Mechanical Engineering/ Nuclear Engineering

University of California, Berkeley

About the Program

Bachelor of Science (BS)

The joint major programs are designed for students who wish to undertake study in two areas of engineering in order to qualify for employment in either field or for positions in which competence in two fields is required. These curricula include the core courses from each of the major fields. While they require slightly increased course loads, they can be completed in four years. Both majors are shown on the student's transcript of record.

This program was established to address the interface between the two major fields. It is intended for nuclear engineering students interested in mechanical design and heat transfer as well as for mechanical engineering students who wish to further their knowledge of nuclear radiological systems and processes. Its objective is to provide students with a strong and competitive background in both majors, leading to professional careers in nuclear and radiation-based industries or to graduate study in nuclear engineering and other engineering disciplines or related fields such as medicine and physics.

Admission to the Joint Major

Admission directly to a joint major is closed to freshmen and junior transfer applicants. Students interested in a joint program may apply to change majors during specific times in their academic progress. Please see the College of Engineering joint majors website for complete details.

Visit Program Website

Major Requirements

In addition to the University, campus, and college requirements, students must fulfill the below requirements specific to their major program.

General Guidelines

  1. All technical courses taken in satisfaction of major requirements must be taken for a letter grade.

  2. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.

  3. A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.

  4. A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

For a detailed plan of study by year and semester, please see the Plan of Study tab.

Lower Division Requirements

MATH 1ACalculus4
MATH 1BCalculus4
MATH 53Multivariable Calculus4
MATH 54Linear Algebra and Differential Equations4
CHEM 1AGeneral Chemistry 13-5
or CHEM 4A General Chemistry and Quantitative Analysis
PHYSICS 7APhysics for Scientists and Engineers4
PHYSICS 7BPhysics for Scientists and Engineers4
PHYSICS 7CPhysics for Scientists and Engineers4
ENGIN 7Introduction to Computer Programming for Scientists and Engineers4
ENGIN 26Three-Dimensional Modeling for Design2
ENGIN 29Manufacturing and Design Communication4
MEC ENG 40Thermodynamics3
MEC ENG C85/CIV ENG C30Introduction to Solid Mechanics3

CHEM 4A is intended for students majoring in chemistry or a closely-related field.

Upper Division Requirements

ENGIN 178Statistics and Data Science for Engineers4
MEC ENG 100Electronics for the Internet of Things4
MEC ENG 102BMechatronics Design4
MEC ENG 103Experimentation and Measurements4
MEC ENG 104Engineering Mechanics II3
MEC ENG 106Fluid Mechanics3
MEC ENG 108Mechanical Behavior of Engineering Materials4
MEC ENG 109Heat Transfer3
MEC ENG 132Dynamic Systems and Feedback3
NUC ENG 100Introduction to Nuclear Energy and Technology3
NUC ENG 101Nuclear Reactions and Radiation4
NUC ENG 104Radiation Detection and Nuclear Instrumentation Laboratory4
NUC ENG 150Introduction to Nuclear Reactor Theory4
NUC ENG 170ANuclear Design: Design in Nuclear Power Technology and Instrumentation3
Ethics requirement 13-4
Upper division technical electives: minimum 12 units 2,312
Select 6 units of upper division NUC ENG courses, in consultation with faculty advisor
Select 6 units of upper division MEC ENG courses, in consultation with faculty advisor

Students must take one course with ethics content. This may be fulfilled within the humanities/social sciences requirement by taking one of the following courses: ANTHRO 156B, BIO ENG 100, ENGIN 125, ENGIN 157AC, ENGIN 185ESPM 161, ESPM 162, GEOG 31, IAS 157AC, ISF 100EL & S 160BPHILOS 2, PHILOS 104, PHILOS 107, SOCIOL 116


Students may receive up to three units of technical elective credit for graded research in MEC ENG H194, MEC ENG 196 or NUC ENG H194.


Technical electives cannot include any course taken on a Pass/No Pass basis or MEC ENG 191AC, MEC ENG 190K, or MEC ENG 191K.

College Requirements

Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions: 

  1. Completion of the requirements of one engineering major program of study. 
  2. A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
  3. The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
  4. All technical courses (math, science, and engineering) that can fulfill requirements for the student's major must be taken on a letter graded basis (unless they are only offered P/NP). 
  5. Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed five semesters to complete their degree requirements. Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters. 
  6. Adhere to all college policies and procedures as they complete degree requirements.
  7. Complete the lower division program before enrolling in upper division engineering courses. 

Humanities and Social Sciences (H/SS) Requirement

To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement, which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two Reading and Composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. See the humanities and social sciences section of our website for details.

Class Schedule Requirements

  • Minimum units per semester: 12.0
  • Maximum units per semester:  20.5
  • Minimum technical courses: College of Engineering undergraduates must include at least two letter graded technical courses (of at least 3 units each) in their semester program. Every semester students are expected to make satisfactory progress in their declared major. Satisfactory progress is determined by the student's Engineering Student Services Advisor. (Note: For most majors, normal progress will require enrolling in 3-4 technical courses each semester). Students who are not in compliance with this policy by the end of the fifth week of the semester are subject to a registration block that will delay enrollment for the following semester. 
  • All technical courses (math, science, engineering) that satisfy requirements for the major must be taken on a letter-graded basis (unless only offered as P/NP).

Minimum Academic (Grade) Requirements

  • Minimum overall and semester grade point averages of 2.00 (C average) are required of engineering undergraduates. Students will be subject to dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00. 
  • Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester.
  • A minimum overall grade point average of 2.00 and a minimum 2.00 grade point average in upper division technical course work required for the major are required to earn a Bachelor of Science in the College of Engineering.

Unit Requirements

To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:

  • Completion of the requirements of one engineering major program of study. 
  • A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed to count towards the B.S. degree, and no more than 4 units in any single term can be counted.
  • A maximum of 4 units of physical education from any school attended will count towards the 120 units.
  • Passed (P) grades may account for no more than one third of the total units completed at UC Berkeley, Fall Program for Freshmen (FPF), UC Education Abroad Program (UCEAP), or UC Berkeley Washington Program (UCDC) toward the 120 overall minimum unit requirement. Transfer credit is not factored into the limit. This includes transfer units from outside of the UC system, other UC campuses, credit-bearing exams, as well as UC Berkeley Extension XB units.

Normal Progress

Students in the College of Engineering must enroll in a full-time program and make normal progress each semester toward the bachelor's degree. The continued enrollment of students who fail to achieve minimum academic progress shall be subject to the approval of the dean. (Note: Students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.) 

UC and Campus Requirements

University of California Requirements

Entry Level Writing

All students who will enter the University of California as freshmen must demonstrate their command of the English language by satisfying the Entry Level Writing Requirement (ELWR). The UC Entry Level Writing Requirement website provides information on how to satisfy the requirement

American History and American Institutions

The American History and Institutions (AH&I) requirements are based on the principle that a US resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.

Campus Requirement

American Cultures

The American Cultures requirement is a Berkeley campus requirement, one that all undergraduate students at Berkeley need to pass in order to graduate. You satisfy the requirement by passing, with a grade not lower than C- or P, an American Cultures course. You may take an American Cultures course any time during your undergraduate career at Berkeley. The requirement was instituted in 1991 to introduce students to the diverse cultures of the United States through a comparative framework. Courses are offered in more than fifty departments in many different disciplines at both the lower and upper division level.


Plan of Study

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the Major Requirements tab.

CHEM 4A or 1A13-5MATH 1B4
Reading & Composition Part A Course44Reading & Composition Part B Course44
Humanities/Social Sciences course43-4 
 16-19 16
MATH 534MATH 544
 Humanities/Social Sciences course43-4
 15 18-19
MEC ENG 1043ENGIN 1784
MEC ENG 1063MEC ENG 1093
MEC ENG 1084MEC ENG 1323
NUC ENG 1003NUC ENG 1014
Humanities/Social Sciences course with Ethics Content2,43-4NUC ENG 1504
 16-17 18
Technical Electives36Technical Electives36
Humanities/Social Sciences course43-4 
 17-18 13
Total Units: 129-135

CHEM 4A is intended for students majoring in chemistry or a closely-related field.


Students must take one course with ethics content. This may be fulfilled within the Humanities/Social Sciences requirement by taking one of the following courses: ANTHRO 156B, BIO ENG 100, ENGIN 125, ENGIN 157AC, ENGIN 185, ESPM 161, ESPM 162, GEOG 31, IAS 157AC, ISF 100E, L & S 160B, PHILOS 2, PHILOS 104, PHILOS 107, and SOCIOL 116.


Technical elective units must include at least 6 units of upper division mechanical engineering courses and 6 units of upper division nuclear engineering courses. Students may receive up to 3 units of technical elective credit for graded research in MEC ENG H194, MEC ENG 196 or NUC ENG H194. Note: Technical electives cannot include any course taken on a P/NP basis; MECENG 191AC, 190K, 191K.


The Humanities/Social Sciences (H/SS) requirement includes two approved Reading & Composition (R&C) courses and four additional approved courses, with which a number of specific conditions must be satisfied. R&C courses must be taken for a letter grade (C- or better required). The first half (R&C Part A) must be completed by the end of the freshman year; the second half (R&C Part B) must be completed by no later than the end of the sophomore year. The remaining courses may be taken at any time during the program. See for complete details and a list of approved courses.

Student Learning Goals

Mechanical Engineering


The objectives of the Mechanical Engineering undergraduate program are to produce graduates who do the following:

  1. Vigorously engage in post-baccalaureate endeavors, whether in engineering graduate study, in engineering practice, or in the pursuit of other fields such as science, law, medicine, business or public policy.
  2. Apply their mechanical engineering education to address the full range of technical and societal problems with creativity, imagination, confidence and responsibility.
  3. Actively seek out positions of leadership within their profession and their community.
  4. Serve as ambassadors for engineering by exhibiting the highest ethical and professional standards, and by communicating the importance and excitement of this dynamic field.
  5. Retain the intellectual curiosity that motivates lifelong learning and allows for a flexible response to the rapidly evolving challenges of the 21st century.

Mechanical Engineering graduates have the following:

  1. An ability to apply knowledge of mathematics, science, and engineering.
  2. An ability to design and conduct experiments as well as to analyze and interpret data.
  3. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
  4. An ability to function on multi-disciplinary teams.
  5. An ability to identify, formulate, and solve engineering problems.
  6. An understanding of professional and ethical responsibility.
  7. An ability to communicate effectively.
  8. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
  9. A recognition of the need for and an ability to engage in life-long learning.
  10. A knowledge of contemporary issues.
  11. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Nuclear Engineering


The mission of the Department of Nuclear Engineering is to maintain and strengthen the University of California's only center of excellence in nuclear engineering education and research and to serve California and the nation by improving and applying nuclear science and technology. The mission of the undergraduate degree program in Nuclear Engineering is to prepare our students to begin a lifetime of technical achievement and professional leadership in academia, government, the national laboratories, and industry.


The foundation of the UC Berkeley Nuclear Engineering (NE) program is a set of five key objectives for educating undergraduate students. The NE program continuously reviews these objectives internally to ensure that they meet the current needs of the students, and each spring the Program Advisory Committee meets to review the program and recommend changes to better serve students. The NE Program Advisory Committee was established in 1988 and is composed of senior leaders from industry, the national laboratories, and academia.

Nuclear engineering at UC Berkeley prepares undergraduate students for employment or advanced studies with four primary constituencies: industry, the national laboratories, state and federal agencies, and academia (graduate research programs). Graduate research programs are the dominant constituency. From 2000 to 2005, sixty-eight percent of graduating NE seniors indicated plans to attend graduate school in their senior exit surveys. To meet the needs of these constituencies, the objectives of the NE undergraduate program are to produce graduates who as practicing engineers and researchers do the following:

  1. Apply solid knowledge of the fundamental mathematics and natural (both physical and biological) sciences that provide the foundation for engineering applications.
  2. Demonstrate an understanding of nuclear processes, and the application of general natural science and engineering principles to the analysis and design of nuclear and related systems of current and/or future importance to society.
  3. Exhibit strong, independent learning, analytical and problem-solving skills, with special emphasis on design, communication, and an ability to work in teams.
  4. Demonstrate an understanding of the broad social, ethical, safety, and environmental context within which nuclear engineering is practiced.
  5. Value and practice life-long learning.



Mechanical Engineering 

Nuclear Engineering

Faculty and Instructors

* Indicates this faculty member is the recipient of the Distinguished Teaching Award.


Alice M. Agogino, Professor. New product development, computer-aided design and databases, theory and methods, intelligent learning systems, information retrieval and data mining, digital libraries, multiobjective and strategic product, nonlinear optimization, probabilistic modeling, supervisory.
Research Profile

M. Reza Alam, Associate Professor. Theoretical Fluid Dynamics, Nonlinear Wave Mechanics, Ocean and Coastal Waves Phenomena, Ocean Renewable Energy (Wave, Tide and Offshore Wind Energy), Nonlinear Dynamical Systems, Fluid Flow Control, ocean renewable energy.
Research Profile

David M. Auslander, Professor. Automatic control system design, mini-microcomputer system bioengineering, modeling and simulation of dynamic systems, process control.
Research Profile

David B. Bogy, Professor. Mechanics in computer technology: tribology in hard-disk drives, laser measurement systems, numerical simulations. Static and dynamic problems in solid and fluid mechanics.
Research Profile

Francesco Borrelli, Professor. Model Predictive Control, Model-Based AI, Distributed and Robust Constrained Control, Automotive Control Systems, Energy Efficiency, Energy Efficient Building Control Systems, Solar Power Plants, Mobility Contextual Intelligence, Robotics and Food Systems.
Research Profile

Van P. Carey, Professor. Energy conversion and transport; molecular-level modeling of thermophysics and transport in multiphase systems; statistical thermodynamics; thermal management and energy efficiency of electronic information systems; boiling phenomena in pure fluids and binary mixtures; surface wetting effects in condensation processes; heat pipes; energy-based sustainability analysis of energy conversion systems; high temperature solar collector technologies; radial flow turbines and disk rotor drag turbine expanders for green energy conversion technologies; computer-aided design of energy systems.
Research Profile

James Casey, Professor. Continuum mechanics, finite elasticity, continuum thermodynamics, plasticity, theories of elastic-plastic materials, history of mechanics, dynamics.
Research Profile

Chris Dames, Chair, Professor. Heat transfer and energy conversion at the micro and nano scale. Theoretical and experimental methods. Nanostructured thermoelectric materials. Thermal rectification. Graphene. Nonlinear, anisotropic, and asymmetric heat transfer.
Research Profile

Robert Dibble, Professor. Laser diagnostics in turbulent reactive flows, generation of green fuels from biomass, highest efficiency and lowest pollution combustion of fuels derived from biomass, combustion issues related to global warming, conversion of waste heat to power via Organic Rankine Cycle ( ORC ), spectroscopy, chemical kinetics, turbulent combustion, optics and electronics.
Research Profile

Carlos Fernandez-Pello, Professor. Ignition and fire spread; smoldering and transition to flaming; spacecraft/aircraft fire safety; wildland fire propagation and wildland fire spotting; liquid fuel pool burning; self heating and ignition; small-scale energy generation; biofuels combustion.
Research Profile

Michael Frenklach, Professor. Chemical kinetics; Computer modeling; Combustion chemistry; Pollutant formation (NOx, soot); Shock tube; Chemical vapor deposition of diamond films; Homogeneous nucleation of silicon, silicon carbide, and diamond powders; Interstellar dust formation.
Research Profile

Michael Gollner, Associate Professor. Combustion, Fire Dynamics, Wildland Fire, Fluid Mechanics.
Research Profile

Kosa Goucher-Lambert, Assistant Professor. Design theory, methodology, and automation: decision-making applied to engineering teams and individuals, ideation and creativity, analogical reasoning in design, preference modeling and design attribute optimization, design cognition, neuroimaging methods applied to design, sustainable design, new product development, crowdsourcing and collaboration.
Research Profile

Ralph Greif, Professor. Heat and mass transfer, micro scale transport, fuel cells, cooling at the chip level, semiconductor wafers, materials processing, laser surface interactions, nuclear reactor safety, phase change, buoyancy transport, bio heat transfer, reacting flows, deposition.
Research Profile

Costas P. Grigoropoulos, Professor. Laser processing of materials, ultrafast laser micro/nanomachining, nanotechnology, nanomanufacturing, fabrication of flexible electronics, laser crystal growth for thin film transistors, advanced energy applications, microscale fuel cells, hydrogen storage, heat transfer, electronics cooling, microfluidics, laser interactions with biological materials.
Research Profile

Grace X. Gu, Assistant Professor. Composites, additive manufacturing, fracture mechanics, topology optimization, machine learning, finite element analysis, and bioinspired materials.
Research Profile

Roberto Horowitz, Professor. Adaptive control, learning and nonlinear control, control of robot manipulators, computer mechatronics systems, micro-electromechanical systems (MEMS), intelligent vehicle, highways systems.
Research Profile

David Horsley, Adjunct Professor. Microelectromechanical systems (MEMS), ultrasonics, piezoelectric micromachined ultrasonic transducers (PMUTs), piezoelectric sensors and actuators, inertial and acoustic sensors, magnetic sensors, optical MEMS, dynamics and control issues in MEMS.
Research Profile

Alexis Kaminski, Assistant Professor . Stratified flows, hydrodynamic instabilities, transition to turbulence, mixing and entrainment, internal waves, non-normal stability, upper-ocean dynamics, physical oceanography, geophysical and environmental fluid dynamics.
Research Profile

Homayoon Kazerooni, Professor. Bioengineering, robotics, control systems, mechatronics, design, automated manufacturing and human-machine systems.
Research Profile

Tony M. Keaveny, Professor. Biomechanics: mechanical behavior of bone, finite element modeling and experimentation, design of bone-implant systems, tissue engineering.
Research Profile

Kyriakos Komvopoulos, Professor. Theoretical and numerical studies in nano-/micro-scale contact mechanics, tribology, mechanical behavior of bulk and thin-film materials, deposition and characterization of single and multi-layer ultrathin films by sputtering and filtered cathodic vacuum arc methods, reliability of micro-electro-mechanical systems (MEMS), surface force microprobe techniques, surface modification of biopolymers, surface chemical functionalization for enhanced biocompatibility and cell activity, mechanotransduction effects at the single-cell and tissue levels, scaffolds for tissue engineering, and flexible/stretchable bioelectronics.
Research Profile

George Leitmann, Professor. Economics, planning, dynamics systems, control theory, optimal control, dynamic games, & robust control, applications engineering, mechanical systems, business administrations, biological systems.
Research Profile

Liwei Lin, Professor. MEMS (Microelectromechanical Systems); NEMS (Nanoelectromechanical Systems); Nanotechnology; design and manufacturing of microsensors and microactuators; development of micromachining processes by silicon surface/bulk micromachining; micromolding process; mechanical issues in MEMS including heat transfer, solid/fluid mechanics, and dynamics.
Research Profile

Fai Ma, Professor. Dynamical systems with inherent uncertainties, vibration, stochastic simulation.
Research Profile

Simo Aleksi Makiharju, Assistant Professor. Reduction drag on marine vehicles, mitigation of damage and noise caused by cavitation in naval and industrial applications, and efficient handling of single- and multiphase flows in energy production applications.
Research Profile

Samuel Mao, Adjunct Professor. Professor Mao and his team conduct research in the cross-disciplinary fields of clean energy technologies. The team also develops high throughput material processing and ultrafast laser technologies, in support of clean-energy research.
Research Profile

Philip S. Marcus, Professor. Algorithms, atmospheric flows, convection, fluid mechanics, nonlinear dynamics, ocean flows, numerical analysis, turbulence.
Research Profile

Sara McMains, Professor. Geometric and solid modeling, general purpose computation on the GPU (GPGPU), CAD/CAM, computational geometry, layered manufacturing, computer graphics and visualization, virtual prototyping, virtual reality.
Research Profile

Mohammad R. K. Mofrad, Professor. Multiscale Biomechanics of Cardiovascular Disease and Brain Injury; Molecular and Cellular Mechanobiology; Mechanics of Integrin-Mediated Focal Adhesions; Mechanics of the Nuclear Pore and Nucleocytoplasmic Transport.
Research Profile

Mark W. Mueller, Assistant Professor. Unmanned Aerial Vehicles, dynamics and control; motion planning and coordination; state estimation and localization.
Research Profile

Grace O'Connell, Associate Professor. Biomechanics of cartilage and intervertebral disc; tissue engineering; continuum modeling of soft tissues; intervertebral disc function, degeneration, and regeneration.
Research Profile

* Oliver O'Reilly, Professor. Dynamics, Vibrations, Continuum Mechanics.
Research Profile

Panayiotis Papadopoulos, Professor. Computational mechanics, solid mechanics, biomechanics, applied mathematics.
Research Profile

* Kameshwar Poolla, Professor. Theory: Modeling & System Identification, Robust Control, Optimization. Applications: Wireless Sensor Networks, Green Buildings, Semiconductor Manufacturing, Medical Imaging.
Research Profile

Ravi Prasher, Adjunct Professor. Dr. Prasher’s primary research interests are fundamental and applied studies of Nano-to-macroscale thermal energy process and systems, using both theoretical and experimental methods. Some topics of current interest include thermal transport in Lithium ion batteries, microelectronics thermal management using microfluidics, solar thermal energy conversion, high density thermochemical storage, solar thermal desalination, heat and mass transfer in roll-to-roll manufacturing process and applications of machine learning in inverse design of optical metamaterials.

* Lisa Pruitt, Professor. Tissue biomechanics, biomaterial science, fatigue and fracture micromechanisms, orthopedic polymers for total joint replacement, cardiovascular biomaterials, synthetic cartilage, acrylic bone cements, tribology of diamond and DLCs.
Research Profile

Boris Rubinsky, Professor. Heat and mass transfer in biomedical engineering and biotechnology in particular low temperature biology, bio-electronics and biomedical devices in particular micro and nano bionic technologies and electroporation, medical imaging in particular electrical impedance tomography and light imaging, biomedical numerical analysis in particular genetic and evolutionary algorithms and fractal techniques.
Research Profile

Omer Savas, Professor. Fluid mechanics: aircraft wake vortices; biofluid mechanics; boundary layers; instrumentation; rotating flows; transient aerodynamics; turbulent flows; vortex dynamics.
Research Profile

Shawn Shadden, Associate Professor. Cardiovascular biomechanics, computational mechanics, computational fluid dynamics, dynamical systems, fluid dynamics, Lagrangian coherent structures, mathematical modeling, thrombosis.
Research Profile

Lydia Sohn, Professor. Micro-nano engineering, bioengineering.
Research Profile

Koushil Sreenath, Associate Professor. Hybrid Dynamic Robotics, Applied Nonlinear Control, Dynamic Legged Locomotion, Dynamic Aerial Manipulation.
Research Profile

David Steigmann, Professor. Continuum, mechanics, shell theory, finite elasticity, variational methods, stability, surface stress, capillary phenomena, mechanics of thin films.
Research Profile

Hannah Stuart, Assistant Professor. Dexterous manipulation, bioinspired design, soft and multi-material mechanisms, skin contact conditions, tactile sensing and haptics.
Research Profile

Hayden Taylor, Associate Professor. The invention, modeling and simulation of micro- and nano-manufacturing processes, materials-testing techniques operating down to the nanoscale, and applications of polymeric materials in micro- and nano-fabrication—including for tissue scaffold engineering.
Research Profile

Masayoshi Tomizuka, Professor. Adaptive control, computer-aided manufacturing, control systems and theory, digital control, dynamic systems, manufacturing, mechanical vibrations.
Research Profile

Vassilia Zorba, Associate Adjunct Professor. Energy Science & Technology; MEMS/Nano; Materials.

Affiliated Faculty

Murat Arcak, Professor. Dynamical systems and control theory with applications to synthetic biology, multi-agent systems, and transportation.
Research Profile

Saikat Chaudhuri, Professor. Corporate growth and innovation strategies, Technological innovation in dynamic environments, Digital disruption and transformation,High-technology mergers and acquisitions, High-value strategic partnerships and outsourcing.

Peter Hosemann, Professor. Mechanical performance and microstructural characterization of structural materials as well as in environmental degradation of materials in extreme environments. Multi scale mechanical property quantification and their implications for engineering performance as well as corrosion in unusual environments are part of the research. Furthermore, professor Hosemann is interested in the manufacturing of materials (from ore to product) and most recently in micromanufacturing of geometries using short, pulsed lasers.
Research Profile

Dorian Liepmann, Professor. BioMEMS, microfluid dynamics, experimental biofluid dynamics, hemodynamics associated with valvular heart disease and other cardiac and arterial flows.
Research Profile

Robert O. Ritchie, Professor. Structural materials, mechanical behavior in biomaterials, creep, fatigue and fracture of advanced metals, intermetallics, ceramics.
Research Profile

S. Shankar Sastry, Professor. Computer science, robotics, arial robots, cybersecurity, cyber defense, homeland defense, nonholonomic systems, control of hybrid systems, sensor networks, interactive visualization, robotic telesurgery, rapid prototyping.
Research Profile

Somayeh Sojoudi, Assistant Professor. Control theory, optimization theory, machine learning, algorithms, and data science.
Research Profile


George Anwar, Lecturer. Model Predictive Control, Distributed and Robust Constrained Control, Automotive Control Systems, Energy Efficient Building Control Systems.

Gabriel Gomes, Lecturer.

Marcel Kristel, Lecturer.

Ala Moradian, Lecturer. Dr. Moradian’s primary research interests are product development, advanced materials processing, semiconductor manufacturing, computational methods for process modeling and virtual fabrication, digital twin, and multi-physics modeling for product design optimization and manufacturing.

Kourosh (Ken) Youssefi, Lecturer.

Emeritus Faculty

Jyh-Yuan Chen, Professor Emeritus. Computational modeling of reactive systems, turbulent flows, combustion chemical kinetics.
Research Profile

George C. Johnson, Professor Emeritus. X-rays, plasticity, elasticity, instrumentation, sensors, acoustoelasticity, materials behavior, materials characterization, texture analysis, thin shells deformation, ultrasonic stress analysis.
Research Profile

* Dennis K. Lieu, Professor Emeritus. Actuators, magnetics, acoustics, electromechanical devices, rolling elements, spindle motors, structural mechanics.
Research Profile

Stephen Morris, Professor Emeritus. Continuum mechanics, micro mechanics of solid-solid phase changes, interfacial phenomena (evaporating thin films), electroporation .
Research Profile

Patrick J. Pagni, Professor Emeritus. Fire safety engineering science: fire physics, fire modeling, compartment fire growth, flamespread, flame shapes and heights, excess pyrolyzates, soot formation, backdrafts, glass breaking in compartment fires, explosions, gravity currents, salt water modeling, self-heating to ignition, brand lofting, urban/wildland intermix and post-earthquake conflagrations.

Robert F. Sawyer, Professor Emeritus. Air pollutant formation and control, motor vehicle emissions, energy and environment, regulatory policy.

Benson H. Tongue, Professor Emeritus. Nonlinear dynamics, vibrations, modal analysis, numerical modeling, acoustics.

Paul K. Wright, Professor Emeritus. Mechanical and electrical engineering design, 3D-printing, manufacturing, energy systems, wireless sensor networks, sensors/MEMS/NEMS, IT systems, automated manufacturing and inspection.
Research Profile

Kazuo Yamazaki, Professor Emeritus. Etc , micro custom diamond tool design and fabrication system, CNC machine tool control software and hardware system, ultrasonic milling, intelligent manufacturing systems, mechatronics control hardware and software for manufacturing processes and equipment, computer aided manufacturing system for five axis, milling - turning integrated machining process, nano/micro mechanical machining processes and equipment, precision metrology for nano/micro mechanical machining, Non-traditional manufacturing processes such as electric discharge machining, laser machining and electron beam finishing.
Research Profile

Ronald W. Yeung, Professor Emeritus. Mathematical modeling, hydromechanics, naval architecture, numerical fluid mechanics, offshore mechanics, ocean processes, separated flows, wave-vorticity interaction, vortex-induced vibrations, stratified fluid flow, ocean energy, green ships, tidal energy, multi-hull flow physics, Helmholtz resonance, ship motion instabilities, tank resonance.
Research Profile

Xiang Zhang, Professor Emeritus. Mechanical engineering, rapid prototyping, semiconductor manufacturing, photonics, micro-nano scale engineering, 3D fabrication technologies, microelectronics, micro and nano-devices, nano-lithography, nano-instrumentation, bio-MEMS.
Research Profile


Rebecca Abergel, Assistant Professor. Effects of heavy element exposure and contamination on different biological systems.
Research Profile

Lee A. Bernstein, Adjunct Professor.

Massimiliano Fratoni, Associate Professor, Vice Chair, MEng Faculty Lead, Xenel Distinguished Professor. Nuclear reactor design, fuel cycle analysis, fusion reactors.
Research Profile

Peter Hosemann, Professor, Ernest S. Kuh Chair in Engineering. Microscopy, nanomaterials, Nuclear materials, material science, radiation damage, corrosion in liquid metals, materials development, materials under extremes, nuclear applications, ion beam microscopy, nanoscale mechanical testing.
Research Profile

Daniel M. Kammen, Professor. Public policy, nuclear engineering, energy, resources, risk analysis as applied to global warming, methodological studies of forecasting, hazard assessment, renewable energy technologies, environmental resource management.
Research Profile

Edward C. Morse, Professor. Applied plasma physics: fusion technology: microwaves, experimental investigation of RF plasma heating, experimental studies of compact toroids spectral method for magnetohydrodynamic stability.
Research Profile

Per F. Peterson, Professor. Nuclear engineering, heat and mass transfer, reactor thermal hydraulics, nuclear reactor design, radioactive waste, nuclear materials management.
Research Profile

Raluca O. Scarlat, Assistant Professor. Chemical and termophysical characterization of high-temperature molten salts and other inorganic fluids, and heat and mass transport pertaining to energy systems Electrochemistry, corrosion, thermodynamics Nuclear reactor safety analysis, licensing and design, and engineering ethics .
Research Profile

Youngho Seo, Professor in Residence. Quantitative molecular imaging instrumentation and physics research.
Research Profile

Rachel Slaybaugh, Associate Professor. Computational methods, high performance computing, neutron transport.
Research Profile

Karl A. Van Bibber, Professor, Shankar Sastry Chair for Leadership and Innovation, Professor and Executive Associate Dean for the College of Engineering. Experimental nuclear physics, Particle Astrophysics, Accelerator Technology and Neutron Sources.
Research Profile

Kai Vetter, Professor. Nuclear physics, radiation detection, nuclear instrumentation, nuclear measurements, multi-sensor systems and data fusion, radiological resilience.
Research Profile

Jasmina L. Vujic, Professor. Nuclear engineering, numerical methods in reactor physics, neutron and photon transport, reactor core design and analysis, shielding, radiation protection, biomedical application of radiation, optimization techniques for vector, parallel computers.
Research Profile

Haruko Wainwright, Associate Adjunct Professor.
Research Profile


Ralph E. Berger, Lecturer.

Ali Hanks, Lecturer.
Research Profile

Thomas Schenkel, Lecturer.

Carl Schroeder, Adjunct Professor. Plasma physics, Laser-plasma and beam-plasma interactions, High-energy density physics, Advanced accelerator concepts, Compact radiation sources, Accelerator Science & Technology.
Research Profile

Emeritus Faculty

T. Kenneth Fowler, Professor Emeritus. Plasma physics, nuclear engineering, magnetic fusion, confinement and stability of plasmas for thermonuclear fusion, fusion reactor design, spehromak compact toroid plasma confinement configuration.
Research Profile

Ehud Greenspan, Professor Emeritus. Professor of the Graduate School.

Lawrence M. Grossman, Professor Emeritus. Nuclear engineering, reactor physics, numerical approximation methods in neutron diffusion, transport theory, control and optimization theory in nuclear reactor engineering.
Research Profile

Selig N. Kaplan, Professor Emeritus. Radiation reactions, interaction of radiation of matter, detection and measurement of ionizing radiation.
Research Profile

William E. Kastenberg, Professor Emeritus. Risk management, risk assessment, nuclear reactor safety, ethical issues in emerging technologies.
Research Profile

Ka-Ngo Leung, Professor Emeritus, Professor in the Graduate School. Professor of the Graduate School, Plasma and Ion Beam technology in microfabrication processes.

Digby Macdonald, Professor Emeritus, Staff Researcher.
Research Profile

Eric B. Norman, Professor Emeritus. Professor of the Graduate School, nuclear astrophysics, experimental nuclear physics, homeland security, neutrinos.
Research Profile

Contact Information

Mechanical Engineering Program

6141 Etcheverry Hall

Phone: 510-642-1338

Fax: 510-642-6163

Visit Program Website

Department Chair, Mechanical Engineering

Professor Chris Dames

6107 Etcheverry Hall

Phone: 510-643-2582

Department Chair, Nuclear Engineering

Professor Peter Hosemann

4153 Etcheverry Hall

Phone: 510-642-3477

Departmental Advisor, ME

Ricky Vides

6193 Etcheverry Hall

Phone: 510-642-4094

Departmental Advisor, NE

Kirsten Wimple Hall

4149 Etcheverry Hall

Phone: 510-642-5760

ESS Adviser/Joint Majors

Shareena Samson

Engineering Student Services (ESS)

230 Bechtel Engineering Center

Phone: 510-642-7594

Faculty Advisor

Massimiliano Fratoni, PhD (Department of Nuclear Engineering)

4111 Etcheverry Hall

Phone: 510-664-9079

Back to Top