well as the manipulation of non-rigid objects. Throughout, we will emphasize design and human-robot interactions, and applications to applications in manufacturing, service robotics, tele-surgery, and locomotion. Robotic Manipulation and Interaction: Read More [+]
Terms offered: Spring 2025, Spring 2024
This course is designed to provide an introduction to electric power conversion, distribution, and generation with renewable energy sources. The course will introduce fundamental concepts in the area of electric power, such as complex and reactive power, phasors, impedance, magnetic circuits and transformers, power factor, power
quality, three-phase power, ac-dc conversion, and a conceptual overview of renewable energy and the integration of sustainable energy sources on the electric grid.Real world applications, ranging from ground-fault circuit interrupters to residential power distribution and solar photovoltaic dc-ac inverters will be explored in
live lecture demonstration. Introduction to Electric Power and Renewable Energy: Read More [+]
Terms offered: Fall 2024, Fall 2023, Fall 2022
Power conversion circuits and techniques. Characterization and design of magnetic devices including transformers, reactors, and electromagnetic machinery. Characteristics of bipolar and MOS power semiconductor devices. Applications to motor control, switching power supplies, lighting, power systems, and other areas as appropriate. Power Electronics: Read More [+]
Rules & Requirements
Prerequisites:EL ENG 105 or background in circuit analysis (KVL, KCL, voltage/current relationships, etc.)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week
Terms offered: Spring 2025, Spring 2024
This course is the second in a two-semester series to equip students with the skills needed to analyze, design, and prototype power electronic converters. While EE 113/213A provides an overview of power electronics fundamentals and applications, EE 113B/213B
focuses on the practical design and hardware implementation of power converters. The primary focus of
EE 113B/213B is time in the laboratory, with sequential modules on topics such as power electronic components,
PCB layout, closed-loop control, and experimental validation. At the end of the course, students will have
designed, prototyped, and validated a power converter from scratch, demonstrating a skill set that is critical for
power electronics engineers in research and industry. Power Electronics Design: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit with instructor consent.
Hours & Format
Fall and/or spring: 15 weeks - 1.5 hours of lecture and 6 hours of laboratory per week
Grading/Final exam status: Letter grade. Alternate method of final assessment during regularly scheduled final exam group (e.g., presentation, final project, etc.).
Terms offered: Spring 2025, Spring 2024, Spring 2023
Review of static electric and magnetic fields and applications; Maxwell's equations; transmission lines; propagation and reflection of plane waves; introduction to guided waves, microwave networks, and radiation and antennas. Minilabs on statics, transmission lines, and waves. Explanation of cellphone antennas, WiFi communication, and other wireless technologies. Electromagnetic Fields and Waves: Read More [+]
Rules & Requirements
Prerequisites:EECS 16B, MATH 53, and MATH 54; PHYSICS 7B or equivalent that covers AC circuits and electromagnetics up to Maxwell's equations
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 2 hours of laboratory per week
Terms offered: Fall 2024, Fall 2023, Fall 2022
Fundamental principles of optical systems. Geometrical optics and aberration theory. Stops and apertures, prisms, and mirrors. Diffraction and interference. Optical materials and coatings. Radiometry and photometry. Basic optical devices and the human eye. The design of optical systems. Lasers, fiber optics, and holography. Introduction to Optical Engineering: Read More [+]
Credit Restrictions: Students will receive no credit for Electrical Engineering 118 after taking Electrical Engineering 218A. A deficient grade in Electrical Engineering 119 may be removed by taking Electrical Engineering 118.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Terms offered: Spring 2025, Fall 2024, Spring 2024
Continuous and discrete-time transform analysis techniques with illustrative applications. Linear and time-invariant systems, transfer functions. Fourier series, Fourier transform, Laplace and Z-transforms. Sampling and reconstruction. Solution of differential and difference equations using transforms. Frequency response, Bode plots, stability analysis. Illustrated by analysis of communication systems and feedback control systems. Signals and Systems: Read More [+]
Terms offered: Spring 2016, Fall 2014, Fall 2013
Introduction to the basic principles of the design and analysis of modern digital communication systems. Topics include source coding, channel coding, baseband and passband modulation techniques, receiver design, and channel equalization. Applications to design of digital telephone modems, compact disks, and digital wireless communication systems. Concepts illustrated by a sequence of MATLAB exercises. Introduction to Digital Communication Systems: Read More [+]
Terms offered: Spring 2025, Spring 2024, Spring 2023
This course focuses on the fundamentals of the wired and wireless communication networks. The course covers both the architectural principles for making these networks scalable and robust, as well as the key techniques essential for analyzing and designing them. The topics include graph theory, Markov chains, queuing, optimization techniques, the physical and link layers, switching, transport, cellular networks and Wi-Fi. Introduction to Communication Networks: Read More [+]
Terms offered: Spring 2025, Spring 2024, Spring 2023
Discrete time signals and systems: Fourier and Z transforms, DFT, 2-dimensional versions. Digital signal processing topics: flow graphs, realizations, FFT, chirp-Z algorithms, Hilbert transform relations, quantization effects, linear prediction. Digital filter design methods: windowing, frequency sampling, S-to-Z methods, frequency-transformation methods, optimization methods, 2-dimensional filter design. Digital Signal Processing: Read More [+]
Terms offered: Spring 2017, Fall 2016, Spring 2016
This course covers the fundamentals of probability and random processes useful in fields such as networks, communication, signal processing, and control. Sample space, events, probability law. Conditional probability. Independence. Random variables. Distribution, density functions. Random vectors. Law of large numbers. Central limit theorem. Estimation and detection. Markov chains. Probability and Random Processes: Read More [+]
Terms offered: Spring 2025, Spring 2024, Spring 2023
Analysis and synthesis of linear feedback control systems in transform and time domains. Control system design by root locus, frequency response, and state space methods. Applications to electro-mechanical and mechatronics systems. Feedback Control Systems: Read More [+]
Terms offered: Spring 2025, Fall 2024, Spring 2024
Overview of electronic properties of semiconductor. Metal-semiconductor contacts, pn junctions, bipolar transistors, and MOS field-effect transistors. Properties that are significant to device operation for integrated circuits. Silicon device fabrication technology. Integrated-Circuit Devices: Read More [+]
Terms offered: Spring 2025, Spring 2024, Spring 2023
This course is designed to give an introduction to, and overview of, the fundamentals of photovoltaic devices. Students will learn how solar cells work, understand the concepts and models of solar cell device physics, and formulate and solve relevant physical problems related to photovoltaic devices. Monocrystalline, thin film and third generation solar cells will be discussed and analyzed. Light management and economic considerations in a solar cell system will also be covered. Fundamentals of Photovoltaic Devices: Read More [+]
Rules & Requirements
Prerequisites:EECS 16A and EECS 16B; or Math 54 and Physics 7B; or equivalent
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Terms offered: Fall 2024, Fall 2023, Fall 2022
Overview of conventional electric power conversion and delivery, emphasizing a systemic understanding of the electric grid with primary focus at the transmission level, aimed toward recognizing needs and opportunities for technological innovation. Topics include aspects of a.c. system design, electric generators, components of transmission and distribution systems, power flow analysis, system planning and operation, performance measures, and limitations of legacy technologies. Introduction to Electric Power Systems: Read More [+]
Terms offered: Spring 2023, Spring 2022, Spring 2021
Overview of recent and potential future evolution of electric power systems with focus on new and emerging technologies for power conversion and delivery, primarily at the distribution level. Topics include power electronics applications, solar and wind generation, distribution system design and operation, electric energy storage, information management and communications, demand response, and microgrids. Introduction to Electric Power Systems: Read More [+]
Rules & Requirements
Prerequisites:EL ENG 137A or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Terms offered: Spring 2025, Fall 2024, Spring 2024
Single and multiple stage transistor amplifiers. Operational amplifiers. Feedback amplifiers, 2-port formulation, source, load, and feedback network loading. Frequency response of cascaded amplifiers, gain-bandwidth exchange, compensation, dominant pole techniques, root locus. Supply and temperature independent biasing and references. Selected applications of analog circuits such as analog-to-digital converters, switched capacitor filters, and comparators. Hardware laboratory and design project. Linear Integrated Circuits: Read More [+]
Terms offered: Spring 2025, Spring 2024, Fall 2023
Analysis and design of electronic circuits for communication systems, with an emphasis on integrated circuits for wireless communication systems. Analysis of noise and distortion in amplifiers with application to radio receiver design. Power amplifier design with application to wireless radio transmitters. Radio-frequency mixers, oscillators, phase-locked loops, modulators, and demodulators. Integrated Circuits for Communications: Read More [+]
Terms offered: Spring 2025, Fall 2024, Spring 2024
Integrated circuit device fabrication and surface micromachining technology. Thermal oxidation, ion implantation, impurity diffusion, film deposition, expitaxy, lithography, etching, contacts and interconnections, and process integration issues. Device design and mask layout, relation between physical structure and electrical/mechanical performance. MOS transistors and poly-Si surface microstructures will be fabricated in the laboratory and evaluated. Microfabrication Technology: Read More [+]
Terms offered: Spring 2025, Fall 2015, Fall 2014
The modeling, analysis, and optimization of complex systems requires a range of algorithms and design software. This course reviews the fundamental techniques underlying the design methodology for complex systems, using integrated circuit design as example. Topics include design flows, discrete and continuous models and algorithms, and strategies for implementing algorithms efficiently and correctly in software. Laboratory assignments and a class project will expose students to state-of-the-art tools. Fundamental Algorithms for Systems Modeling, Analysis, and Optimization: Read More [+]
Terms offered: Fall 2024, Fall 2023, Fall 2022
Biomedical imaging is a clinically important application of engineering, applied mathematics, physics, and medicine. In this course, we apply linear systems theory and basic physics to analyze X-ray imaging, computerized tomography, nuclear medicine, and MRI. We cover the basic physics and instrumentation that characterizes medical image as an ideal perfect-resolution image blurred by an impulse response. This material could prepare the student for a career in designing new medical imaging systems that reliably detect small tumors or infarcts. Medical Imaging Signals and Systems: Read More [+]
Terms offered: Fall 2014, Fall 2013, Fall 2012
Laboratory exercises exploring a variety of electronic transducers for measuring physical quantities such as temperature, force, displacement, sound, light, ionic potential; the use of circuits for low-level differential amplification and analog signal processing; and the use of microcomputers for digital sampling and display. Lectures cover principles explored in the laboratory exercises; construction, response and signal to noise of electronic transducers and actuators; and design of circuits for sensing and controlling physical quantities. Introductory Electronic Transducers Laboratory: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Terms offered: Spring 2013, Spring 2012, Spring 2011
Laboratory exercises constructing basic interfacing circuits and writing 20-100 line C programs for data acquisition, storage, analysis, display, and control. Use of the IBM PC with microprogrammable digital counter/timer, parallel I/O port. Circuit components include anti-aliasing filters, the S/H amplifier, A/D and D/A converters. Exercises include effects of aliasing in periodic sampling, fast Fourier transforms of basic waveforms, the use of the Hanning filter for leakage reduction, Fourier analysis of the human voice, digital filters, and control using Fourier deconvolution. Lectures cover principles explored in the lab exercises and design of microcomputer-based systems for data acquisitions, analysis and control. Introductory Microcomputer Interfacing Laboratory: Read More [+]
Rules & Requirements
Prerequisites: EE 16A & 16B
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Terms offered: Spring 2015, Spring 2014, Spring 2013, Spring 2012
Introduction to laboratory and field study of the biomechanics of animals and plants using fundamental biomechanical techniques and equipment. Course has a series of rotations involving students in experiments demonstrating how solid and fluid mechanics can be used to discover the way in which diverse organisms move and interact with their physical environment. The laboratories emphasize sampling methodology, experimental design, and statistical interpretation of results. Latter third of course devoted to independent research projects. Written reports and class presentation of project results are required. Laboratory in the Mechanics of Organisms: Read More [+]
Terms offered: Spring 2015
This is a lab course that covers the design of modern Application-Specific Integrated Circuits (ASICs). The labs lay the foundation of modern digital design by first setting-up the scripting and hardware description language base for specification of digital systems and interactions with tool flows. Software testing of digital designs is covered leading into a set of labs that cover the design flow. Digital synthesis, floorplanning, placement and routing are covered, as well as tools to evaluate design timing and power. Chip-level assembly is covered, instantiation of custom IP blocks: I/O pads, memories, PLLs, etc. The labs culminate with a project design – implementation of a 3-stage RISC-V processor with register file and caches. Application Specific Integrated Circuits Laboratory: Read More [+]
Objectives & Outcomes
Course Objectives: This course is a one-time offering to supplement the CS150 course offered in the Fall 2014, with a lab and project section that cover the Application-Specific Integrated Circuit Design. The CS150 lectures in the Fall 2014 already covered the necessary lecture material, so students who took the CS150 lab in the Fall of 2014 will have a chance to expand their skills into the area of Application-Specific Integrated Circuit design.
Hence the pre-requisite for this course is that a student has taken the CS150 course in the Fall 2014.
Credit Restrictions: Students will receive no credit for Electrical Engineering 146L after taking Fall 2014 version of Electrical Engineering 141/241A.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of laboratory and 1 hour of discussion per week
Terms offered: Fall 2024, Fall 2023, Fall 2022
This course will teach fundamentals of micromachining and microfabrication techniques, including planar thin-film process technologies, photolithographic techniques, deposition and etching techniques, and the other technologies that are central to MEMS fabrication. It will pay special attention to teaching of fundamentals necessary for the design and analysis of devices and systems in mechanical, electrical, fluidic, and thermal energy/signal domains, and will teach basic techniques for multi-domain analysis. Fundamentals of sensing and transduction mechanisms including capacitive and piezoresistive techniques, and design and analysis of micmicromachined miniature sensors and actuators using these techniques will be covered. Introduction to Microelectromechanical Systems (MEMS): Read More [+]
Terms offered: Spring 2021, Spring 2020, Spring 2019
Design project course, focusing on application of theoretical principles in electrical engineering to control of a small-scale system, such as a mobile robot. Small teams of students will design and construct a mechatronic system incorporating sensors, actuators, and intelligence. Mechatronic Design Laboratory: Read More [+]
Terms offered: Spring 2025, Fall 2024, Spring 2024
Topics will vary semester to semester. See the Electrical Engineering announcements. Special Topics: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of lecture per week
Terms offered: Spring 2016, Fall 2015, Spring 2015
Thesis work under the supervision of a faculty member. A minimum of four units must be taken; the units may be distributed between one and two semesters in any way. To obtain credit a satisfactory thesis must be submitted at the end of the two semesters to the Electrical and Engineering and Computer Science Department archive. Students who complete four units and a thesis in one semester receive a letter grade at the end of H196A. Students who do not, receive an IP in H196A and must enroll in H196B. Senior Honors Thesis Research: Read More [+]
Rules & Requirements
Prerequisites: Open only to students in the Electrical Engineering and Computer Science honors program
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Grading/Final exam status: Letter grade. This is part one of a year long series course. A provisional grade of IP (in progress) will be applied and later replaced with the final grade after completing part two of the series. Final exam required.
Terms offered: Spring 2016, Spring 2015, Spring 2014
Thesis work under the supervision of a faculty member. A minimum of four units must be taken; the units may be distributed between one and two semesters in any way. To obtain credit a satisfactory thesis must be submitted at the end of the two semesters to the Electrical and Engineering and Computer Science Department archive. Students who complete four units and a thesis in one semester receive a letter grade at the end of H196A. Students who do not, receive an IP in H196A and must enroll in H196B. Senior Honors Thesis Research: Read More [+]
Rules & Requirements
Prerequisites: Open only to students in the Electrical Engineering and Computer Science honors program
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Grading/Final exam status: Letter grade. This is part two of a year long series course. Upon completion, the final grade will be applied to both parts of the series. Final exam required.
Terms offered: Fall 2023, Fall 2022, Fall 2021
Students take part in organized individual field sponsored programs with off-campus companies or tutoring/mentoring relevant to specific aspects and applications of computer science on or off campus. Note Summer CPT or OPT students: written report required. Course does not count toward major requirements, but will be counted in the cumulative units toward graduation. Field Study: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor (see department adviser)
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of fieldwork per week
Summer: 6 weeks - 2.5-10 hours of fieldwork per week 8 weeks - 2-7.5 hours of fieldwork per week
Terms offered: Spring 2025, Spring 2023, Spring 2022
The Freshman Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments, and topics vary from department to department and semester to semester. Enrollment limited to 20 freshmen. Freshman Seminar: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final Exam To be decided by the instructor when the class is offered.
Terms offered: Spring 2025, Fall 2024, Spring 2024
Application of basic principles of physics and chemistry to the engineering properties of materials. Emphasis on establishing structure, property, processing, and performance interrelationships in metals, ceramics, and polymers. While core concepts are fully covered each semester, examples and contextualization in Fall editions focuses on metals, ceramics, and functional/electronic properties and in Spring editions on polymers and soft-materials. Properties of Materials: Read More [+]
Rules & Requirements
Prerequisites: Students should have completed high school AP or honors chemistry and physics
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Terms offered: Spring 2025, Fall 2024, Spring 2024
This course presents laboratory applications of the basic principles introduced in the lecture-based course MSE45 – Properties of Materials. Properties of Materials Laboratory: Read More [+]
Rules & Requirements
Credit Restrictions: Students will receive no credit for MSE 45L after taking E45L
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of laboratory per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Terms offered: Fall 2024, Fall 2023, Fall 2022
Bonding in solids; classification of metals, semiconductors, and insulators; crystal systems; point, line, and planar defects in crystals; examples of crystallographic and defect analysis in engineering materials; relationship to physical and mechanical properties. Bonding, Crystallography, and Crystal Defects: Read More [+]
Terms offered: Spring 2025, Spring 2024, Spring 2023
The nature, mechanisms, and kinetics of phase transformations and microstructural changes in the solid state. Atom diffusion in solids. Phase transformations through the nucleation and growth of new matrix or precipitate phases. Martensitic transformations, spinodal decomposition. The use of phase transformations to control microstructure. Phase Transformations and Kinetics: Read More [+]
Terms offered: Spring 2025, Spring 2024, Spring 2023
This 3-unit course will cover basic principles and techniques used for the characterization of engineering materials. The course is designed to introduce undergraduate students to the basic principles of structural, chemical and property characterization techniques. The course is grounded in modern x-ray diffraction and electron microscopy techniques for characterization of the chemical and structural properties of a material. The course introduces the fundamental theoretical framework for diffraction, spectrometry and imaging methods. Materials Characterization: Read More [+]
Objectives & Outcomes
Course Objectives: Materials characterization lies at the heart of understanding the property-structure-processing relationships of materials. The goal of the course is to prepare undergraduate students from materials science to understand the basic principles behind material characterization tools and techniques. More specifically, this class will provide students (1) a thorough introduction to the principles and practice of diffraction, (2) introductory exposure to a range of common characterization methods for the determination of structure and composition of solids. A successful student will learn (1) the theory of x-ray and electron diffraction, (2) basic elements of electron microscopy, (3) basic aspects of optical and scanning probe techniques.
Rules & Requirements
Prerequisites:MAT SCI 102. A basic knowledge of structure, bonding and crystallography will be assumed
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Terms offered: Spring 2025, Spring 2024, Spring 2023
This 1-unit laboratory course covers X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), as well as lab writeup protocols and academic integrity. Students will get hands-on experience using the XRD, SEM and TEM equipment to perform microstructural characterization of materials. Students will also design and run their own project on a topic of their choosing. Materials Characterization Laboratory: Read More [+]
Objectives & Outcomes
Course Objectives: Practical experience on the most common materials characterization equipment for structural and chemical analysis of materials. Introduction to laboratory procedures and independent projects.
Rules & Requirements
Prerequisites:MAT SCI 102; and MAT SCI 104 must be taken concurrently. A basic knowledge of structure, bonding and crystallography will be assumed. Undergraduate student in engineering, physics or chemistry
Hours & Format
Fall and/or spring: 15 weeks - 1.5 hours of laboratory and 1 hour of discussion per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Terms offered: Spring 2025, Spring 2024, Spring 2023
Introduction to the physical principles underlying the electric properties of modern solids with emphasis on semiconductors; control of defects and impurities through physical purification, bulk and thin film crystal growth and doping processes, materials basis of electronic and optoelectronic devices (diodes, transistors, semiconductor lasers) and optical fibers; properties of metal and oxide superconductors and their applications. Properties of Electronic Materials: Read More [+]
Terms offered: Spring 2025, Spring 2024, Spring 2023
Electrochemical theory of corrosion. Mechanisms and rates in relation to physiochemical and metallurgical factors. Stress corrosion and mechanical influences on corrosion. Corrosion protection by design, inhibition, cathodic protection, and coatings. Corrosion (Chemical Properties): Read More [+]
Terms offered: Fall 2024, Fall 2023, Fall 2022
This course covers elastic and plastic deformation under static/dynamic loads. Prediction/prevention of failure by yielding, fracture, fatigue, wear and environmental effects are addressed. Design issues of materials selection for load-bearing applications are discussed. Case studies of engineering failures are presented. Topics include engineering materials, structure-property relationships, mechanical behavior of metals, ceramics, polymers and composites, complex stress/strain states, stress concentrations, multiaxial loading, plasticity, yield criteria, dislocations, strengthening mechanisms, creep, fracture mechanics and fatigue. Mechanical Behavior of Engineering Materials: Read More [+]
Credit Restrictions: Students will receive no credit for 113 after taking C113 or Mechanical Engineering C124. Deficiency in C113 or Mechanical Engineering C124 maybe removed by taking 113.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Terms offered: Spring 2021, Spring 2017, Spring 2011
Introduction to the physical principles underlying the dielectric and magnetic properties of solids. Processing-microstructure-property relationships of dielectric materials, including piezoelectric, pryoelectric, and ferroelectric oxides, and of magnetic materials, including hard- and soft ferromagnets, ferrites and magneto-optic and -resistive materials. The course also covers the properties of grain boundary devices (including varistors) as well as ion-conducting and mixed conducting materials for applications in various devices such as sensors, fuel cells, and electric batteries. Properties of Dielectric and Magnetic Materials: Read More [+]
Terms offered: Fall 2024, Fall 2023, Fall 2022
This course is intended to give students the opportunity to expand their knowledge of topics related to biomedical materials selection and design. Structure-property relationships of biomedical materials and their interaction with biological systems will be addressed. Applications of the concepts developed include blood-materials compatibility, biomimetic materials, hard and soft tissue-materials interactions, drug delivery, tissue engineering, and biotechnology. Biological Performance of Materials: Read More [+]
Objectives & Outcomes
Course Objectives: The course is separated into four parts spanning the principles of synthetic materials and surfaces, principles of biological materials, biological performance of materials and devices, and state-of-the-art materials design. Students are required to attend class and master the material therein. In addition, readings from the clinical, life and materials science literature are assigned. Students are encouraged to seek out additional reference material to complement the readings assigned. A mid-term examination is given on basic principles (parts 1 and 2 of the outline). A comprehensive final examination is given as well. The purpose of this course is to introduce students to problems associated with the selection and function of biomaterials. Through class lectures and readings in both the physical and life science literature, students will gain broad knowledge of the criteria used to select biomaterials, especially in devices where the material-tissue or material-solution interface dominates performance. Materials used in devices for medicine, dentistry, tissue engineering, drug delivery, and the biotechnology industry will be addressed.
This course also has a significant design component (~35%). Students will form small teams (five or less) and undertake a semester-long design project related to the subject matter of the course. The project includes the preparation of a paper and a 20 minute oral presentation critically analyzing a current material-tissue or material-solution problem. Students will be expected to design improvements to materials and devices to overcome the problems identified in class with existing materials.
Student Learning Outcomes:
Apply math, science & engineering principles to the understanding of soft materials, surface chemistry, DLVO theory, protein adsorption kinetics, viscoelasticity, mass diffusion, and molecular (i.e., drug) delivery kinetics.
•
Design experiments and analyze data from the literature in the context of the class design project.
Apply core concepts in materials science to solve engineering problems related to the selection biomaterials, especially in devices where the material-tissue or material-solution interface dominates performance.
Develop an understanding of the social, safety and medical consequences of biomaterial use and regulatory issues associated with the selection of biomaterials in the context of the silicone breast implant controversy and subsequent biomaterials crisis.
Work independently and function on a team, and develop solid communication skills (oral, graphic & written) through the class design project.
•
Understanding of the origin of surface forces and interfacial free energy, and how they contribute to the development of the biomaterial interface and ultimately biomaterial performance.
Terms offered: Fall 2022, Fall 2021, Fall 2020
Economic and technological significance of metals and other materials. Elementary geology (composition of lithosphere, mineralization). Short survey of mining and mineral processing techniques. Review of chemical thermodynamics and reaction kinetics. Principles of process engineering including material, heat, and mechanical energy balances. Elementary heat transfer, fluid flow, and mass transfer. Electrolytic production and refining of metals. Vapor techniques for production of metals and coatings. Materials Production: Read More [+]
Terms offered: Spring 2019, Spring 2015, Spring 2014
The principles of metals processing with emphasis on the use of processing to establish microstructures which impart desirable engineering properties. The techniques discussed include solidification, thermal and mechanical processing, powder processing, welding and joining, and surface treatments. Metals Processing: Read More [+]
Terms offered: Fall 2012, Fall 2011, Fall 2010
Powder fabrication by grinding and chemical methods, rheological behavior of powder-fluid suspensions, forming methods, drying, sintering, and grain growth. Relation of processing steps to microstructure development. Ceramic Processing: Read More [+]
Terms offered: Spring 2022, Spring 2021, Spring 2020
This 4-unit course starts with a brief review of the fundamentals of solid-state physics including bands and defects in semiconductors and oxides, and then moves to bulk semiconductor crystals growth and processing including doping, diffusion and implantation, and then to thin film deposition and processing methods, and finishes with a discussion of materials analysis and characterization. Recent advances in nanomaterials research will also be introduced. ELECTRONIC MATERIALS PROCESSING: Read More [+]
Objectives & Outcomes
Course Objectives: To prepare students a) for work in semiconductor processing facilities and b) for graduate studies related to thin film processing and relevant materials science topics. To present the relevant materials science issues in semiconductor and oxide processing. To provide an introduction into the principles of thin film processing and related technologies.
Student Learning Outcomes: Basic knowledge of gas kinetics and vacuum technology, including ideal gas, gas transport theory, definition, creation and measurement of vacuum.
Knowledge of electrical and optical properties of thin films.
Knowledge of the formation of p-n junction to explain the diode operation and its I-V characteristics. Understanding of the mechanisms of Hall Effect, transport, and C-V measurements, so that can calculate carrier concentration, mobility and conductivity given raw experimental data.
The ability to describe major growth techniques of bulk, thin film, and nanostructured semiconductors, with particular emphasis on thin film deposition technologies, including evaporation, sputtering, chemical vapor deposition and epitaxial growths.
To have basic knowledge of doping, purification, oxidation, gettering, diffusion, implantation, metallization, lithography and etching in semiconductor processing.
To have basic knowledge of electronic material characterization methods: x-ray diffraction, SEM and TEM, EDX, Auger, STM and AFM, Rutherford Back Scattering and SIMS, as well as optical methods including photoluminescence, absorption and Raman scattering.
To understand the concepts of bands, bandgap, to distinguish direct and indirect bandgap semiconductors. Understanding of free electron and hole doping of semiconductors to determine Fermi level position.
To understand the effect of defects in semiconductors, so that can describe their electronic and optical behaviors, and the methods to eliminate and control them in semiconductors.
Terms offered: Fall 2024, Fall 2023, Fall 2022
Deposition, processing, and characterization of thin films and their technological applications. Physical and chemical vapor deposition methods. Thin-film nucleation and growth. Thermal and ion processing. Microstructural development in epitaxial, polycrystalline, and amorphous films. Thin-film characterization techniques. Applications in information storage, integrated circuits, and optoelectronic devices. Laboratory demonstrations. Thin-Film Materials Science: Read More [+]
Rules & Requirements
Prerequisites: Upper division or graduate standing in Engineering, Physics, Chemistry, or Chemical Engineering; and MAT SCI 45. PHYSICS 111A or PHYSICS 141A recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Terms offered: Spring 2024, Spring 2023
Additive manufacturing, the industrial name of 3D printing, pertains to the general class of technologies that, using computer-created (CAD) solid models as input, creates three-dimensional (3D) artifacts through the successive formation of materials. Students will learn the engineering principles and frontiers of additive manufacturing systems and their applications to transforming the rapid prototyping to the paradigm of Additive Manufacturing (AM) for creating functional parts, materials and assembly. Students will apply their learning through class projects wherein they will design novel products via AM, design new AM systems and manufacturing strategies for novel materials. Class will also explore advanced design topics enabled by AM Introduction to Additive Manufacturing: Process, Materials and Designs: Read More [+]
Terms offered: Spring 2022
This course covers the fundamental experimental materials science and processing
of thin film and coatings that incorporates fundamental knowledge of materials transport,
accumulation, defects and epitaxy. Through this course, an understanding of the fundamental
physical and chemical processes which are involved in crystal growth and thin film fabrication
will be gained. Important synthesis and processing techniques used for the fabrication of
electronic and photonic devices will be discussed. Finally, it will provide an
understanding of how material characteristics are influenced by processing and deposition
conditions. This course addresses current challenges and future needs of
the semiconductor and coating industries. Experimental Materials Science of Thin Films and Coatings: Read More [+]
Objectives & Outcomes
Student Learning Outcomes: The development of proper protocols for data collection, analysis, and dissemination.
To apply this knowledge to scholarly report writing and the hypothesis driven insights and conclusions.
To familiarize students with some of the important experimental methods growth of materials.
To gain an understanding of how material characteristics are influenced by processing and deposition
conditions of thin films and coatings.
To gain an understanding of the fundamental physical and chemical processes which are involved in
crystal growth and thin film fabrication.
Terms offered: Fall 2023, Fall 2022, Fall 2021
This course provides a culminating experience for students approaching completion of the materials science and engineering curriculum. Laboratory experiments are undertaken in a variety of areas from the investigations on semiconductor materials to corrosion science and elucidate the relationships among structure, processing, properties, and performance. The principles of materials selection in engineering design are reviewed. Experimental Materials Science and Design: Read More [+]
Rules & Requirements
Prerequisites: Senior standing or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Terms offered: Fall 2024
In this course, students will learn the engineering principles, system designs, process dynamics and construction of advanced additive fabrication systems. Students will explore the process-structure-property relationships for various commercial and custom additive manufacturing processes for polymer, metal, ceramic, composites and beyond. Additionally, students will explore the digital design and manufacturing of 3D topologies, cellular materials and metamaterials enabled by additive processes. In addition to gaining theoretical and hands-on access to AM technologies, students will apply their learning through design projects wherein they will create novel materials or engineering products via additive manufacturing processes. Additive Manufacturing Processes and Systems for Advanced Materials: Read More [+]
Terms offered: Fall 2021, Fall 2019, Fall 2017
In many, if not all, technologies, it is materials that play a crucial, enabling role. This course examines potentially sustainable technologies, and the materials properties that enable them. The science at the basis of selected energy technologies are examined and considered in case studies. Materials in Energy Technologies: Read More [+]
Rules & Requirements
Prerequisites: Junior or above standing in Materials Science and Engineering or related field
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: Materials Science and Engineering 126
Terms offered: Spring 2022, Spring 2020, Spring 2015
This course introduces the fundamental principles needed to understand the behavior of materials at the nanometer length scale and the different classes of nanomaterials with applications ranging from information technology to biotechnology. Topics include introduction to different classes of nanomaterials, synthesis and characterization of nanomaterials, and the electronic, magnetic, optical, and mechanical properties of nanomaterials. Nanomaterials for Scientists and Engineers: Read More [+]
Terms offered: Fall 2024, Fall 2023, Fall 2022
The application of basic chemical principles to problems in materials discovery, design, and characterization will be discussed. Topics covered will include inorganic solids, nanoscale materials, polymers, and biological materials, with specific focus on the ways in which atomic-level interactions dictate the bulk properties of matter. Introduction to Materials Chemistry: Read More [+]
Terms offered: Spring 2025, Spring 2024, Spring 2023
This course is designed for upper division undergraduate and graduate students to gain a fundamental understanding of the science of polymeric materials. Beginning with a treatment of ideal polymeric chain conformations, it develops the thermodynamics of polmyer blends and solutions, the modeling of polymer networks and gelations, the dynamics of polymer chains, and the morphologies of thin films and other dimensionally-restricted structures relevant to nanotechnology. Polymeric Materials: Read More [+]
Terms offered: Fall 2022, Fall 2021, Fall 2020
Nanomedicine is an emerging field involving the use of nanoscale materials for therapeutic and diagnostic purposes. Nanomedicine is a highly interdisciplinary field involving chemistry, materials science, biology and medicine, and has the potential to make major impacts on healthcare in the future. This upper division course is designed for students interested in learning about current developments and future trends in nanomedicine. The overall objective of the course is to introduce major aspects of nanomedicine including the selection, design and testing of suitable nanomaterials, and key determinants of therapeutic and diagnostic efficacy. Organic, inorganic and hybrid nanomaterials will be discussed in this course. Nanomaterials in Medicine: Read More [+]
Objectives & Outcomes
Course Objectives: To identify an existing or unmet clinical need and identify a nanomedicine that can provide a solution To learn about chemical approaches used in nanomaterial synthesis and surface modification. To learn how to read and critique the academic literature. To understand the interaction of nanomaterials with proteins, cells, and biological systems.
Terms offered: Fall 2024, Fall 2023, Fall 2022
Soft matter is ubiquitous in synthetic materials and plays a central role in living systems. This
course aims to provide students with an introduction to the physics that govern the structure and
dynamics of soft mater systems, including polymers, colloids, surfactants, membranes, and active
matter. A particular emphasis will be placed on connecting a microscopic physical picture to the
emergent phenomena and properties of interest using scaling theory and statistical mechanics.
Specific topics will include Brownian motion and colloidal dynamics, the depletion force, polymer
chain conformation, rubber elasticity; and surfactant and liquid crystal thermodynamics. Introduction to Soft Matter: Read More [+]
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternate method of final assessment during regularly scheduled final exam group (e.g., presentation, final project, etc.).
Terms offered: Fall 2016, Spring 2016, Fall 2015
Students who have completed a satisfactory number of advanced courses with a grade-point average of 3.3 or higher may pursue original research under the direction of one of the members of the staff. A maximum of 3 units of H194 may be used to fulfill technical elective requirements in the Materials Science and Engineering program or double majors (unlike 198 or 199, which do not satisfy technical elective requirements). Final report required. Honors Undergraduate Research: Read More [+]
Rules & Requirements
Prerequisites: Upper division technical GPA of 3.3 or higher and consent of instructor and adviser
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer: 8 weeks - 1.5-7.5 hours of independent study per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Terms offered: Spring 2012, Spring 2011, Spring 2010
Group study of special topics in materials science and engineering. Selection of topics for further study of underlying concepts and relevent literature, in consultion with appropriate faculty members. Special Topics for Advanced Undergraduates: Read More [+]
Rules & Requirements
Prerequisites: Upper division standing and good academic standing. (2.0 gpa and above)
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of directed group study per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Terms offered: Spring 2023, Fall 2022, Spring 2022
Supervised independent study. Enrollment restrictions apply; see the Introduction to Courses and Curricula section of this catalog. Supervised Independent Study: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor and major adviser
Credit Restrictions: Course may be repeated for a maximum of four units per semester.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer: 6 weeks - 1-5 hours of independent study per week 8 weeks - 1-4 hours of independent study per week
Additional Details
Subject/Course Level: Materials Science and Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
When you print this page, you are actually printing everything within the tabs on the page you are on: this may include all the Related Courses and Faculty, in addition to the Requirements or Overview. If you just want to print information on specific tabs, you're better off downloading a PDF of the page, opening it, and then selecting the pages you really want to print.