Materials Science and Engineering/Mechanical Engineering Joint Major

University of California, Berkeley

About the Program

Bachelor of Science (BS)

The joint major programs are designed for students who wish to undertake study in two areas of engineering in order to qualify for employment in either field or for positions in which competence in two fields is required. These curricula include the core courses in each of the major fields. While they require slightly increased course loads, they can be completed in four years.

Students interested in the mechanical behavior of materials have the option of pursuing a joint major in Materials Science and Engineering and Mechanical Engineering. The curriculum addresses key fundamentals of both disciplines, preparing students in materials selection and design for structural and functional applications. Students completing this joint major enter professional positions in the aerospace, automotive, energy, manufacturing industries, and much more or top graduate programs.

Admission to the Joint Major

Admission directly to a joint major is closed to freshmen and junior transfer applicants. Students interested in a joint program may apply to change majors during specific times in their academic progress. Please see the College of Engineering joint majors website for complete details.

Visit Department Website

Major Requirements

In addition to the University, campus, and college requirements, students must fulfill the below requirements specific to their major program.

General Guidelines

  1. All technical courses taken in satisfaction of major requirements must be taken for a letter grade.

  2. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.

  3. A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.

  4. A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

For a detailed plan of study by year and semester, please see the Plan of Study tab.

Lower Division Requirements

MATH 51/1ACalculus I (MATH 51 as of Fall 2025)4
MATH 52/1BCalculus II (MATH 52 as of Fall 2025)4
MATH 53Multivariable Calculus4
MATH 54Linear Algebra and Differential Equations4
CHEM 1AGeneral Chemistry 13-5
or CHEM 4A General Chemistry and Quantitative Analysis
PHYSICS 7APhysics for Scientists and Engineers4
PHYSICS 7BPhysics for Scientists and Engineers4
ENGIN 7Introduction to Computer Programming and Numerical Methods4
ENGIN 26Three-Dimensional Modeling for Design2
ENGIN 29Manufacturing and Design Communication4
MAT SCI 45Properties of Materials3
MAT SCI 45LProperties of Materials Laboratory1
MEC ENG 40Thermodynamics3
MEC ENG C85Introduction to Solid Mechanics3
1

 CHEM 4A is intended for students majoring in chemistry or a closely related field.

Upper Division Requirements

ENGIN 178Statistics and Data Science for Engineers4
MEC ENG 100Electronics for the Internet of Things4
or PHYSICS 111A Instrumentation Laboratory
MEC ENG 102BMechatronics Design4
MEC ENG 103Experimentation and Measurements4
MEC ENG 104Engineering Mechanics II3
MEC ENG 106Fluid Mechanics3
MEC ENG 108Mechanical Behavior of Engineering Materials3-4
or MAT SCI 113 Mechanical Behavior of Engineering Materials
MEC ENG 109Heat Transfer3
MEC ENG 132Dynamic Systems and Feedback 33
MAT SCI 102Bonding, Crystallography, and Crystal Defects3
MAT SCI 103Phase Transformations and Kinetics3
MAT SCI 104
104L
Materials Characterization
and Materials Characterization Laboratory
4
MAT SCI 112Corrosion (Chemical Properties)3
MAT SCI 131Additive Manufacturing Processes and Systems for Advanced Materials3
Upper division technical electives: minimum 9 units to include: 1,29
At least 3 units of MAT SCI 12x (from the 120 series)
1

Students may receive up to three units of technical elective credit for work on a research project in MEC ENG H194 or MEC ENG 196. Other letter-graded research courses may be approved by petition.

2

Technical electives cannot include any course taken on a Pass/No Pass basis; MEC ENG 191AC,  MEC ENG 190K, MEC ENG 191K .

3

MEC ENG 132 is only offered in the fall semester.

College Requirements

Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions: 

  1. Completion of the requirements of one engineering major program of study. 
  2. A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
  3. The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
  4. All technical courses (math, science, and engineering) that can fulfill requirements for the student's major must be taken on a letter graded basis (unless they are only offered P/NP). 
  5. Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed five semesters to complete their degree requirements. Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters. 
  6. Adhere to all college policies and procedures as they complete degree requirements.
  7. Complete lower division technical courses before enrolling in upper division technical courses. 

Humanities and Social Sciences (H/SS) Requirement

To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement, which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two Reading and Composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. See the humanities and social sciences section of our website for details.

Class Schedule Requirements

  • Minimum units per semester: 12.0
  • Maximum units per semester:  20.5
  • Minimum technical courses: College of Engineering undergraduates must include at least two letter graded technical courses (of at least 3 units each) in their semester program. Every semester students are expected to make normal progress in their declared major. Normal progress is determined by the student's Engineering Student Services Advisor. (Note: For most majors, normal progress will require enrolling in 3-4 technical courses required of your current major each semester.) Students who are not in compliance with this policy by the end of the fifth week of the semester are subject to a registration block that will delay enrollment for the following semester. 
  • All technical courses (math, science, engineering) that satisfy requirements for the major must be taken on a letter-graded basis (unless only offered as P/NP).

Minimum Academic Requirements

  • Students must have a minimum overall and semester grade point average of 2.00 (C average). Students will be subject to suspension or dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00. 
  • Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester.
  • A minimum overall grade point average of 2.00 and a minimum 2.00 grade point average in upper division technical course work required for the major are required to earn a Bachelor of Science in the College of Engineering.
  • Students must make normal degree progress toward the Bachelor of Science degree and their officially declared major.

Unit Requirements

To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:

  • Completion of the requirements of one engineering major program of study. 
  • A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed to count towards the B.S. degree, and no more than 4 units in any single term can be counted.
  • A maximum of 4 units of physical education from any school attended will count towards the 120 units.
  • Passed (P) grades may account for no more than one third of the total units completed at UC Berkeley, Fall Program for First Semester (FPF), UC Education Abroad Program (UCEAP), or UC Berkeley Washington Program (UCDC) toward the 120 overall minimum unit requirement. Transfer credit is not factored into the limit. This includes transfer units from outside of the UC system, other UC campuses, credit-bearing exams, as well as UC Berkeley Extension XB units.

Normal Progress

Students in the College of Engineering must enroll in a full-time program and make normal progress each semester toward their declared major.  Students who fail to achieve normal academic progress shall be subject to suspension or dismissal. (Note: Students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.)

UC and Campus Requirements

University of California Requirements

Entry Level Writing

All students who will enter the University of California as freshmen must demonstrate their command of the English language by satisfying the Entry Level Writing Requirement (ELWR). The UC Entry Level Writing Requirement website provides information on how to satisfy the requirement.

American History and American Institutions

The American History and Institutions (AH&I) requirements are based on the principle that a US resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.

Campus Requirement

American Cultures

The American Cultures requirement is a Berkeley campus requirement, one that all undergraduate students at Berkeley need to pass in order to graduate. You satisfy the requirement by passing, with a grade not lower than C- or P, an American Cultures course. You may take an American Cultures course any time during your undergraduate career at Berkeley. The requirement was instituted in 1991 to introduce students to the diverse cultures of the United States through a comparative framework. Courses are offered in more than fifty departments in many different disciplines at both the lower and upper division level.

 

Plan of Study

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the College Requirements and Major Requirements tabs.

Freshman
FallUnitsSpringUnits
CHEM 4A or 1A and 1AL15MATH 1B4
MATH 1A4PHYSICS 7A4
ENGIN 262ENGIN 74
Reading & Composition Part A Course44Reading & Composition Part B Course44
Optional Freshman Seminar or ENGIN 920-1Optional Freshman Seminar0-1
 15-16 16-17
Sophomore
FallUnitsSpringUnits
MATH 534MATH 544
PHYSICS 7B4MEC ENG 403
ENGIN 294MEC ENG C853
MAT SCI 4553Humanities/Social Sciences course43-4
MAT SCI 45L51MEC ENG 100 or PHYSICS 111A4
 16 17-18
Junior
FallUnitsSpringUnits
MEC ENG 1043ENGIN 1784
MEC ENG 1063MAT SCI 1033
MEC ENG 108 or MAT SCI 1133-4MAT SCI 104
104L
4
MAT SCI 1023Technical Elective2,33
Humanities/Social Sciences course43-4 
 15-17 14
Senior
FallUnitsSpringUnits
MAT SCI 1313MEC ENG 102B4
MEC ENG 1093MEC ENG 1034
MEC ENG 13263MAT SCI 1123
Technical Electives2,33Technical Elective2,33
Humanities/Social Sciences course43-4Humanities/Social Sciences course43-4
 15-16 17-18
Total Units: 125-132
1

CHEM 4A is intended for students majoring in chemistry or a closely-related field.

2

A total of 9 upper-division technical elective units are required. These must include 6 units of upper-division Mechanical Engineering courses, one of which must be from the following list: ENGIN 128, MEC ENG 101, MEC ENG 110, MEC ENG C117, MEC ENG 118MEC ENG 119, MEC ENG 130, MEC ENG 133, MEC ENG C134MEC ENG 135, MEC ENG 139MEC ENG 146, MEC ENG 151MEC ENG 165, MEC ENG C176, MEC ENG C178, MEC ENG 179.  In addition, 3 units must be from the MAT SCI 120 series. Students may receive up to 3 units of technical elective credit for work on a research project in MEC ENG H194 or MEC ENG 196. Other letter-graded research courses may be approved by petition.

3

Technical Electives cannot include any course taken on a Pass/No Pass basis; MEC ENG 191AC, MEC ENG 190K, MEC ENG 191K.

4

The Humanities/Social Sciences (H/SS) requirement includes two approved Reading & Composition (R&C) courses and four additional approved courses, with which a number of specific conditions must be satisfied. R&C courses must be taken for a letter grade (C- or better required). The first half (R&C Part A) must be completed by the end of the freshman year; the second half (R&C Part B) must be completed by no later than the end of the sophomore year. The remaining courses may be taken at any time during the program. See engineering.berkeley.edu/hss for complete details and a list of approved courses.

5

MAT SCI 45/MAT SCI 45L can be taken in either the Fall or Spring semesters of the first year.  Both offerings deliver the same fundamental content.  The Fall offering draws more examples from hard materials (e.g. semiconductors, metals and ceramics), whereas the Spring offering will draw more examples from soft materials (e.g. polymers and biomaterials).

6

MEC ENG 132 is only offered in the fall semester.

Student Learning Goals

Materials Science

MEASURED CURRICULAR OUTCOMES

The program is designed around a set of curricular outcomes. 

  1. Be able to apply general math, science and engineering skills to the solution of engineering problems.
  2. Be aware of the social, safety and environmental consequences of their work, and be able to engage in public debate regarding these issues.
  3. Be able to apply core concepts in materials science to solve engineering problems.
  4. Be knowledgeable of contemporary issues relevant to materials science and engineering.
  5. Be able to select materials for design and construction.
  6. Understand the importance of life-long learning.
  7. Be able to design and conduct experiments, and to analyze data.
  8. Understand the professional and ethical responsibilities of a materials scientist and engineer.
  9. Be able to work both independently and as part of a team.
  10. Be able to communicate effectively while speaking, employing graphics, and writing.
  11. Possess the skills and techniques necessary for modern materials engineering practice.
EDUCATIONAL OBJECTIVES FOR GRADUATES

Stated succinctly, graduates from the program will have the following skills: 

  1. Know the fundamental science and engineering principles relevant to materials.
  2. Understand the relationship between nano/microstructure, characterization, properties and processing, and design of materials.
  3. Have the experimental and computational skills for a professional career or graduate study in materials.
  4. Possess a knowledge of the significance of research, the value of continued learning, and environmental/social issues surrounding materials.
  5. Be able to communicate effectively, to work in teams and to assume positions as leaders.
  1. Be able to communicate effectively, to work in teams and to assume positions as leaders.

Mechanical Engineering

Learning Goals

The objectives of the Mechanical Engineering undergraduate program are to produce graduates who do the following:

  1. Vigorously engage in post-baccalaureate endeavors, whether in engineering graduate study, in engineering practice, or in the pursuit of other fields such as science, law, medicine, business or public policy.
  2. Apply their mechanical engineering education to address the full range of technical and societal problems with creativity, imagination, confidence and responsibility.
  3. Actively seek out positions of leadership within their profession and their community.
  4. Serve as ambassadors for engineering by exhibiting the highest ethical and professional standards, and by communicating the importance and excitement of this dynamic field.
  5. Retain the intellectual curiosity that motivates lifelong learning and allows for a flexible response to the rapidly evolving challenges of the 21st century.
Skills

Mechanical Engineering graduates have the following:

  1. An ability to apply knowledge of mathematics, science, and engineering.
  2. An ability to design and conduct experiments as well as to analyze and interpret data.
  3. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
  4. An ability to function on multi-disciplinary teams.
  5. An ability to identify, formulate, and solve engineering problems.
  6. An understanding of professional and ethical responsibility.
  7. An ability to communicate effectively.
  8. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
  9. A recognition of the need for and an ability to engage in life-long learning.
  10. A knowledge of contemporary issues.
  11. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Courses

Materials Science and Engineering 

Mechanical Engineering Courses

Contact Information

Department of Materials Science and Engineering

210 Hearst Memorial Mining Building

Phone: 510-642-3801

Fax: 510-643-5792

Visit Department Website

Department Chair, MSE

Junqiao Wu, PhD

wuj@berkeley.edu

Department Chair, ME

Chris Dames, PhD

6107 Etcheverry Hall

Phone: 510-643-2582

cdames@berkeley.edu

Department Advisor, MSE

Medina Kohzad

210 HMMB

Phone: 510-642-3802

medinakohzad@berkeley.edu

Department Advisor, ME

Patrick Civello

6193 Etcheverry Hall

Phone: 510-642-4094

civello@berkeley.edu

Back to Top