About the Program
Bachelor of Science (BS)
The joint major programs are designed for students who wish to undertake study in two areas of engineering in order to qualify for employment in either field or for positions in which competence in two fields is required. These curricula include the core courses from each of the major fields. While they require slightly increased course loads, they can be completed in four years. Both majors are shown on the student's transcript of record.
This program was established to address the interface between the two major fields. It is intended for nuclear engineering students interested in mechanical design and heat transfer as well as for mechanical engineering students who wish to further their knowledge of nuclear radiological systems and processes. Its objective is to provide students with a strong and competitive background in both majors, leading to professional careers in nuclear and radiation-based industries or to graduate study in nuclear engineering and other engineering disciplines or related fields such as medicine and physics.
Admission to the Joint Major
Admission directly to a joint major is closed to freshmen and junior transfer applicants. Students interested in a joint program may apply to change majors during specific times in their academic progress. Please see the College of Engineering joint majors website for complete details.
Major Requirements
In addition to the University, campus, and college requirements, students must fulfill the below requirements specific to their major program.
General Guidelines
-
All technical courses taken in satisfaction of major requirements must be taken for a letter grade.
-
No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.
-
A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.
-
A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.
For information regarding residence requirements and unit requirements, please see the College Requirements tab.
For a detailed plan of study by year and semester, please see the Plan of Study tab.
Lower Division Requirements
Code | Title | Units |
---|---|---|
MATH 51/1A | Calculus I (MATH 51 as of Fall 2025) | 4 |
MATH 52/1B | Calculus II (MATH 52 as of Fall 2025) | 4 |
MATH 53 | Multivariable Calculus | 4 |
MATH 54 | Linear Algebra and Differential Equations | 4 |
CHEM 1A | General Chemistry 1 | 3-5 |
or CHEM 4A | General Chemistry and Quantitative Analysis | |
PHYSICS 7A | Physics for Scientists and Engineers | 4 |
PHYSICS 7B | Physics for Scientists and Engineers | 4 |
PHYSICS 7C | Physics for Scientists and Engineers | 4 |
ENGIN 7 | Introduction to Computer Programming and Numerical Methods | 4 |
ENGIN 26 | Three-Dimensional Modeling for Design | 2 |
ENGIN 29 | Manufacturing and Design Communication | 4 |
MEC ENG 40 | Thermodynamics | 3 |
MEC ENG C85/CIV ENG C30 | Introduction to Solid Mechanics | 3 |
- 1
CHEM 4A is intended for students majoring in chemistry or a closely-related field.
Upper Division Requirements
Code | Title | Units |
---|---|---|
ENGIN 178 | Statistics and Data Science for Engineers | 4 |
MEC ENG 100 | Electronics for the Internet of Things | 4 |
MEC ENG 102B | Mechatronics Design | 4 |
MEC ENG 103 | Experimentation and Measurements | 4 |
MEC ENG 104 | Engineering Mechanics II | 3 |
MEC ENG 106 | Fluid Mechanics | 3 |
MEC ENG 108 | Mechanical Behavior of Engineering Materials | 4 |
MEC ENG 109 | Heat Transfer | 3 |
MEC ENG 132 | Dynamic Systems and Feedback 4 | 3 |
NUC ENG 100 | Introduction to Nuclear Energy and Technology | 3 |
NUC ENG 101 | Nuclear Reactions and Radiation | 4 |
NUC ENG 104 | Radiation Detection and Nuclear Instrumentation Laboratory | 4 |
NUC ENG 150 | Introduction to Nuclear Reactor Theory | 4 |
NUC ENG 170A | Nuclear Design: Design in Nuclear Power Technology and Instrumentation | 3 |
Ethics requirement 1 | 3-4 | |
Upper division technical electives: minimum 12 units 2,3 | 12 | |
Select 6 units of upper division NUC ENG courses, in consultation with faculty advisor | ||
Select 6 units of upper division MEC ENG courses, in consultation with faculty advisor |
- 1
Students must take one course with ethics content. This may be fulfilled within the humanities/social sciences requirement by taking one of the following courses: ANTHRO 156B, BIO ENG 100, ENGIN 125, ENGIN 157AC, ENGIN 185, ESPM 161, ESPM 162, GEOG 31, IAS 157AC, ISF 100E, L & S 160B, PHILOS 2, PHILOS 104, PHILOS 107, SOCIOL 116.
- 2
Students may receive up to three units of technical elective credit for graded research in MEC ENG H194, MEC ENG 196 or NUC ENG H194.
- 3
Technical electives cannot include any course taken on a Pass/No Pass basis or MEC ENG 191AC, MEC ENG 190K, or MEC ENG 191K.
- 4
MEC ENG 132 is only offered in the fall semester.
College Requirements
Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions:
- Completion of the requirements of one engineering major program of study.
- A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
- The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
- All technical courses (math, science, and engineering) that can fulfill requirements for the student's major must be taken on a letter graded basis (unless they are only offered P/NP).
- Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed five semesters to complete their degree requirements. Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters.
- Adhere to all college policies and procedures as they complete degree requirements.
- Complete lower division technical courses before enrolling in upper division technical courses.
Humanities and Social Sciences (H/SS) Requirement
To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement, which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two Reading and Composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. See the humanities and social sciences section of our website for details.
Class Schedule Requirements
- Minimum units per semester: 12.0
- Maximum units per semester: 20.5
- Minimum technical courses: College of Engineering undergraduates must include at least two letter graded technical courses (of at least 3 units each) in their semester program. Every semester students are expected to make normal progress in their declared major. Normal progress is determined by the student's Engineering Student Services Advisor. (Note: For most majors, normal progress will require enrolling in 3-4 technical courses required of your current major each semester.) Students who are not in compliance with this policy by the end of the fifth week of the semester are subject to a registration block that will delay enrollment for the following semester.
- All technical courses (math, science, engineering) that satisfy requirements for the major must be taken on a letter-graded basis (unless only offered as P/NP).
Minimum Academic Requirements
- Students must have a minimum overall and semester grade point average of 2.00 (C average). Students will be subject to suspension or dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00.
- Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester.
- A minimum overall grade point average of 2.00 and a minimum 2.00 grade point average in upper division technical course work required for the major are required to earn a Bachelor of Science in the College of Engineering.
- Students must make normal degree progress toward the Bachelor of Science degree and their officially declared major.
Unit Requirements
To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:
- Completion of the requirements of one engineering major program of study.
- A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed to count towards the B.S. degree, and no more than 4 units in any single term can be counted.
- A maximum of 4 units of physical education from any school attended will count towards the 120 units.
-
Passed (P) grades may account for no more than one third of the total units completed at UC Berkeley, Fall Program for First Semester (FPF), UC Education Abroad Program (UCEAP), or UC Berkeley Washington Program (UCDC) toward the 120 overall minimum unit requirement. Transfer credit is not factored into the limit. This includes transfer units from outside of the UC system, other UC campuses, credit-bearing exams, as well as UC Berkeley Extension XB units.
Normal Progress
Students in the College of Engineering must enroll in a full-time program and make normal progress each semester toward their declared major. Students who fail to achieve normal academic progress shall be subject to suspension or dismissal. (Note: Students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.)
UC and Campus Requirements
University of California Requirements
Entry Level Writing
All students who will enter the University of California as freshmen must demonstrate their command of the English language by satisfying the Entry Level Writing Requirement (ELWR). The UC Entry Level Writing Requirement website provides information on how to satisfy the requirement.
American History and American Institutions
The American History and Institutions (AH&I) requirements are based on the principle that a US resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.
Campus Requirement
American Cultures
The American Cultures requirement is a Berkeley campus requirement, one that all undergraduate students at Berkeley need to pass in order to graduate. You satisfy the requirement by passing, with a grade not lower than C- or P, an American Cultures course. You may take an American Cultures course any time during your undergraduate career at Berkeley. The requirement was instituted in 1991 to introduce students to the diverse cultures of the United States through a comparative framework. Courses are offered in more than fifty departments in many different disciplines at both the lower and upper division level.
Plan of Study
For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the Major Requirements tab.
Freshman | |||
---|---|---|---|
Fall | Units | Spring | Units |
CHEM 4A or 1A1 | 3-5 | MATH 1B | 4 |
MATH 1A | 4 | PHYSICS 7A | 4 |
ENGIN 26 | 2 | ENGIN 7 | 4 |
Reading & Composition Part A Course4 | 4 | Reading & Composition Part B Course4 | 4 |
Humanities/Social Sciences course4 | 3-4 | ||
16-19 | 16 | ||
Sophomore | |||
Fall | Units | Spring | Units |
MATH 53 | 4 | MATH 54 | 4 |
PHYSICS 7B | 4 | PHYSICS 7C | 4 |
ENGIN 29 | 4 | MEC ENG 40 | 3 |
MEC ENG C85 | 3 | MEC ENG 100 | 4 |
Humanities/Social Sciences course4 | 3-4 | ||
15 | 18-19 | ||
Junior | |||
Fall | Units | Spring | Units |
MEC ENG 104 | 3 | ENGIN 178 | 4 |
MEC ENG 106 | 3 | MEC ENG 109 | 3 |
MEC ENG 108 | 4 | NUC ENG 104 | 4 |
NUC ENG 100 | 3 | NUC ENG 150 | 4 |
Humanities/Social Sciences course with Ethics Content2,4 | 3-4 | Technical Elective3 | 3 |
16-17 | 18 | ||
Senior | |||
Fall | Units | Spring | Units |
MEC ENG 103 | 4 | MEC ENG 102B | 4 |
MEC ENG 1325 | 3 | NUC ENG 170A | 3 |
NUC ENG 101 | 4 | Technical Electives3 | 6 |
Technical Electives3 | 3 | Humanities/Social Sciences course4 | 3-4 |
14 | 16-17 | ||
Total Units: 129-135 |
- 1
CHEM 4A is intended for students majoring in chemistry or a closely-related field.
- 2
Students must take one course with ethics content. This may be fulfilled within the Humanities/Social Sciences requirement by taking one of the following courses: ANTHRO 156B, BIO ENG 100, ENGIN 125, ENGIN 157AC, ENGIN 185, ESPM 161, ESPM 162, GEOG 31, IAS 157AC, ISF 100E, L & S 160B, PHILOS 2, PHILOS 104, PHILOS 107, and SOCIOL 116.
- 3
Technical elective units must include at least 6 units of upper division mechanical engineering courses and 6 units of upper division nuclear engineering courses. Students may receive up to 3 units of technical elective credit for graded research in MEC ENG H194, MEC ENG 196 or NUC ENG H194. Note: Technical electives cannot include any course taken on a P/NP basis; MECENG 191AC, 190K, 191K.
- 4
The Humanities/Social Sciences (H/SS) requirement includes two approved Reading & Composition (R&C) courses and four additional approved courses, with which a number of specific conditions must be satisfied. R&C courses must be taken for a letter grade (C- or better required). The first half (R&C Part A) must be completed by the end of the freshman year; the second half (R&C Part B) must be completed by no later than the end of the sophomore year. The remaining courses may be taken at any time during the program. See engineering.berkeley.edu/hss for complete details and a list of approved courses.
- 5
MEC ENG 132 is only offered in the fall semester.
Student Learning Goals
Mechanical Engineering
LEARNING GOALS
The objectives of the Mechanical Engineering undergraduate program are to produce graduates who do the following:
- Vigorously engage in post-baccalaureate endeavors, whether in engineering graduate study, in engineering practice, or in the pursuit of other fields such as science, law, medicine, business or public policy.
- Apply their mechanical engineering education to address the full range of technical and societal problems with creativity, imagination, confidence and responsibility.
- Actively seek out positions of leadership within their profession and their community.
- Serve as ambassadors for engineering by exhibiting the highest ethical and professional standards, and by communicating the importance and excitement of this dynamic field.
- Retain the intellectual curiosity that motivates lifelong learning and allows for a flexible response to the rapidly evolving challenges of the 21st century.
SKILLS
Mechanical Engineering graduates have the following:
- An ability to apply knowledge of mathematics, science, and engineering.
- An ability to design and conduct experiments as well as to analyze and interpret data.
- An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- An ability to function on multi-disciplinary teams.
- An ability to identify, formulate, and solve engineering problems.
- An understanding of professional and ethical responsibility.
- An ability to communicate effectively.
- The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
- A recognition of the need for and an ability to engage in life-long learning.
- A knowledge of contemporary issues.
- An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Nuclear Engineering
MISSION
The mission of the Department of Nuclear Engineering is to maintain and strengthen the University of California's only center of excellence in nuclear engineering education and research and to serve California and the nation by improving and applying nuclear science and technology. The mission of the undergraduate degree program in Nuclear Engineering is to prepare our students to begin a lifetime of technical achievement and professional leadership in academia, government, the national laboratories, and industry.
LEARNING GOALS
The foundation of the UC Berkeley Nuclear Engineering (NE) program is a set of five key objectives for educating undergraduate students. The NE program continuously reviews these objectives internally to ensure that they meet the current needs of the students, and each spring the Program Advisory Committee meets to review the program and recommend changes to better serve students. The NE Program Advisory Committee was established in 1988 and is composed of senior leaders from industry, the national laboratories, and academia.
Nuclear engineering at UC Berkeley prepares undergraduate students for employment or advanced studies with four primary constituencies: industry, the national laboratories, state and federal agencies, and academia (graduate research programs). Graduate research programs are the dominant constituency. From 2000 to 2005, sixty-eight percent of graduating NE seniors indicated plans to attend graduate school in their senior exit surveys. To meet the needs of these constituencies, the objectives of the NE undergraduate program are to produce graduates who as practicing engineers and researchers do the following:
- Apply solid knowledge of the fundamental mathematics and natural (both physical and biological) sciences that provide the foundation for engineering applications.
- Demonstrate an understanding of nuclear processes, and the application of general natural science and engineering principles to the analysis and design of nuclear and related systems of current and/or future importance to society.
- Exhibit strong, independent learning, analytical and problem-solving skills, with special emphasis on design, communication, and an ability to work in teams.
- Demonstrate an understanding of the broad social, ethical, safety, and environmental context within which nuclear engineering is practiced.
- Value and practice life-long learning.
Courses
Courses
Mechanical Engineering
Terms offered: Fall 2024, Fall 2023, Fall 2022
The Berkeley Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Berkeley Seminars are offered in all campus departments, and topics vary from department to department and semester to semester.
Freshman Seminars: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final Exam To be decided by the instructor when the class is offered.
Terms offered: Spring 2025, Fall 2024, Summer 2024 10 Week Session
This course introduces the scientific principles that deal with energy conversion among different forms, such as heat, work, internal, electrical, and chemical energy. The physical science of heat and temperature, and their relations to energy and work, are analyzed on the basis of the four fundamental thermodynamic laws (zeroth, first, second, and third). These principles are applied to various practical systems, including heat engines, refrigeration cycles, air conditioning, and chemical reacting systems.
Thermodynamics: Read More [+]
Objectives & Outcomes
Course Objectives: 2) to develop analytic ability in real-world engineering applications using thermodynamics principles.
The objectives of this course are:
1) to provide the fundamental background of thermodynamics principles, and
Student Learning Outcomes: (a) an ability to apply knowledge of mathematics, science, and engineering
(e) an ability to identify, formulate, and solve engineering problems
(f) an understanding of professional and ethical responsibility
(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
(i) a recognition of the need for, and an ability to engage in life-long learning
(j) a knowledge of contemporary issues
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Rules & Requirements
Prerequisites: CHEM 1A, ENGIN 7, MATH 52, and PHYSICS 7B
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 10 weeks - 4.5 hours of lecture and 1.5 hours of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Terms offered: Spring 2025, Fall 2024, Spring 2024
A review of equilibrium for particles and rigid bodies. Application to truss structures. The concepts of deformation, strain, and stress. Equilibrium equations for a continuum. Elements of the theory of linear elasticity. The states of plane stress and plane strain. Solution of elementary elasticity problems (beam bending, torsion of circular bars). Euler buckling in elastic beams.
Introduction to Solid Mechanics: Read More [+]
Rules & Requirements
Prerequisites: Mathematics 53 and 54 (may be taken concurrently); Physics 7A
Credit Restrictions: Students will receive no credit for Mechanical Engineering C85/Civil and Environmental Engineering C30 after completing Mechanical Engineering W85. A deficient grade in Mechanical Engineering W85 may be removed by taking Mechanical Engineering C85/Civil and Environmental Engineering C30.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer:
6 weeks - 7.5 hours of lecture and 2.5 hours of discussion per week
10 weeks - 4.5 hours of lecture and 1.5 hours of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Armero, Papadopoulos, Zohdi, Johnson
Also listed as: CIV ENG C30
Terms offered: Summer 2021 8 Week Session, Summer 2020 8 Week Session, Summer 2019 8 Week Session
A review of equilibrium for particles and rigid bodies. Application to truss structures. The concepts of deformation, strain, and stress. Equilibrium equations for a continuum. Elements of the theory of linear elasticity. The states of plane stress and plane strain. Solution of elementary elasticity problems (beam bending, torsion of circular bars). Euler buckling in elastic beams.
Introduction to Solid Mechanics: Read More [+]
Objectives & Outcomes
Course Objectives: To learn statics and mechanics of materials
Student Learning Outcomes: -
Correctly draw free-body
-
Apply the equations of equilibrium to two and three-dimensional solids
-
Understand the concepts of stress and strain
-
Ability to calculate deflections in engineered systems
-
Solve simple boundary value problems in linear elastostatics (tension, torsion, beam bending)
Rules & Requirements
Prerequisites: MATH 53 and MATH 54 (may be taken concurrently); PHYSICS 7A
Credit Restrictions: Students will receive no credit for MEC ENG W85 after completing MEC ENG C85. A deficient grade in MEC ENG W85 may be removed by taking MEC ENG C85.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of web-based lecture and 1 hour of web-based discussion per week
Summer:
6 weeks - 7.5 hours of web-based lecture and 2.5 hours of web-based discussion per week
8 weeks - 6 hours of web-based lecture and 2 hours of web-based discussion per week
10 weeks - 4.5 hours of web-based lecture and 1.5 hours of web-based discussion per week
Online: This is an online course.
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Govindjee
Also listed as: CIV ENG W30
Terms offered: Fall 2024, Spring 2024, Fall 2023
Organized group study on various topics under the sponsorship and direction of a member of the Mechanical Engineering faculty.
Supervised Independent Group Studies: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Summer: 10 weeks - 1.5-6 hours of directed group study per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Terms offered: Spring 2025, Fall 2024, Spring 2024
Electronics and Electrical Engineering has become pervasive in our lives as a powerful technology with applications in a wide range of fields including healthcare, environmental monitoring, robotics, or entertainment. This course offers a broad survey of Electrical Engineering ideas to non-majors. In the laboratory students will learn in-depth how to design and build systems that exchange information with or are controlled from the cloud. Examples include solar harvesters, robots, and smart home devices. In the course project, the students will integrate what they have learned and build an Internet-of-Things application of their choice. The course has a mandatory lab fee.
Electronics for the Internet of Things: Read More [+]
Objectives & Outcomes
Course Objectives: Electronics has become a powerful and ubiquitous technology supporting solutions to a wide range of applications in fields ranging from science, engineering, healthcare, environmental monitoring, transportation, to entertainment. This course teaches students majoring in these and related subjects how to use electronic devices to solve problems in their areas of expertise. Through the lecture and laboratory, students gain insight into the possibilities and limitations of the technology and how to use electronics to help solve problems.
Students learn to use electronics to interact with the environment through sound, light, temperature, motion using sensors and actuators, and how to use electronic computation to orchestrate the interactions and exchange information wirelessly over the internet.
The course has two objectives: (a) to teach students how to build electronic circuits that interact with the environment through sensors and actuators and how to communicate wirelessly with the internet to cooperate with other devices and with humans, and (b) to offer a broad survey of modern Electrical Engineering including analog electronics: analysis of RLC circuits, filtering, diodes and rectifiers, op-amps, A2D and D2A converters; digital electronics: combinatorial and sequential logic, flip-flops, counters, memory; applications: communication systems, signal processing, computer architecture; basics of manufacturing of integrated circuits.
Student Learning Outcomes: an ability to communicate effectively
an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
an ability to identify, formulate, and solve engineering problems
an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Rules & Requirements
Prerequisites: ENGIN 7, COMPSCI 10, COMPSCI 61A, COMPSCI C8, or equivalent background in computer programing; MATH 51 or equivalent background in calculus; PHYSICS 7A or equivalent background in physics
Credit Restrictions: Student will not receive credit for this course if they have taken EE49
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 2 hours of discussion, and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Poolla
Terms offered: Spring 2025, Spring 2023, Spring 2021
Fundamentals of lean manufacturing systems including manufacturing fundamentals, unit operations and manufacturing line considerations for work in process (WIP), manufacturing lead time (MLT), economics, quality monitoring; high mix/low volume (HMLV) systems fundamentals including just in time (JIT), kanban, buffers and line balancing; class project/case studies for design and analysis of competitive manufacturing systems.
Introduction to Lean Manufacturing Systems: Read More [+]
Objectives & Outcomes
Course Objectives: This course will enable students to analyze manufacturing lines in order to understand the production process and improve production efficiency. The course provides practical knowledge and skills that can be applied in industry, covering the complete manufacturing system from production planning to quality control. Students are given a chance to practice and implement what they learn during lectures by conducting projects with local or global manufacturing companies.
Student Learning Outcomes: Students will understand the whole scope of manufacturing systems from production planning to quality control, which can be helpful to set up manufacturing lines for various products. Students will be capable of identifying sources of manufacturing problems by analyzing the production line and produce multi-level solutions to optimize manufacturing efficiency.
Rules & Requirements
Prerequisites: Completion of all lower division requirements for an engineering major, or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 6 weeks - 7.5 hours of lecture and 3 hours of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Dornfeld, McMains
Terms offered: Spring 2025, Fall 2024, Spring 2024
Introduction to design and realization of mechatronics systems. Micro computer architectures. Basic computer IO devices. Embedded microprocessor systems and control, IO programming such as analogue to digital converters, PWM, serial and parallel outputs. Electrical components such as power supplies, operational amplifiers, transformers and filters. Shielding and grounding. Design of electric, hydraulic and pneumatic actuators. Design of sensors. Design of power transmission systems. Kinematics and dynamics of robotics devices. Basic feedback design to create robustness and performance.
Mechatronics Design: Read More [+]
Objectives & Outcomes
Course Objectives: Introduce students to design and design techniques of mechatronics systems; provide guidelines to and experience with design of variety of sensors and actuators; design experience in programming microcomputers and various IO devices; exposure to and design experience in synthesis of mechanical power transfer components; understanding the role of dynamics and kinematics of robotic devices in design of mechatronics systems; exposure to and design experience in synthesis of feedback systems; provide experience in working in a team to design a prototype mechatronics device.
Student Learning Outcomes: By the end of this course, students should: Know how to set up micro computers and interface them with various devices; know how to understand the microcomputers architectures, IO devices and be able to program them effectively; understand the design of actuators and sensors; know how to do shielding and grounding for various mechatronics projects, know how to create feedback systems, know the role of dynamics and kinematics of robotic devices in design and control of mechatronics systems; know how to design mechanical components such as transmissions, bearings, shafts, and fasteners.
Rules & Requirements
Prerequisites: ENGIN 26, ENGIN 29; and EECS 16A or MEC ENG 100. Please note that junior transfer admits are exempt from ENGIN 26
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructors: Kazerooni, Stuart
Terms offered: Fall 2024, Spring 2024, Fall 2023
This course introduces students to modern experimental techniques for mechanical engineering, and improves students’ teamwork and communication skills. Students will work in a laboratory setting on systems ranging in complexity from desktop experiments with only a few instruments up to systems such as an internal combustion engine with a wide variety of sensors. State-of-the-art software for data acquisition and analysis will be introduced and used throughout the course. The role of error and uncertainty, and uncertainty propagation, in measurements and analysis will be examined. Design of experiments will be addressed through examples and homework. The role and limitations of spectral analysis of digital data will be discussed.
Experimentation and Measurements: Read More [+]
Objectives & Outcomes
Course Objectives: Introduce students to modern experimental techniques for mechanical engineering; provide exposure to and experience with a variety of sensors, including those to measure temperature, displacement, velocity, acceleration and strain; examine the role of error and uncertainty in measurements and analysis; exposure to and experience in using commercial software for data acquisition and analysis; discuss the role and limitations of spectral analysis of digital data; provide experience in working in a team in all aspects of the laboratory exercises, including set-up, data collection, analysis, technical report writing and oral presentation.
Student Learning Outcomes: (a) an ability to apply knowledge of mathematics, science, and engineering
(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(c) an ability to function on multi-disciplinary teams
(d) an ability to identify, formulate, and solve engineering problems
(e) an understanding of professional and ethical responsibility
(f) an ability to communicate effectively
(g) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
(h) a recognition of the need for, and an ability to engage in life-long learning
(j) a knowledge of contemporary issues
(i) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Rules & Requirements
Prerequisites: MEC ENG 40; MEC ENG C85 / CIV ENG C30; MEC ENG 100; MEC ENG 106 (can be taken concurrently), and MEC ENG 109 (can be taken concurrently)
Credit Restrictions: Students will not receive credit for this course if they have taken both ME 102A and ME 107.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructors: Johnson, Makiharju, Chen
Terms offered: Spring 2025, Fall 2024, Spring 2024
This course is an introduction to the dynamics of particles and rigid bodies. The material, based on a Newtonian formulation of the governing equations, is illustrated with numerous examples ranging from one-dimensional motion of a single particle to planar motions of rigid bodies and systems of rigid bodies.
Engineering Mechanics II: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG C85, and one of ENGIN 7 or COMPSCI 61A
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 10 weeks - 4.5 hours of lecture and 1.5 hours of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Ma, Casey, O'Reilly
Terms offered: Spring 2025, Fall 2024, Spring 2024
This course introduces the fundamentals and techniques of fluid mechanics with the aim of describing and controlling engineering flows.
Fluid Mechanics: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG C85 / CIV ENG C30 and MEC ENG 104 (104 may be taken concurrently)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer: 10 weeks - 4.5 hours of lecture and 1.5 hours of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Terms offered: Fall 2024, Fall 2023, Fall 2022, Fall 2021, Fall 2020, Fall 2019
This course is an introduction to the field of robotics. It covers the fundamentals of kinematics, dynamics, control of robot manipulators, robotic vision, sensing, forward & inverse kinematics of serial chain manipulators, the manipulator Jacobian, force relations, dynamics, & control. We will present techniques for geometric motion planning & obstacle avoidance. Open problems in trajectory generation with dynamic constraints will also be discussed. The course also presents the use of the same analytical techniques as manipulation for the analysis of images & computer vision. Low level vision, structure from motion, & an introduction to vision & learning will be covered. The course concludes with current applications of robotics.
Introduction to Robotics: Read More [+]
Rules & Requirements
Prerequisites: Familiarity with linear algebra at the level of EECS 16A/EECS 16B or MATH 54. Experience coding in python at the level of COMPSCI 61A. Preferred: experience developing software at the level of COMPSCI 61B and experience using Linux
Credit Restrictions: Students will receive no credit for Electrical Engineering and Computer Science C106A/Bioengineering C106A after completing EE C106A/BioE C125, Electrical Engineering 206A, or Electrical Engineering and Computer Science 206A.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week
Summer: 8 weeks - 6 hours of lecture, 2 hours of discussion, and 6 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Sastry
Also listed as: BIO ENG C106A/EECS C106A
Terms offered: Spring 2025, Spring 2024, Spring 2023, Spring 2021, Spring 2020, Spring 2019
The course is a sequel to EECS/BIOE/MEC106A/EECSC206A, which covers the mathematical fundamentals of robotics including kinematics, dynamics and control as well as an introduction to path planning, obstacle avoidance, and computer vision. This course will present several areas of robotics and active vision, at a deeper level and informed by current research. Concepts will include the review at an advanced level of robot control, the kinematics, dynamics and control of multi-fingered hands, grasping and manipulation of objects, mobile robots: including non-holonomic motion planning and control, path planning, Simultaneous Localization And Mapping (SLAM), and active vision. Additional research topics covered at the instructor's discretion.
Robotic Manipulation and Interaction: Read More [+]
Rules & Requirements
Prerequisites: EECS C106A / BIO ENG C106A / MEC ENG C106A / EECS C206A or an equivalent course. A strong programming background, knowledge of Python and Matlab, and some coursework in feedback controls (such as EL ENG C128 / MEC ENG C134) are also useful. Students who have not taken the prerequisite course should have a strong programming background, knowledge of Python and Matlab, and exposure to linear algebra, Lagrangian dynamics, and feedback controls at the intermediate level. EECS C106A
Credit Restrictions: Students will receive no credit for Electrical Engineering and Computer Science C106B/Bioengineering C106B after completing Electrical Engineering C106B/Bioengineering C125B, Electrical Engineering 206B, or Electrical Engineering and Computer Science 206B.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Sastry
Also listed as: BIO ENG C106B/EECS C106B
Terms offered: Spring 2025, Fall 2024, Spring 2024
This course covers elastic and plastic deformation under static and dynamic loads. Failure by yielding, fracture, fatigue, wear, and environmental factors are also examined. Topics include engineering materials, heat treatment, structure-property relationships, elastic deformation and multiaxial loading, plastic deformation and yield criteria, dislocation plasticity and strengthening mechanisms, creep, stress concentration effects, fracture, fatigue, and contact deformation.
Mechanical Behavior of Engineering Materials: Read More [+]
Objectives & Outcomes
Course Objectives: The central theme of this course is the mechanical behavior of engineering materials, such as metals, ceramics, polymers, and composites, subjected to different types of loading. The main objectives are to provide students with basic understanding of phase transformation by heat treating and stress-induced hardening, linear and nonlinear elastic behavior, deformation under multiaxial loading, plastic deformation and yield criteria, dislocation plasticity and strengthening mechanisms, creep, stress concentration effects, brittle versus ductile fracture, fracture mechanisms at different scales, fatigue, contact deformation, and wear.
Student Learning Outcomes: (a) an ability to apply knowledge of mathematics, science, and engineering
(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(e) an ability to identify, formulate, and solve engineering problems
(i) a recognition of the need for, and an ability to engage in life-long learning
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Rules & Requirements
Prerequisites: MEC ENG C85 / CIV ENG C30
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Komvopoulos, Grace O'Connell
Terms offered: Spring 2025, Fall 2024, Spring 2024
This course covers transport processes of mass, momentum, and energy from a macroscopic view with emphasis both on understanding why matter behaves as it does and on developing practical problem solving skills. The course is divided into four parts: introduction, conduction, convection, and radiation.
Heat Transfer: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG 40 and MEC ENG 106
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Summer:
8 weeks - 5.5 hours of lecture and 1.5 hours of discussion per week
10 weeks - 4.5 hours of lecture and 1.5 hours of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Terms offered: Spring 2025, Summer 2024 10 Week Session, Spring 2024
The course provides project-based learning experience in innovative new product development, with a focus on mechanical engineering systems. Design concepts and techniques are introduced, and the student's design ability is developed in a design or feasibility study chosen to emphasize ingenuity and provide wide coverage of engineering topics. Relevant software will be integrated into studio sessions, including solid modeling and environmental life cycle analysis. Design optimization and social, economic, and political implications are included.
Introduction to Product Development: Read More [+]
Rules & Requirements
Prerequisites: Junior or higher standing
Hours & Format
Fall and/or spring: 15 weeks - 3-3 hours of lecture per week
Summer: 10 weeks - 5 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Terms offered: Spring 2023, Spring 2022, Spring 2021, Spring 2020
This course applies methods of statistical continuum mechanics to subcellar biomechanical phenomena ranging from nanoscale (molecular) to microscale (whole cell and cell population) biological processes at the interface of mechanics, biology, and chemistry.
Molecular Biomechanics and Mechanobiology of the Cell: Read More [+]
Objectives & Outcomes
Course Objectives: This course, which is open to senior undergraduate students or graduate students in diverse disciplines ranging from engineering to biology to chemistry and physics, is aimed at exposing students to subcellular biomechanical phenomena spanning scales from molecules to the whole cell.
Student Learning Outcomes: The students will develop tools and skills to (1) understand and analyze subcelluar biomechanics and transport phenomena, and (2) ultimately apply these skills to novel biological and biomedical applications
Rules & Requirements
Prerequisites: BIO ENG 102; or MEC ENG C85 / CIV ENG C30; or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Mofrad
Also listed as: BIO ENG C112
Molecular Biomechanics and Mechanobiology of the Cell: Read Less [-]
Terms offered: Fall 2024, Spring 2023, Fall 2020
This course covers the basic design, materials selection, stress analysis and clinical case studies for load-bearing
medical devices. Implant applications include orthopedics, dentistry and cardiology reconstructive surgery. FDA
regulatory requirements and intellectual property issues are discussed. Case studies of medical devices
elucidating the trade-offs in structural function and clinical performance are presented. Ongoing challenges with
personalized implantable devised are addressed. This is a project-based course.
Structural Aspects of Biomaterials: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG 108, BIO ENG 102, MAT SCI 113 or equivalent
Credit Restrictions: Students will receive no credit for Mechanical Engineering C117 after completing Mechanical Engineering C215/Bioengineering C222.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Pruitt
Also listed as: BIO ENG C117
Terms offered: Spring 2025, Spring 2024, Spring 2023
This course introduces engineering students (juniors and seniors) to the field of nanotechnology and nanoscience. The course has two components: (1) Formal lectures. Students receive a set of formal lectures introducing them to the field of nanotechnology and nanoscience. The material covered includes nanofabrication technology (how one achieves the nanometer length scale, from "bottom up" to "top down" technologies), the interdisciplinary nature of nanotechnology and nanoscience (including areas of chemistry, material science, physics, and molecular biology), examples of nanoscience phenomena (the crossover from bulk to quantum mechanical properties), and applications (from integrated circuits, quantum computing, MEMS, and bioengineering). (2) Projects. Students are asked to read and present a variety of current journal papers to the class and lead a discussion on the various works.
Introduction to Nanotechnology and Nanoscience: Read More [+]
Rules & Requirements
Prerequisites: Chemistry 1A and Physics 7B. Physics 7C and Engineering 45 (or the equivalent) recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Lin, Sohn
Introduction to Nanotechnology and Nanoscience: Read Less [-]
Terms offered: Fall 2024, Fall 2023, Fall 2022
Fundamentals of microelectromechanical systems including design, fabrication of microstructures; surface-micromachining, bulk-micromachining, LIGA, and other micro machining processes; fabrication principles of integrated circuit device and their applications for making MEMS devices; high-aspect-ratio microstructures; scaling issues in the micro scale (heat transfer, fluid mechanics and solid mechanics); device design, analysis, and mask layout.
Introduction to MEMS (Microelectromechanical Systems): Read More [+]
Rules & Requirements
Prerequisites: PHYSICS 7B and MEC ENG 100
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Introduction to MEMS (Microelectromechanical Systems): Read Less [-]
Terms offered: Spring 2025, Spring 2024, Fall 2016
This course applies the methods of computational modeling and continuum mechanics to biomedical phenomena spanning various length scales ranging from molecular to cellular to tissue and organ levels. The course is intended for upper level undergraduate students who have been exposed to undergraduate continuum mechanics (statics and strength of materials.)
Computational Biomechanics Across Multiple Scales: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG C85 / CIV ENG C30
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructor: Mofrad
Computational Biomechanics Across Multiple Scales: Read Less [-]
Terms offered: Spring 2020, Spring 2018, Spring 2017
Fundamentals of manufacturing processes (metal forming, forging, metal cutting, welding, joining, and casting); selection of metals, plastics, and other materials relative to the design and choice of manufacturing processes; geometric dimensioning and tolerancing of all processes.
Processing of Materials in Manufacturing: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG C85 / CIV ENG C30 and MEC ENG 108
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Terms offered: Spring 2018
iACME provide opportunities for Mechanical Engineering undergraduates to tackle real-world engineering problems. Student teams, consisting of no more than four students, will apply to work on specific industry- initiated projects. Teams will be selected based on prior experience in research/internships, scholastic achievements in ME courses, and most importantly, proposed initial approaches toward tackling the specific project. ME faculty, alumni of the Mechanical Engineering Department, and industry participants will mentor selected teams. Projects fall within a wide range of mechanical engineering disciplines, e.g. biomedical, automotive/transportation, energy, design, etc.
Industry-Associated Capstones in Mechanical Engineering (iACME): Read More [+]
Objectives & Outcomes
Course Objectives: The purpose of this course is to:
•
learn the fundamental concepts of approaching practical engineering problems;
•
enhance skills in communication with clients and other engineers;
•
enhance skills in design, prototyping, testing, and analysis.
Student Learning Outcomes: (a) an ability to apply knowledge of mathematics, science, and engineering
(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(d) an ability to function on multi-disciplinary teams
(e) an ability to identify, formulate, and solve engineering problems
(f) an understanding of professional and ethical responsibility
(g) an ability to communicate effectively
(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
(i) a recognition of the need for, and an ability to engage in life-long learning
(j) a knowledge of contemporary issues
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Rules & Requirements
Prerequisites: Senior standing and a minimum GPA of 3.0
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternate method of final assessment during regularly scheduled final exam group (e.g., presentation, final project, etc.).
Instructors: O'Connell , Sohn
Industry-Associated Capstones in Mechanical Engineering (iACME): Read Less [-]
Terms offered: Fall 2024, Fall 2022, Spring 2022
This course will discuss concepts from the physical sciences and engineering (e.g. heat and mass transfer, phase transitions, fluid mechanics, etc.) that serve as a foundation for everyday cooking and haute cuisine. The course will integrate the expertise of visiting chefs from the Bay Area (and beyond) who will serve as guest lecturers and present their cooking techniques. These unique opportunities will be complemented by lectures that investigate in-depth the science and engineering that underlie these techniques.
The Science and Engineering of Cooking: Read More [+]
Rules & Requirements
Prerequisites: PHYSICS 7A, CHEM 1A, or consent of instructor. MEC ENG 109 and MEC ENG 108 recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 2 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Sohn
Terms offered: Spring 2025, Spring 2024, Spring 2023
Imagine a material that offers mechanical properties that are competitive with aluminum and steel but are at fractions of their weight – these materials are termed as composites. Composite materials are used for many applications such as aircraft structures, biomedical devices, racing car bodies, and many others for their capability to be stronger, lighter, and cheaper when compared to traditional materials. In this class, students will delve into the theory to design composite structures, processing techniques to manufacture them, and structural testing methods for validation. Starting from traditional fiber-reinforced composite materials, this course will also bring in new concepts such as nanocomposites and bioinspired composites.
Introduction to Composite Materials: Read More [+]
Objectives & Outcomes
Course Objectives: The course objectives are to train students to be able to design composite structures, select composite materials, conduct stress analyses of selected practical applications using laminated plate theories and appropriate strength criteria, and be familiar with the properties and response of composite structures subjected to mechanical loading under static and cyclic conditions.
Student Learning Outcomes: A knowledge of contemporary issues.
An ability to design and conduct experiments, as well as to analyze and interpret data.
An understanding of professional and ethical responsibility.
The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
A recognition of the need for, and an ability to engage in life-long learning.
An ability to apply knowledge of mathematics, science, and engineering.
An ability to communicate effectively.
An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
An ability to function on multi-disciplinary teams.
An ability to identify, formulate, and solve engineering problems.
An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Students completing this course will have the facility for designing robust composite structures subjected to various types of loads. Students will also be able to assess the effects of long-term loading, including damage generation, delamination fracture and fatigue failure. Additionally, students will be exposed to how composites are used in various applications in aerospace, biomedical, sports, among other fields.
Rules & Requirements
Prerequisites: MEC ENG C85 / CIV ENG C30
Credit Restrictions: Students will receive no credit for MEC ENG 127 after completing MEC ENG 127. A deficient grade in MEC ENG 127 may be removed by taking MEC ENG 127.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Gu
Terms offered: Spring 2025, Fall 2023, Fall 2022
Synthesis, analysis, and design of planar machines. Kinematic structure, graphical, analytical, and numerical analysis and synthesis. Linkages, cams, reciprocating engines, gear trains, and flywheels.
Design of Planar Machinery: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG 104
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Youssefi
Terms offered: Spring 2025, Spring 2023, Spring 2021
Physical understanding of automotive vehicle dynamics including simple lateral, longitudinal and ride quality models. An overview of active safety systems will be introduced including the basic concepts and terminology, the state-of-the-art development, and basic principles of systems such as ABS, traction control, dynamic stability control, and roll stability control. Passive, semi-active and active suspension systems will be analyzed. Concepts of autonomous vehicle technology including drive-by-wire and steer-by-wire systems, adaptive cruise control and lane keeping systems. Design of software control systems for an actual 1/10 scale race vehicle.
Vehicle Dynamics and Control: Read More [+]
Objectives & Outcomes
Course Objectives: At the end of the course the students should be able to:
a.
Formulate simple but accurate dynamic models for automotive longitudinal, lateral and ride quality analysis.
b.
Assess the stability of dynamic systems using differential equation theory, apply frequency-response methods to assess system response to external disturbances, sensor noise and parameter variations.
c.
Have a basic understanding of modern automotive safety systems including ABS, traction control, dynamic stability control and roll control.
d.
Follow the literature on these subjects and perform independent design, research and development work in this field.
e.
Expected to design feedback control systems for an actual 1/010 scaled vehicle platform which will be distributed to every group of two students in the class
Student Learning Outcomes: (a) an ability to apply knowledge of mathematics, science, and engineering
(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(d) an ability to function on multi-disciplinary teams
(e) an ability to identify, formulate, and solve engineering problems
(g) an ability to communicate effectively
(j) a knowledge of contemporary issues
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Rules & Requirements
Prerequisites: MATH 52, MATH 53, MATH 54, PHYSICS 7A, PHYSICS 7B, ENGIN 7 (or alternate programming course), and MEC ENG 132
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Borrelli
Terms offered: Fall 2024, Summer 2024 10 Week Session, Fall 2023
Physical understanding of dynamics and feedback. Linear feedback control of dynamic systems. Mathematical tools for analysis and design. Stability. Modeling systems with differential equations. Linearization. Solution to linear, time-invariant differential equations.
Dynamic Systems and Feedback: Read More [+]
Rules & Requirements
Prerequisites: MATH 53, MATH 54, PHYSICS 7A, and PHYSICS 7B
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of laboratory per week
Summer: 10 weeks - 4.5 hours of lecture and 1.5 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Terms offered: Spring 2025, Spring 2023, Spring 2022
An introduction to the theory of mechanical vibrations including topics of harmonic motion, resonance, transient and random excitation, applications of Fourier analysis and convolution methods. Multidegree of freedom discrete systems including principal mode, principal coordinates and Rayleigh's principle.
Mechanical Vibrations: Read More [+]
Objectives & Outcomes
Course Objectives: Introduce basic aspects of vibrational analysis, considering both single and multi-degree-of-freedom systems. Discuss the use of exact and approximate methods in the analysis of complex systems. Familiarize students with the use of MATLAB as directed toward vibration problems.
Student Learning Outcomes: (a) an ability to apply knowledge of mathematics, science, and engineering
(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(e) an ability to identify, formulate, and solve engineering problems
(f) an understanding of professional and ethical responsibility
(g) an ability to communicate effectively
(i) a recognition of the need for, and an ability to engage in life-long learning
(j) a knowledge of contemporary issues
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Upon completion of the course students shall be able to: Derive the equations of motion for vibratory systems. Linearize nonlinear systems so as to allow a linear vibrational analysis. Compute the natural frequency (or frequencies) of vibratory systems and determine the system's modal response. Determine the overall response based upon the initial conditions and/or steady forcing input. Design a passive vibration absorber to ameliorate vibrations in a forced system.
Rules & Requirements
Prerequisites: MEC ENG 104
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Summer: 10 weeks - 5 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Terms offered: Spring 2025, Spring 2024, Spring 2023
Analysis and synthesis of linear feedback control systems in transform and time domains. Control system design by root locus, frequency response, and state space methods. Applications to electro-mechanical and mechatronics systems.
Feedback Control Systems: Read More [+]
Rules & Requirements
Prerequisites: EECS 16A or MEC ENG 100; MEC ENG 132 or EL ENG 120
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Also listed as: EL ENG C128
Terms offered: Spring 2025, Spring 2024, Spring 2023
This course provides preparation for the conceptual design and prototyping of mechanical systems that use microprocessors to control machine activities, acquire and analyze data, and interact with operators. The architecture of microprocessors is related to problems in mechanical systems through study of systems, including electro-mechanical components, thermal components and a variety of instruments. Laboratory exercises lead through studies of different levels of software.
Design of Microprocessor-Based Mechanical Systems: Read More [+]
Rules & Requirements
Prerequisites: ENGIN 7
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of laboratory per week
Summer: 10 weeks - 4.5 hours of lecture and 4.5 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructor: Kazerooni
Design of Microprocessor-Based Mechanical Systems: Read Less [-]
Terms offered: Fall 2024, Fall 2023, Fall 2022
This course introduces students to the dynamics and control of autonomous flight, with focus on uninhabited aerial vehicles (UAVs). The course will cover modeling and dynamics of aerial vehicles, and common control strategies.
Dynamics and Control of Autonomous Flight: Read More [+]
Objectives & Outcomes
Course Objectives: Introduce students to analysis, modeling, and control of unmanned aerial vehicles.
Student Learning Outcomes: - ability to reason about the dominant effects acting on uninhabited aerial vehicle (UAV)
- explain and derive dynamic relationships governing UAV flight
- explain different sensors available on a UAV
Rules & Requirements
Prerequisites: MEC ENG 104 is recommended. Corequisite: MEC ENG 132
Credit Restrictions: Student will not receive credit for this course if they have taken Mechanical Engineering 236U.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Mueller
Terms offered: Fall 2022
This course complements ME136, Dynamics and Control of Autonomous Flight. The aim is to provide hardware experiments corresponding to the theory section of ME136. Students will work in teams.
Hardware Laboratory: Dynamics and Control of Autonomous Flight: Read More [+]
Objectives & Outcomes
Course Objectives: •
Evaluating data from real experiments, with corresponding issues.
•
Experimental flight hardware.
•
Real noisy sensors.
• Embedded programming and constraints following there from
Student Learning Outcomes: data evaluation
non-idealities in real sensors and actuators
programming embedded computers
Rules & Requirements
Prerequisites: MECENG 136 (corequisite)
Credit Restrictions: Students will receive no credit for MEC ENG 136HL after completing MEC ENG 136SL.
Hours & Format
Fall and/or spring: 6 weeks - 3 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructor: Mueller
Hardware Laboratory: Dynamics and Control of Autonomous Flight: Read Less [-]
Terms offered: Fall 2024
This course complements MEC ENG 136, Introduction to Control of Unmanned Aerial Vehicles. The aim is to provide (virtual) laboratory experiments corresponding to the theory provided in MEC ENG 136. Students may work alone or in teams.
Software Laboratory: Dynamics and Control of Autonomous Flight: Read More [+]
Objectives & Outcomes
Course Objectives: embedded programming and constraints following therefrom
evaluating data from experiments with corresponding issues
real (i.e., noisy) sensors
simulated flight harware
Student Learning Outcomes: evaluate experimental data
explain the utility of simulations and hardware experiments for development
program an embedded flight controller
Rules & Requirements
Prerequisites: MEC ENG 136 (co-requisite)
Credit Restrictions: Students will receive no credit for MEC ENG 136SL after completing MEC ENG 136HL.
Hours & Format
Fall and/or spring: 6 weeks - 3 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructor: Mueller
Software Laboratory: Dynamics and Control of Autonomous Flight: Read Less [-]
Terms offered: Spring 2018, Spring 2015, Spring 2013
This hands-on laboratory course focuses on the mechanical engineering principles that underlie the design, fabricaton, and operation of micro/nanoscale mechanical systems, including devices made by nanowire/nanotube syntheses; photolithography/soft lithography; and molding processes. Each laboratory will have different focuses for basic understanding of MEMS/NEMS systems from prototype constructions to experimental testings using mechanical, electrical, or optical techniques.
Introduction to Micro/Nano Mechanical Systems Laboratory: Read More [+]
Rules & Requirements
Prerequisites: PHYSICS 7B and MEC ENG 106; EECS 16A or MEC ENG 100. MEC ENG 118 or MEC ENG 119 are highly recommended but not mandatory
Credit Restrictions: Students will receive no credit for Mechanical Engineering 238 after taking Mechanical Engineering 138.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Introduction to Micro/Nano Mechanical Systems Laboratory: Read Less [-]
Terms offered: Fall 2024, Fall 2023, Fall 2022
This course provides students with a basic understanding of robotic locomotion and the use of kinematics, dynamics, control algorithms, embedded microcomputers and mechanical components in designing artificial legs such as prosthetics, orthotics and exoskeletons.
Robotic Locomotion: Read More [+]
Objectives & Outcomes
Course Objectives: Conduct various analyses on the legs’ performance, propose and study practical applications
such as orthotics and prosthetics in medical field, back support, knee support and shoulder support
exoskeletons in industrial field and recreational exoskeletons.
The course objectives are to train students to be able to design artificial legs, select and design components of
the robotic legs.
Student Learning Outcomes: (a) An ability to apply knowledge of mathematics, science, and engineering.
(b) An ability to design and conduct experiments, as well as to analyze and interpret data.
(c) An ability to design a system, component, or process to meet desired needs within realistic constraints such
as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
(d) An ability to function on multi-disciplinary teams.
(e) An ability to identify, formulate, and solve engineering problems.
(f) An understanding of professional and ethical responsibility.
(g) An ability to communicate effectively.
(h) The broad education necessary to understand the impact of engineering solutions in a global, economic,
environmental, and societal context.
(i) A recognition of the need for, and an ability to engage in life-long learning.
(j) A knowledge of contemporary issues.
(k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Rules & Requirements
Prerequisites: A preliminary course in the design and control of mechanical systems
Credit Restrictions: Students will receive no credit for MEC ENG 139 after completing MEC ENG 239. A deficient grade in MEC ENG 139 may be removed by taking MEC ENG 239.
Hours & Format
Fall and/or spring:
15 weeks - 3 hours of lecture and 3 hours of laboratory per week
15 weeks - 3 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Kazerooni
Terms offered: Spring 2023, Fall 2020, Fall 2019
Fundamentals of combustion, flame structure, flame speed, flammability, ignition, stirred reaction, kinetics and nonequilibrium processes, pollutant formation. Application to engines, energy production and fire safety.
Combustion Processes: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG 40, MEC ENG 106, and MEC ENG 109 (106 and 109 may be taken concurrently)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Fernandez-Pello, Chen
Terms offered: Spring 2025, Fall 2018, Spring 2018
This course covers the fundamental principles of energy conversion processes, followed by development of theoretical and computational tools that can be used to analyze energy conversion processes. The course also introduces the use of modern computational methods to model energy conversion performance characteristics of devices and systems. Performance features, sources of inefficiencies, and optimal design strategies are explored for a variety of applications, which may include conventional combustion based and Rankine power systems, energy systems for space applications, solar, wind, wave, thermoelectric, and geothermal energy systems.
Energy Conversion Principles: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG 40, MEC ENG 106, and MEC ENG 109 (106 and 109 may be taken concurrently)
Hours & Format
Fall and/or spring: 15 weeks - 3-3 hours of lecture and 0-1 hours of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Carey
Terms offered: Fall 2024
This course teaches students modern modeling and simulation methods that are geared towards the analysis and optimization of advanced manufacturing processes, in a systematic and scientific manner, with special emphasis on physical modeling, simulation and machine-learning. Examples are motivated by real-world phenomena that students are likely to encounter in their careers, involving a number of topics in advanced manufacturing, including dynamics, controls, structural analysis, materials engineering, robotics, heat-transfer, etc. There are several major applications, which are selected for their current societal and industrial relevance.
Modeling and Simulation of Advanced Manufacturing Processes: Read More [+]
Objectives & Outcomes
Course Objectives: To enable students to model and simulate modern advanced manufacturing processes.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Zohdi
Modeling and Simulation of Advanced Manufacturing Processes: Read Less [-]
Terms offered: Summer 2015 10 Week Session, Summer 2014 10 Week Session, Spring 2014
This course addresses all aspects of design, analysis, construction and economics of solar-powered vehicles. It begins with an examination of the fundamentals of photovoltaic solar power generation, and the capabilities and limitations that exist when using this form of renewable energy. The efficiency of energy conversion and storage will be evaluated across an entire system, from the solar energy that is available to the mechanical power that is ultimately produced. The structural and dynamic stability, as well as the aerodynamics, of vehicles will be studied. Safety and economic concerns will also be considered. Students will work in teams to design, build and test a functioning single-person vehicle capable of street use.
Solar-Powered Vehicles: Analysis, Design and Fabrication: Read More [+]
Objectives & Outcomes
Course Objectives: This course provides a structured environment within which students can participate in a substantial engineering project from start to finish. It provides the opportunity for students to engage deeply in the analysis, design and construction of a functioning vehicle powered by a renewable source. Through participation in this course, students should strengthen their understanding of how their engineering education can be used to address the multidisciplinary problems with creativity, imagination, confidence and responsibility. Students will recognize the importance of effective communication in effectively addressing such problems.
Student Learning Outcomes: This course will strengthen students’ abilities: to apply knowledge of mathematics, science, and engineering to real projects; to design a component or process that is part of a larger system; to function on multi-disciplinary teams; to identify, formulate, and solve engineering problems; to communicate effectively; to understand the impact of engineering solutions in a context beyond the classroom; to appreciate the importance of engaging in life-long learning and understanding contemporary issues; and to recognize and use the techniques, skills, and modern engineering tools necessary for successful project completion.
Rules & Requirements
Prerequisites: MATH 54, PHYSICS 7A, and upper division status in engineering
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Summer: 10 weeks - 3 hours of lecture and 4.5 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Solar-Powered Vehicles: Analysis, Design and Fabrication: Read Less [-]
Terms offered: Spring 2017, Spring 2014, Spring 2008
Basic principles of heat transfer and their application. Subject areas include steady-state and transient system analyses for conduction, free and forced convection, boiling, condensation and thermal radiation.
Advanced Heat Transfer: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG 40, MEC ENG 106, and MEC ENG 109 (106 and 109 may be taken concurrently)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Terms offered: Spring 2025, Fall 2023, Fall 2022
Fundamentals of conductive heat transfer. Analytical and numerical methods for heat conduction in rigid media. Fundamentals of radiative transfer. Radiative properties of solids, liquids and gas media. Radiative transport modeling in enclosures and participating media.
Conductive and Radiative Transport: Read More [+]
Objectives & Outcomes
Course Objectives: The course will provide students with knowledge of the physics of conductive transport in solids, the analysis of steady and transient heat conduction by both analytical and numerical methods and the treatment of phase change problems. Furthermore, the course will provide students with knowledge of radiative properties, the mechanisms of radiative transfer and will present theory and methods of solution of radiative transfer problems in participating and nonparticipating media.
Student Learning Outcomes: Students will gain knowledge of the mechanisms of conductive transfer and will develop the ability to quantify steady and transient temperature in important engineering problems often encountered (e.g. manufacturing, materials processing, bio-thermal treatment and electronics cooling) by applying analytical methods and by constructing numerical algorithms. Students will also gain knowledge of the fundamental radiative properties and the mechanisms of radiative transport in enclosures, absorbing, emitting and scattering media as well as the interaction of thermal radiation with other modes of heat transfer.
Rules & Requirements
Prerequisites: Undergraduate courses in engineering thermodynamics, fluid dynamics and heat transfer (MEC ENG 40, MEC ENG 106, and MEC ENG 109). Each student must have access to a PC, Macintosh or workstation machine with scientific programming capabilities for use in homework and projects
Credit Restrictions: Students who have taken ME 151 or ME 250A will not receive credit.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Grigoropoulos
Terms offered: Spring 2025, Spring 2023, Spring 2020
The transport of heat and mass in fluids in motion; free and forced convection in laminar and turbulent flow over surfaces and within ducts. Fundamentals of computational methods used for solving the governing transport equations will also be covered.
Convective Transport and Computational Methods: Read More [+]
Objectives & Outcomes
Course Objectives: This course will provide students with knowledge of the physics of convective transport and an introduction to computational tools that can model convective processes in important applications such as electronics cooling, aerospace thermal management. The course also teaches students to construct computational models of natural and forced convection processes in boundary layers nears surfaces, in enclosures and in ducts or pipes that can be used to design heat exchangers and thermal management equipment for applications.
Student Learning Outcomes: (a) an ability to apply knowledge of mathematics, science, and engineering
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(d) an ability to function on multi-disciplinary teams
(e) an ability to identify, formulate, and solve engineering problems
(g) an ability to communicate effectively
(j) a knowledge of contemporary issues
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Students will gain a knowledge of the mechanisms of convective heat and mass transfer for flow over surfaces and within ducts, and will develop the ability to construct computer programs that implement computation methods that predict the flow and temperature fields and heat transfer performance for convective flows of interest in engineering applications.
Rules & Requirements
Prerequisites: Undergraduate courses in engineering thermodynamics, fluid dynamics and heat transfer (MEC ENG 40, MEC ENG 106, and MEC ENG 109). Each student must have access to a PC, Macintosh or workstation machine with scientific programming capabilities for use in homework and projects
Credit Restrictions: Students should not receive credit for this course if they have taken ME 252 or ME 250B.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Carey
Convective Transport and Computational Methods: Read Less [-]
Terms offered: Prior to 2007
Fundamentals of electromagnetic theory, principles of optics, waves, diffraction theory, interference, geometrical optics, scattering, theory of molecular spectra, optical and spectroscopic instrumentation. Lasers and laser materials processing, laser spectroscopy. Modern optics, plasmonics.
Applied Optics and Radiation: Read More [+]
Objectives & Outcomes
Course Objectives: The course will provide students with knowledge of the fundamental principles of optics to analyze optical phenomena and develop the background and skills to design optical instrumentation applied to engineering fields, including additive manufacturing, radiometry and spectroscopy.
Student Learning Outcomes: ABET Outcomes
(a) an ability to apply knowledge of mathematics, science, and engineering
(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(e) an ability to identify, formulate, and solve engineering problems
(g) an ability to communicate effectively
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
Students will gain knowledge of the EM theory, optical properties of materials, principles of spectroscopy for gases, liquids and solids, principles and applications of lasers and optical diagnostics. Students will develop the ability to design optical instrumentation systems in the context of key industrial applications, including additive manufacturing, materials processing, bio-optics, semiconductor industry applications, reacting systems, forensics.
Rules & Requirements
Prerequisites: Undergraduate courses in physics (e.g. 7A,B,C). Each student must have access to a PC, Macintosh or workstation machine with scientific programming capabilities for use in homework and projects
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Grigoropoulos
Terms offered: Fall 2024, Fall 2023, Fall 2022
Development of classical thermodynamics from statistical treatment of microscale molecular behavior; Boltzmann distribution; partition functions; statistical-mechanical evaluation of thermodynamic properties; equilibrium; chemical equilibrium; phase transitions; molecular collisions; Maxwell-Boltzmann distribution; collision theory; elementary kinetic theory; molecular dynamics simulation of molecular collisions; kinetic Monte Carlo simulations of gas-phase and gas-surface reactions. Implications are explored for a variety of applications, which may include advanced combustion systems, renewable power systems, microscale transport in high heat flux electronics cooling, aerospace thermal management, and advanced materials processing.
Thermophysics for Applications: Read More [+]
Objectives & Outcomes
Course Objectives: To introduce students to the statistical foundation of thermodynamics and provide skills to perform advanced calculations for analysis of advanced energy conversion processes and devices.
Student Learning Outcomes: a knowledge of contemporary issues
an ability to apply knowledge of mathematics, science, and engineering
an ability to communicate effectively
an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
an ability to function on multi-disciplinary teams
an ability to identify, formulate, and solve engineering problems
an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Rules & Requirements
Prerequisites: MEC ENG 40
Credit Restrictions: Student will not receive credit for this course if they have taken ME 254.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Frenklach, Carey
Terms offered: Spring 2025, Spring 2024, Spring 2023
Lectures on new developments in ocean, offshore, and arctic engineering.
Ocean Engineering Seminar: Read More [+]
Objectives & Outcomes
Course Objectives: To provide exposure of the field of ocean engineering, arctic engineering and related subject areas to students with the intention to show the broad and interdisciplinary nature of this field, particularly recent or new developments.
Student Learning Outcomes: (f) an understanding of professional and ethical responsibility
(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
(i) a recognition of the need for, and an ability to engage in life-long learning
(j) a knowledge of contemporary issues
Students will learn of new developments in ocean, offshore, and arctic engineering, connecting much of what is learned in other courses to practical applications and active research topics.
Rules & Requirements
Repeat rules: Course may be repeated for credit with instructor consent.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of seminar per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Alternative to final exam.
Instructors: Makiharju, Alam
Terms offered: Fall 2024, Fall 2023
This course introduces flight mechanics and a wide range of analysis and design techniques of relevance to the flight and performance characteristics of aerospace vehicles. The course consists of 6 major modules with the following topics: introduction, flow types, lift and drag, aircraft performance, stability and control, and, prominently, space flight. The entire course is enriched with numerous practical examples from real life that help to understand the practical use of the subject matter.
Introduction to Flight Mechanics: Read More [+]
Objectives & Outcomes
Course Objectives: This course intends to introduce undergraduate engineering majors with an interest in aerospace engineering to analysis and design techniques of relevance to the flight and performance characteristics of aerospace vehicles in a self-contained manner and in anticipation of the engineering science coursework in the upper division. Simultaneously, the course intends to make tangible connections between the theory and relevant practical examples in aerospace engineering by means of the discussion of research facilities at NASA Ames (wind-tunnels and simulators), X-planes, relevant airliner accidents, launch and re-entry telemetry data, etc.
Student Learning Outcomes: Upon completion of this course, students should be able to:
•
Calculate lift and drag of a 2D airfoil and a 3D wing in subsonic and supersonic speed regimes
•
Calculate thrust and power required for level flight
•
Compute the range and endurance of propeller-driven as well as jet-powered aircraft
•
Compute the necessary runway length for takeoff and landing
•
Analyze aircraft trim conditions
•
Assess longitudinal balance and static stability of an aircraft
•
Find orbit parameters from the orbital geometry
•
Design a Hohmann orbit transfer and compute the total DV
•
Calculate peak deceleration and speed at touchdown in a re-entry path for ballistic as well as gliding flight.
•
Describe and discuss various design methodologies and their trade-offs.
Rules & Requirements
Prerequisites: MATH 52; PHYSICS 7A; and MEC ENG 106 (may be taken concurrently)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Lombaerts, Papadopoulos
Also listed as: AERO ENG C162
Terms offered: Spring 2025, Fall 2022, Fall 2021
Introduction to the lift, drag, and moment of two-dimensional airfoils, three-dimensional wings, and the complete airplane. Calculations of the performance and stability of airplanes in subsonic flight. The course run on two loosely aligned parallel tracks: a traditional sequence of lectures covering the basic topics in aerodynamics and a set of projects on vortex dynamics and aerodynamics that are loosely aligned with lectures. The distinguishing factor will be the extend of the projects assigned to the graduate level participants, which will be substantially more involved than those expected from the senior level participants.
Engineering Aerodynamics: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG 40, MEC ENG 106
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Savas
Terms offered: Fall 2012, Fall 2011, Fall 2009
Terminology and definition of hull forms, conditions of static equilibrium and stability of floating submerged bodies. Effects of damage on stability. Structural loads and response. Box girder theory. Isotropic and orthotropic plate bending and bucking.
Marine Statics and Structures: Read More [+]
Rules & Requirements
Prerequisites: Civil and Environmental Engineering 130 or 130N or consent of instructor
Credit Restrictions: Students will receive no credit for 164 after taking C164/Ocean Engineering C164; 2 units after taking 151.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Mansour
Formerly known as: C164
Terms offered: Fall 2024, Fall 2022, Spring 2020
Ocean environment. Physical properties and characteristics of the oceans. Global conservation laws. Surface-waves generation. Gravity-wave mechanics, kinematics, and dynamics. Design consideration of ocean vehicles and systems. Model-testing techniques. Prediction of resistance and response in waves--physical modeling and computer models.
Ocean-Environment Mechanics: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG 106 or CIV ENG 100
Credit Restrictions: Students will receive no credit for 165 after taking C165/Ocean Engineering C165.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Yeung
Formerly known as: C165
Terms offered: Fall 2024
This course introduces the theory of compressible flows (gases) and the mathematics representation of different flow regimes. Students will learn about the governing equations of general compressible flows and special cases such as inviscid and irrotational flows. The course will cover the following topics: 1D-flow, converging-diverging nozzle, normal and oblique shock definitions and practical examples for aerospace applications, Mach waves, wave equation, shock tube, transonic flow, supersonic flow, method of characteristics, and an introduction to hypersonic flows. Practical examples of aerospace applications such as turbomachinery flows, flow past an airfoil and a 3D wing will be included.
Introduction to Compressible Flow: Read More [+]
Objectives & Outcomes
Course Objectives: This course intends to introduce undergraduate engineering majors with an interest in aerospace engineering to the theory and concepts of compressible flow regimes, their definitions, governing equations, and techniques to evaluate flow characteristics using a variety of real-world aerospace use cases including both internal and external flows.
Student Learning Outcomes: • Be able to explain various terms in the governing equations of compressible flows and describe assumptions and derive equations for special flow types such as inviscid flows, quasi 1D flows, and irrotational flows.
• Define compressible flow and be able to provide a quantitative estimation of a flow to be compressible.
• Explain the flow behavior and characteristics in subsonic, transonic, supersonic and hypersonic flow regimes.
Rules & Requirements
Prerequisites: MEC ENG 104, MEC ENG 163
Credit Restrictions: Students will receive no credit for AERO ENG C166 after completing MEC ENG 166. A deficient grade in AERO ENG C166 may be removed by taking MEC ENG 166, or MEC ENG 166.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Papadopoulos, Gollner, Marcus, Savas
Also listed as: AERO ENG C166
Terms offered: Spring 2018, Spring 2016, Spring 2015
Phenomena of physical, technological, and biological significance in flows of gases and liquids at the microscale. The course begins with familiar equations of Newtonian fluid mechanics, then proceeds to the study of essentially 1-D flows in confined geometries with the lubrication equations. Next is a study of the flow of thin films spreading under gravity or surface tension gradients. Lubrication theory of compressible gases leads to consideration of air bearings. Two- and 3-D flows are treated with Stokes' equations. Less familiar physical phenomena of significance and utility at the microscale are then considered: intermolecular forces in liquids, slip, diffusion and bubbles as active agents. A review of relevant aspects of electricity and magnetism precedes a study of electrowetting and electrokinetically driven liquid flows.
Microscale Fluid Mechanics: Read More [+]
Rules & Requirements
Prerequisites: 40, 106, 109, (106 and 109 may be taken concurrently) Physics 7B or equivalent
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Morris, Szeri
Terms offered: Spring 2025, Fall 2023, Fall 2022
This course covers major aspects of offshore engineering including ocean environment, loads on offshore structures, cables and mooring, underwater acoustics and arctic operations.
Mechanics of Offshore Systems: Read More [+]
Objectives & Outcomes
Course Objectives: To provide a basic to intermediate level of treatment of engineering systems that operate in coastal, offshore, and arctic environment. Students will acquire an understanding of the unique and essential character of the marine fields and the analysis tools to handle the engineering aspects of them.
Student Learning Outcomes: (a) an ability to apply knowledge of mathematics, science, and engineering
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(d) an ability to function on multi-disciplinary teams
(e) an ability to identify, formulate, and solve engineering problems
(j) a knowledge of contemporary issues
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Rules & Requirements
Prerequisites: MEC ENG C85 / CIV ENG C30 and MEC ENG 106; MEC ENG 165 is recommended
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Alam
Terms offered: Fall 2022, Spring 2020, Spring 2019
This course builds upon material learned in 104, examining the dynamics of particles and rigid bodies moving in three dimensions. Topics include non-fixed axis rotations of rigid bodies, Euler angles and parameters, kinematics of rigid bodies, and the Newton-Euler equations of motion for rigid bodies. The course material will be illustrated with real-world examples such as gyroscopes, spinning tops, vehicles, and satellites. Applications of the material range from vehicle navigation to celestial mechanics, numerical simulations, and animations.
Engineering Mechanics III: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG 104 or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3-3 hours of lecture and 0-1 hours of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: O'Reilly, Casey
Terms offered: Fall 2024, Spring 2022
This course presents an introduction to the global problem of wildland fires with an overview of the social, political and environmental issues posed as well as detailed coverage of the science, technology and applications used to predict, prevent and suppress wildland fires. Some specific topics covered will include fire spread theory, risk mapping, research instrumentation, suppression, ignition sources, relevant codes and standards, remote sensing, smoke management, and extreme fire behavior. Engineering analyses in many of these areas, as well as specific coverage of fire protection design in the Wildland-Urban Interface (WUI) will also be covered.
Wildland Fires: Science and Applications: Read More [+]
Objectives & Outcomes
Course Objectives: The course objectives are to provide students with the knowledge necessary to work within the highly interdisciplinary field of wildland fire, including a broad understanding of the social, ecological, and economic factors influencing wildland fire, a firm understanding of the underlying mechanisms affecting wildland fire processes, and an ability to apply the tools necessary to predict the spread rate and intensity of wildland fires and assess protection of WUI communities.
Student Learning Outcomes: (a) An ability to apply knowledge of mathematics, science, and engineering.
(b) An ability to design and conduct experiments, as well as to analyze and interpret data.
(c) An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
(d) An ability to function on multi-disciplinary teams.
(e) An ability to identify, formulate, and solve engineering problems.
(f) An understanding of professional and ethical responsibility.
(g) An ability to communicate effectively.
(h) The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
(i) A recognition of the need for, and an ability to engage in life-long learning.
(j) A knowledge of contemporary issues.
(k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Rules & Requirements
Prerequisites: MEC ENG 109 or equivalent course in heat transfer (may be taken concurrently)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Michael Gollner
Terms offered: Spring 2017, Spring 2013, Spring 2011
Plane and spherical sound waves. Sound intensity. Propagation in tubes and horns. Resonators. Standing waves. Radiation from oscillating surface. Reciprocity. Reverberation and diffusion. Electro-acoustic loud speaker and microphone problems. Environmental and architectural acoustics. Noise measurement and control. Effects on man.
Fundamentals of Acoustics: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG 104
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Johnson
Terms offered: Spring 2021
Oscillations in nonlinear systems having one or two degrees of freedom. Graphical, iteration, perturbation, and asymptotic methods. Self-excited oscillations and limit cycles. Random variables and random processes. Analysis of linear and nonlinear, discrete and continuous, mechanical systems under stationary and non-stationary excitations.
Nonlinear and Random Vibrations: Read More [+]
Objectives & Outcomes
Course Objectives: To give a compact, consistent, and reasonably connected account of the theory of nonlinear vibrations and uncertainty analysis. Applications will be mentioned whenever feasible. A secondary purpose is to survey some topics of contemporary research.
Student Learning Outcomes: Acquired necessary knowledge and scientific maturity to apply methods of nonlinear and uncertainty analysis in engineering design and optimization.
An ability to apply knowledge of mathematics, science, and engineering. An ability to identify, formulate, and solve engineering problems. The broad education necessary to understand the impact of engineering solutions in a global and societal context. A knowledge of contemporary issues. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
This course provides valuable training in the modeling and analysis of mechanical engineering systems using nonlinear and uncertainty analysis. It also serves to reinforce and emphasize the connection between fundamental engineering science and practical problem solving.
Rules & Requirements
Prerequisites: MEC ENG 104
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Ma
Terms offered: Fall 2024, Spring 2023, Spring 2022
This course introduces and investigates Lagrange's equations of motion for particles and rigid bodies. The subject matter is particularly relevant to applications comprised of interconnected and constrained discrete mechanical components. The material is illustrated with numerous examples. These range from one-dimensional motion of a single particle to three-dimensional motions of rigid bodies and systems of rigid bodies.
Intermediate Dynamics: Read More [+]
Objectives & Outcomes
Course Objectives: Introduce students to the notion of exploiting differential geometry to gain insight into the dynamics of a mechanical system. Familiarize the student with classifications and applications of generalized forces and kinematical constraints. Enable the student to establish Lagrange's equations of motion for a single particle, a system of particles and a single rigid body. Establish equivalence of equations of motion using the Lagrange and Newton-Euler approaches. Discuss the developments of analytical mechanics drawing from applications in navigation, vehicle dynamics, toys, gyroscopes, celestial mechanics, satellite dynamics and computer animation.
Student Learning Outcomes: This course provides valuable training in the modeling and analysis of mechanical engineering systems using systems of particles and/or rigid bodies. It also serves to reinforce and emphasize the connection between fundamental engineering science and practical problem-solving.
a) An ability to apply knowledge of mathematics, science, and engineering.
e) An ability to identify, formulate, and solve engineering problems.
h) The broad education necessary to understand the impact of engineering solutions in a global and societal context.
j) A knowledge of contemporary issues.
k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Rules & Requirements
Prerequisites: MEC ENG 104
Credit Restrictions: Students will receive no credit for MEC ENG 175 after completing MEC ENG 271.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: O'Reilly, Casey
Terms offered: Fall 2024, Fall 2023, Fall 2022
Statics, dynamics, optimization theory, composite beam theory, beam-on-elastic foundation theory, Hertz contact theory, and materials behavior. Forces and moments acting on human joints; composition and mechanical behavior of orthopedic biomaterials; design/analysis of artificial joint, spine, and fracture fixation prostheses; musculoskeletal tissues including bone, cartilage, tendon, ligament, and muscle; osteoporosis and fracture-risk predication of bones; and bone adaptation. MATLAB-based project to integrate the course material.
Orthopedic Biomechanics: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG C85 / CIV ENG C30 or BIO ENG 102 (concurrent enrollment OK). Proficiency in MatLab or equivalent. Prior knowledge of biology or anatomy is not assumed
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Keaveny
Also listed as: BIO ENG C119
Terms offered: Fall 2024, Fall 2019, Fall 2018, Fall 2017
The course provides project-based learning experience in understanding product design, with a focus on the human body as a mechanical machine. Students will learn the design of external devices used to aid or protect the body. Topics will include forces acting on internal materials (e.g., muscles and total replacement devices), forces acting on external materials (e.g., prothetics and crash pads), design/analysis of devices aimed to improve or fix the human body, muscle adaptation, and soft tissue injury. Weekly laboratory projects will incorporate EMG sensing, force plate analysis, and interpretation of data collection (e.g., MATLAB analysis) to integrate course material to better understand contemporary design/analysis/problems.
Designing for the Human Body: Read More [+]
Objectives & Outcomes
Course Objectives: The purpose of this course is twofold:
•
to learn the fundamental concepts of designing devices to interact with the human body;
•
to enhance skills in mechanical engineering and bioengineering by analyzing the behavior of various complex biomedical problems;
•
To explore the transition of a device or discovery as it goes from “benchtop to bedside”.
Student Learning Outcomes: RELATIONSHIP OF THE COURSE TO ABET PROGRAM OUTCOMES
(a) an ability to apply knowledge of mathematics, science, and engineering
(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(d) an ability to function on multi-disciplinary teams
(e) an ability to identify, formulate, and solve engineering problems
(f) an understanding of professional and ethical responsibility
(g) an ability to communicate effectively
(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
(i) a recognition of the need for, and an ability to engage in life-long learning
(j) a knowledge of contemporary issues
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Working knowledge of design considerations for creating a device to protect or aid the human body, force transfer and distribution, data analysis, and FDA approval process for new devices. Understanding of basic concepts in orthopaedic biomechanics and the ability to apply the appropriate engineering concepts to solve realistic biomechanical problems, knowing clearly the assumptions involved. Critical analysis of current literature and technology.
Rules & Requirements
Prerequisites: PHYSICS 7A, MATH 51, and MATH 52; and proficiency in MatLab or equivalent. Prior knowledge of biology or anatomy is not assumed
Credit Restrictions: There will be no credit given for MEC ENG C178 / BIO ENG C137 after taking MEC ENG 178.
Hours & Format
Fall and/or spring: 15 weeks - 1-3 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: O'Connell
Formerly known as: Mechanical Engineering 178
Also listed as: BIO ENG C137
Terms offered: Spring 2023, Spring 2022, Spring 2021
This course provides hands-on experience in designing prostheses and assistive technologies using user-centered design. Students will develop a fundamental understanding of the state-of-the-art, design processes and product realization. Teams will prototype a novel solution to a disabilities-related challenge, focusing on upper-limb mobility or dexterity. Lessons will cover biomechanics of human manipulation, tactile sensing and haptics, actuation and mechanism robustness, and control interfaces. Readings will be selected from texts and academic journals available through the UCB online library system and course notes. Guest speakers will be invited to address cutting edge breakthroughs relevant to assistive technology and design.
Augmenting Human Dexterity: Read More [+]
Objectives & Outcomes
Course Objectives: The course objectives are to:
- Learn the fundamental principles of biomechanics, dexterous manipulation, and electromechanical systems relevant for non-invasive, cutting-edge assistive device and prosthesis design.
- Enhance skill in the areas of human-centered design, teamwork and communication through the practice of conducting labs and a project throughout the semester.
Student Learning Outcomes: (a) an ability to apply knowledge of mathematics, science, and engineering
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(e) an ability to identify, formulate, and solve engineering problems
(f) an understanding of professional and ethical responsibility
(g) an ability to communicate effectively
(j) a knowledge of contemporary issues
Rules & Requirements
Prerequisites: MEC ENG 132 or equivalent. Proficiency with Matlab or equivalent programming language
Credit Restrictions: Students will receive no credit for MEC ENG 179 after completing MEC ENG 270.
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 3 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Stuart
Terms offered: Spring 2025, Spring 2024, Spring 2023
This is an introductory course on the finite element method and is intended for seniors in engineering and applied science disciplines. The course covers the basic topics of finite element technology, including domain discretization, polynomial interpolation, application of boundary conditions, assembly of global arrays, and solution of the resulting algebraic systems. Finite element formulations for several important field equations are introduced using both direct and integral approaches. Particular emphasis is placed on computer simulation and analysis of realistic engineering problems from solid and fluid mechanics, heat transfer, and electromagnetism. The course uses FEMLAB, a multiphysics MATLAB-based finite element program that possesses a wide array of modeling capabilities and is ideally suited for instruction. Assignments will involve both paper- and computer-based exercises. Computer-based assignments will emphasize the practical aspects of finite element model construction and analysis.
Engineering Analysis Using the Finite Element Method: Read More [+]
Rules & Requirements
Prerequisites: Engineering 7 or 77 or Computer Science 61A; Mathematics 53 and 54; senior status in engineering or applied science
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 2 hours of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Also listed as: CIV ENG C133
Engineering Analysis Using the Finite Element Method: Read Less [-]
Terms offered: Spring 2025
This course introduces engineering students to the analysis and design of load-bearing components of flight structures, ranging from subsonic aircraft to rockets. Emphasis is placed on the quasi-static and dynamic analysis of structural components which are prevalent in aerospace engineering. Attention is also devoted to a comprehensive design roadmap of flight vehicle structures from the full system- to the individual component-level
Flight Vehicle Structures and Aeroelasticity: Read More [+]
Objectives & Outcomes
Course Objectives: 1. Familiarize students with the different load-bearing components and loads encountered in flight vehicles.
2. Sharpen the students’ skills in the statics and dynamics of thin-walled structures.
3. Enhance the students’ aerospace engineering design skills by leveraging the use of the finite element method as a tool for both global and local analysis.
Student Learning Outcomes: Ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
(g) A knowledge of contemporary issues.
Ability to apply knowledge of mathematics, science, and engineering.
Ability to design and conduct experiments, as well as to analyze and interpret data
Ability to identify, formulate, and solve engineering problems.
Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
Understanding of professional and ethical responsibility.
Rules & Requirements
Prerequisites: CIV ENG C30 / MEC ENG C85, and MEC ENG 104 or CIV ENG 126
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of laboratory per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Papadopoulos
Formerly known as: Mechanical Engineering 184
Also listed as: AERO ENG C184/CIV ENG C138
Terms offered: Fall 2024, Fall 2023, Fall 2022
This course is a general introduction to the fundamental concepts of the mechanics of continuous media. Topics covered include the kinematics of deformation, the concept of stress, and the conservation laws for mass, momentum and energy. This is followed by an introduction to constitutive theory with applications to well-established models for viscous fluids and elastic solids. The concepts are illustrated through the solution of tractable initial-boundary-value problems. This course presents foundation-level coverage of theory underlying a number of sub-fields, including Fluid Mechanics, Solid Mechanics and Heat Transfer.
Introduction to Continuum Mechanics: Read More [+]
Objectives & Outcomes
Course Objectives: Students will gain a deep understanding of the concepts and methods underlying modern continuum mechanics. The course is designed to equip students with the background needed to pursue advanced work in allied fields.
Student Learning Outcomes: ABET Outcomes:
(a) an ability to apply knowledge of mathematics, science, and engineering,
(e) an ability to identify, formulate, and solve engineering problems,
(g) an ability to communicate effectively,
(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context,
(i) a recognition of the need for, and an ability to engage in life-long learning,
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Rules & Requirements
Prerequisites: PHYSICS 7A, MATH 53, and MATH 54; some prior exposure to the elementary mechanics of solids and fluids
Credit Restrictions: Students will not receive credit if they have taken ME 287.
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Casey, Johnson, Papadopoulos, Steigmann
Terms offered: Spring 2018, Fall 2015, Spring 2014
After a review of basic loopshaping, we introduce the loopshaping design methodology of McFarlane and Glover, and learn how to use it effectively. The remainder of the course studies the mathematics underlying the new method (one of the most prevalent advanced techniques used in industry) justifying its validity.
Practical Control System Design: A Systematic Loopshaping Approach: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG 132, MEC ENG C134/EL ENG C128, or similar introductory experience regarding feedback control systems
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Packard
Practical Control System Design: A Systematic Loopshaping Approach: Read Less [-]
Terms offered: Spring 2015, Fall 2009
Basics on optimization and polyhedra manipulation. Analysis and design of constrained predictive controllers for linear and nonlinear systems.
Model Predictive Control: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG 132
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Instructor: Borrelli
Terms offered: Spring 2013, Spring 2010, Spring 2009
The Youla-parametrization of all stabilizing controllers allows certain time-domain and frequency-domain closed-loop design objectives to be cast as convex optimizations, and solved reliably using off-the-shelf numerical optimization codes. This course covers the Youla parametrization, basic elements of convex optimization, and finally control design using these techniques.
Practical Control System Design: A Systematic Optimization Approach: Read More [+]
Rules & Requirements
Prerequisites: MEC ENG 132, MEC ENG C134/EL ENG C128, or similar introductory experience regarding feedback control systems
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Packard
Practical Control System Design: A Systematic Optimization Approach: Read Less [-]
Terms offered: Summer 2023 First 6 Week Session, Summer 2023 Second 6 Week Session, Spring 2022
This course is designed to enhance students' written and oral communication skills. Written work consists of informal documents--correspondence, internal reports, and reviews--and formal work--proposals, conference papers, journal articles, and websites. Presentations consist of informal and formal reports, including job and media interviews, phone interviews, conference calls, video conferences, progress reports, sales pitches, and feasibility studies.
Professional Communication: Read More [+]
Rules & Requirements
Prerequisites: Reading and Composition parts A and B
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Summer:
6 weeks - 8 hours of lecture per week
8 weeks - 5.5 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Terms offered: Spring 2022, Spring 2017
This 193 series covers current topics of research interest in biomechanical engineering. The course content may vary semester to semester. Check with the department for current term topics.
Special Topics in Biomechanical Engineering: Read More [+]
Objectives & Outcomes
Course Objectives: Course objectives will vary.
Student Learning Outcomes: Student outcomes will vary.
Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring:
6 weeks - 2.5-10 hours of lecture per week
8 weeks - 2-7.5 hours of lecture per week
10 weeks - 1.5-6 hours of lecture per week
15 weeks - 1-4 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Faculty
Terms offered: Spring 2023, Fall 2020, Fall 2019
This 193 series covers current topics of research interest in controls. The course content may vary semester to semester. Check with the department for current term topics.
Special Topics in Controls: Read More [+]
Objectives & Outcomes
Course Objectives: Will vary with course.
Student Learning Outcomes: Will vary with course.
Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring:
6 weeks - 2.5-10 hours of lecture per week
8 weeks - 2-7.5 hours of lecture per week
10 weeks - 1.5-6 hours of lecture per week
15 weeks - 1-4 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Terms offered: Spring 2023, Fall 2018, Fall 2016
This 193 series covers current topics of research interest in design. The course content may vary semester to semester. Check with the department for current term topics.
Special Topics in Design: Read More [+]
Objectives & Outcomes
Course Objectives: Will vary with course.
Student Learning Outcomes: Will vary with course.
Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring:
6 weeks - 2.5-10 hours of lecture per week
8 weeks - 2-7.5 hours of lecture per week
10 weeks - 1.5-6 hours of lecture per week
15 weeks - 1-4 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Faculty
Terms offered: Prior to 2007
This 193 series covers current topics of research interest in dynamics. The course content may vary semester to semester. Check with the department for current term topics.
Special Topics in Dynamics: Read More [+]
Objectives & Outcomes
Course Objectives: Will vary with course.
Student Learning Outcomes: Will vary with course.
Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring:
6 weeks - 2.5-10 hours of lecture per week
8 weeks - 2-7.5 hours of lecture per week
10 weeks - 1.5-6 hours of lecture per week
15 weeks - 1-4 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Faculty
Terms offered: Spring 2024, Spring 2023, Spring 2022
This 193 series covers current topics of research interest in energy science and technology. The course content may vary semester to semester. Check with the department for current term topics.
Special Topics in Energy Science and Technology: Read More [+]
Objectives & Outcomes
Course Objectives: Will vary with course.
Student Learning Outcomes: Will vary with course.
Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring:
6 weeks - 2.5-10 hours of lecture per week
8 weeks - 2-7.5 hours of lecture per week
10 weeks - 1.5-6 hours of lecture per week
15 weeks - 1-4 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Faculty
Special Topics in Energy Science and Technology: Read Less [-]
Terms offered: Prior to 2007
This 193 series covers current topics of research interest in fluids. The course content may vary semester to semester. Check with the department for current term topics.
Special Topics in Fluids: Read More [+]
Objectives & Outcomes
Course Objectives: Will vary with course.
Student Learning Outcomes: Will vary with course.
Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring:
6 weeks - 2.5-10 hours of lecture per week
8 weeks - 2-7.5 hours of lecture per week
10 weeks - 1.5-6 hours of lecture per week
15 weeks - 1-4 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Faculty
Terms offered: Spring 2025
This 193 series covers current topics of research interest in manufacturing. The course content may vary semester to semester. Check with the department for current term topics.
Special Topics in Manufacturing: Read More [+]
Objectives & Outcomes
Course Objectives: Will vary by course.
Student Learning Outcomes: Will vary by course.
Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring:
6 weeks - 2.5-10 hours of lecture per week
8 weeks - 2-7.5 hours of lecture per week
10 weeks - 1.5-6 hours of lecture per week
15 weeks - 1-4 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Faculty
Terms offered: Spring 2020
This 193 series covers current topics of research interest in materials. The course content may vary semester to semester. Check with the department for current term topics.
Special Topics in Materials: Read More [+]
Objectives & Outcomes
Course Objectives: Will vary with course.
Student Learning Outcomes: Will vary with course.
Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring:
6 weeks - 2.5-10 hours of lecture per week
8 weeks - 2-7.5 hours of lecture per week
10 weeks - 1.5-6 hours of lecture per week
15 weeks - 1-4 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Faculty
Terms offered: Prior to 2007
This 193 series covers current topics of research interest in mechanics. The course content may vary semester to semester. Check with the department for current term topics.
Special Topics in Mechanics: Read More [+]
Objectives & Outcomes
Course Objectives: Will vary with course.
Student Learning Outcomes: Will vary with course.
Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring:
6 weeks - 2.5-10 hours of lecture per week
8 weeks - 2-7.5 hours of lecture per week
10 weeks - 1.5-6 hours of lecture per week
15 weeks - 1-4 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Faculty
Terms offered: Prior to 2007
This 193 series covers current topics of research interest in MEMS/nano. The course content may vary semester to semester. Check with the department for current term topics.
Special Topics in MEMS/Nano: Read More [+]
Objectives & Outcomes
Course Objectives: Will vary with course.
Student Learning Outcomes: Will vary with course.
Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring:
6 weeks - 2.5-10 hours of lecture per week
8 weeks - 2-7.5 hours of lecture per week
10 weeks - 1.5-6 hours of lecture per week
15 weeks - 1-4 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Faculty
Terms offered: Prior to 2007
This 193 series covers current topics of research interest in ocean engineering. The course content may vary semester to semester. Check with the department for current term topics.
Special Topics in Ocean Engineering: Read More [+]
Objectives & Outcomes
Course Objectives: Will vary by course.
Student Learning Outcomes: Will vary by course.
Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring:
6 weeks - 2.5-10 hours of lecture per week
8 weeks - 2-7.5 hours of lecture per week
10 weeks - 1.5-6 hours of lecture per week
15 weeks - 1-4 hours of lecture per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Faculty
Terms offered: Summer 2024 8 Week Session, Summer 2024 First 6 Week Session, Summer 2024 Second 6 Week Session
Final report required. Students who have completed a satisfactory number of advanced courses may pursue original research under the direction of one of the members of the faculty. A maximum of three units of H194 may be used to fulfill technical elective requirements in the Mechanical Engineering program (unlike 198 or 199, which do not satisfy technical elective requirements). Students can use a maximum of three units of graded research units (H194 or 196) towards their technical elective requirement.
Honors Undergraduate Research: Read More [+]
Rules & Requirements
Prerequisites: 3.3 cumulative GPA or higher, consent of instructor and adviser, and senior standing
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 2-4 hours of independent study per week
Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 4-8 hours of independent study per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Terms offered: Spring 2025, Summer 2024 Second 6 Week Session, Spring 2024
Students who have completed a satisfactory number of advanced courses may pursue original research under the direction of one of the members of the staff. A maximum of three units of 196 may be used to fulfill technical elective requirements in the Mechanical Engineering program (unlike 198 or 199, which do not satisfy technical elective requirements). Students can use a maximum of three units of graded research units (H194 or 196) towards their technical elective requirement. Final report required.
Undergraduate Research: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor and adviser; junior or senior standing
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 2-4 hours of independent study per week
Summer:
6 weeks - 5-10 hours of independent study per week
8 weeks - 4-8 hours of independent study per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Terms offered: Spring 2024, Fall 2015, Summer 2015 10 Week Session
Supervised experience relative to specific aspects of practice in engineering. Under guidance of a faculty member, the student will work in industry, primarily in an internship setting or another type of short-time status. Emphasis is to attain practical experience in the field.
Undergraduate Engineering Field Studies: Read More [+]
Objectives & Outcomes
Student Learning Outcomes: (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
(j) a knowledge of contemporary issues
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Rules & Requirements
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 3-12 hours of internship per week
Summer:
6 weeks - 8-30 hours of internship per week
10 weeks - 5-18 hours of internship per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Terms offered: Fall 2024, Fall 2023, Fall 2022
Group study of a selected topic or topics in Mechanical Engineering. Credit for 198 or 199 courses combined may not exceed 4 units in any single term. See College for other restrictions.
Directed Group Studies for Advanced Undergraduates: Read More [+]
Rules & Requirements
Prerequisites: Upper division standing and good academic standing
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Summer: 10 weeks - 1.5-6 hours of directed group study per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Directed Group Studies for Advanced Undergraduates: Read Less [-]
Terms offered: Spring 2025, Fall 2024, Spring 2024
Supervised independent study. Enrollment restrictions apply; see the introduction to Courses and Curricula section of this catalog.
Supervised Independent Study: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor and major adviser
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week
Additional Details
Subject/Course Level: Mechanical Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Nuclear Engineering
Terms offered: Fall 2024, Fall 2023, Fall 2022
This seminar provides freshman and first year transfer students with an overview of the field of nuclear engineering (NE) and the research activities in the NE department. Every week a faculty member will introduce a topic and describe the main research challenges in that area.
What do nuclear engineers do?: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Instructor: Hosemann
Terms offered: Spring 2025, Fall 2024, Spring 2024
The Berkeley Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Berkeley Seminars are offered in all campus departments, and topics vary from department to department and semester to semester.
Freshman Seminars: Read More [+]
Rules & Requirements
Repeat rules: Course may be repeated for credit when topic changes.
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of seminar per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: The grading option will be decided by the instructor when the class is offered. Final Exam To be decided by the instructor when the class is offered.
Terms offered: Fall 2024, Fall 2023, Fall 2022
The class provides students with an overview of the contemporary nuclear energy technology with emphasis on nuclear fission as an energy source. Starting with the basic physics of the nuclear fission process, the class includes discussions on reactor control, thermal hydraulics, fuel production, and spent fuel management for various types of reactors in use around the world as well as analysis of safety and other nuclear-related issues. This class is intended for sophomore NE students, but is also open to transfer students and students from other majors.
Introduction to Nuclear Energy and Technology: Read More [+]
Rules & Requirements
Prerequisites: PHYSICS 7A, PHYSICS 7B, and MATH 53
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Fratoni
Introduction to Nuclear Energy and Technology: Read Less [-]
Terms offered: Fall 2024, Fall 2023, Spring 2023
Energetics and kinetics of nuclear reactions and radioactive decay, fission, fusion, and reactions of low-energy neutrons; properties of the fission products and the actinides; nuclear models and transition probabilities; interaction of radiation with matter.
Nuclear Reactions and Radiation: Read More [+]
Rules & Requirements
Prerequisites: PHYSICS 7C and NUC ENG 100
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Bernstein, L.
Terms offered: Spring 2016, Spring 2015, Spring 2013
Laboratory course in nuclear physics. Experiments will allow students to directly observe phenomena discussed in Nuclear Engineering 101. These experiments will give students exposure to (1) electronics, (2) alpha, beta, gamma radiation detectors, (3) radioactive sources, and (4) experimental methods relevant for all aspects of nuclear science. Experiments include: Rutherford scattering, x-ray fluorescence, muon lifetime, gamma-gamma angular correlations, Mossbauer effect, and radon measurements.
Nuclear Reactions and Radiation Laboratory: Read More [+]
Rules & Requirements
Prerequisites: NUC ENG 101
Hours & Format
Fall and/or spring: 15 weeks - 1 hour of lecture, 1 hour of discussion, and 4 hours of laboratory per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Norman
Terms offered: Spring 2025, Spring 2024, Fall 2022
Basic science of radiation measurement, nuclear instrumentation, neutronics, radiation dosimetry. The lectures emphasize the principles of radiation detection. The weekly laboratory applies a variety of radiation detection systems to the practical measurements of interest for nuclear power, nuclear and non-nuclear science, and environmental applications. Students present goals and approaches of the experiements being performed.
Radiation Detection and Nuclear Instrumentation Laboratory: Read More [+]
Rules & Requirements
Prerequisites: NUC ENG 101 or consent of instructor; NUC ENG 150 recommended
Hours & Format
Fall and/or spring: 15 weeks - 2 hours of lecture and 4 hours of laboratory per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Vetter
Formerly known as: 104A
Radiation Detection and Nuclear Instrumentation Laboratory: Read Less [-]
Terms offered: Spring 2024, Fall 2022, Fall 2020
Introduction to medical imaging physics and systems, including x-ray computed tomography (CT), nuclear magnetic resonance (NMR), positron emission tomography (PET), and SPECT; basic principles of tomography and an introduction to unfolding methods; resolution effects of counting statistics, inherent system resolution and human factors.
Introduction to Imaging: Read More [+]
Rules & Requirements
Prerequisites: NUC ENG 101 and NUC ENG 104
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Vetter
Terms offered: Fall 2024, Fall 2023, Fall 2022
Effects of irradiation on the atomic and mechanical properties of materials in nuclear reactors. Fission product swelling and release; neutron damage to structural alloys; fabrication and properties of uranium dioxide fuel.
Nuclear Materials: Read More [+]
Rules & Requirements
Prerequisites: MAT SCI 45 and one of the following: ENGIN 40, MEC ENG 40, or CHM ENG 141
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Wirth
Terms offered: Fall 2024, Fall 2022, Spring 2021
Components and material flowsheets for nuclear fuel cycle, waste characteristics, sources of radioactive wastes, compositions, radioactivity and heat generation; waste treatment technologies; waste disposal technologies; safety assessment of waste disposal.
Radioactive Waste Management: Read More [+]
Rules & Requirements
Prerequisites: NUC ENG 100
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Ahn
Terms offered: Spring 2025, Spring 2024, Spring 2023
Use of nuclear measurement techniques to detect clandestine movement and/or possession of nuclear materials by third parties. Nuclear detection, forensics, signatures, and active and passive interrogation methodologies will be explored. Techniques currently deployed for arms control and treaty verification will be discussed. Emphasis will be placed on common elements of detection technology from the viewpoint of resolution of threat signatures from false positives due to naturally occurring radioactive material. Topics include passive and active neutron signals, gamma ray detection, fission neutron multiplicity, and U and Pu isotopic identification and age determination.
Analytical Methods for Non-proliferation: Read More [+]
Rules & Requirements
Prerequisites: NUC ENG 101 (or similar background in nuclear physics), or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Morse
Terms offered: Spring 2025, Spring 2024, Spring 2023
Experimental illustrations of the interrelation between chemical and nuclear science and technology and nuclear forensics; radioactive decay and counting techniques; nuclear spectroscopy; fundamental radiochemical techniques; radiochemical separations techniques; tracers; activation analysis; forensic applications of radiochemistry; fusion, fission and nuclear reactors.
Radiochemical Methods in Nuclear Technology and Forensics: Read More [+]
Objectives & Outcomes
Course Objectives: Familiarize students with principles of nuclear and radiochemistry and its many important applications in our daily lives; provide hands-on training.
Student Learning Outcomes: A solid understanding of nuclear and radiochemistry; proficiency in safe handling of radioactive materials in the laboratory, and appreciation for the wide application of radiochemical techniques in chemistry, nuclear technology, and nuclear forensics.
Rules & Requirements
Prerequisites: CHEM 4B or CHEM 15; and CHEM 143 is recommended
Credit Restrictions: Students will receive no credit for CHEM 146 after completing CHEM 144, or CHEM C144.
Hours & Format
Fall and/or spring: 15 weeks - 1.5 hours of lecture and 4.5 hours of laboratory per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: Chemistry 146
Also listed as: CHEM C146
Radiochemical Methods in Nuclear Technology and Forensics: Read Less [-]
Terms offered: Spring 2025, Spring 2024, Spring 2023
Neutron interactions, nuclear fission, and chain reacting systematics in thermal and fast nuclear reactors. Diffusion and slowing down of neutrons. Criticality calculations. Nuclear reactor dynamics and reactivity feedback. Production of radionuclides in nuclear reactors.
Introduction to Nuclear Reactor Theory: Read More [+]
Rules & Requirements
Prerequisites: MATH 53, MATH 54, and NUC ENG 100
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Greenspan, Vujic
Terms offered: Spring 2025, Spring 2022, Spring 2021
Computational methods used to analyze radiation transport described by various differential, integral, and integro-differential equations. Numerical methods include finite difference, finite elements, discrete ordinates, and Monte Carlo. Examples from neutron and photon transport; numerical solutions of neutron/photon diffusion and transport equations. Monte Carlo simulations of photon and neutron transport. An overview of optimization techniques for solving the resulting discrete equations on vector and parallel computer systems.
Introduction to Numerical Simulations in Radiation Transport: Read More [+]
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructors: Vujic, Wirth
Introduction to Numerical Simulations in Radiation Transport: Read Less [-]
Terms offered: Fall 2024, Fall 2023, Fall 2022
This course provides an introduction to the field of nuclear criticality safety. Topics include: a review of basic concepts related to criticality (fission, cross sections, multiplication factor, etc.); criticality safety accidents; standards applicable to criticality safety; hand calculations and Monte Carlo methods used in criticality safety analysis; criticality safety evaluation documents.
Nuclear Criticality Safety: Read More [+]
Objectives & Outcomes
Course Objectives: The objective of this course is to acquaint Nuclear Engineering students with the concepts and practice of nuclear criticality safety, and to help prepare them for a future career in this field.
Student Learning Outcomes: At the end of this course, students should be able to:
Explain and define criticality safety factors for operations.
Discuss previous criticality accidents and their causal factors, including parameters involved in solution and metal critical accidents.
Identify and discuss the application of several common hand calculation methods.
Describe the importance of validation of computer codes and how it is accomplished.
Discuss ANSI/ANS criticality safety regulations.
Describe DOE regulations and practices in the nuclear criticality safety field.
Complete a Criticality Safety Evaluation.
Rules & Requirements
Prerequisites: NUC ENG 150 or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternate method of final assessment during regularly scheduled final exam group (e.g., presentation, final project, etc.).
Instructor: Fratoni
Terms offered: Fall 2024, Fall 2023, Fall 2022
Energy conversion in nuclear power systems; design of fission reactors; thermal and structural analysis of reactor core and plant components; thermal-hydraulic analysis of accidents in nuclear power plants; safety evaluation and engineered safety systems.
Nuclear Power Engineering: Read More [+]
Rules & Requirements
Prerequisites: Course(s) in fluid mechanics and heat transfer (MEC ENG 106 and MEC ENG 109; or CHM ENG 150A); Course in Thermodynamics (ENGIN 40, MEC ENG 40, or CHM ENG 141)
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Peterson
Terms offered: Spring 2024, Spring 2023, Spring 2022
Interaction of radiation with matter; physical, chemical, and biological effects of radiation on human tissues; dosimetry units and measurements; internal and external radiation fields and dosimetry; radiation exposure regulations; sources of radiation and radioactivity; basic shielding concepts; elements of radiation protection and control; theories and models for cell survival, radiation sensitivity, carcinogenesis, and dose calculation.
Radiation Biophysics and Dosimetry: Read More [+]
Rules & Requirements
Prerequisites: Upper division standing or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Vujic
Terms offered: Fall 2023, Fall 2021, Fall 2019
Project-based class for design and licensing of nuclear facilities, including advanced reactors. Elements of a project proposal. Regulatory framework and use of deterministic and probabilistic licensing criteria. Siting criteria. External and internal events. Identification and analysis of design basis and beyond design basis events. Communication with regulators and stakeholders. Ability to work in and contribute to a design team.
Risk-Informed Design for Advanced Nuclear Systems: Read More [+]
Objectives & Outcomes
Course Objectives: * Introduce students to the methods and models for event identification, accident analysis, and risk assessment and management for internally and externally initiated events.
* Introduce students to the regulatory requirements for design, construction and operation of nuclear facilities licensed by the U.S. Nuclear Regulatory Commission.
* Introduce students to the safety principles and methods used to design, construct and operate a safe nuclear facility, for a specific site and application.
* Provide a basic understanding of similarities and differences in regulation of nuclear facilities versus other technologies (biotech, commercial aviation, commercial space launch, civil infrastructure).
* Provide a basic understanding the risk-informed design process and an opportunity to experience contributing in a focused area to a design project.
* Provide students with experiential knowledge in developing schedules, allocating work responsibilities, and working in teams.
* Provide students with experiential knowledge in the preparation and evaluation a Safety Analysis Report for meeting USNRC regulatory requirements, including response to Requests for Additional Information (RAIs).
Student Learning Outcomes: * Develop a broad understanding of safety principles and methods used in design, construction and licensing of nuclear facilities.
* Develop a broad understanding of the U.S. Nuclear Regulatory Commission’s regulatory requirements for nuclear facilities.
* Have awareness of key similarities and differences in regulation of nuclear facilities versus other technologies (biotech, commercial aviation, commercial space launch, civil infrastructure).
* Have awareness of the major topics covered in a Safety Analysis Report (SAR) and experience in developing and writing at least one element of a SAR.
* Have developed experience and skills in communication with the business community, the public, and regulators.
* Have developed experience and skills in establishing a project schedule, allocating work responsibilities, and working in teams.
* Have understanding of application of event identification, event frequency and consequence analysis, risk assessment and management for internally and externally initiated events in the design process.
Rules & Requirements
Prerequisites: Completion of at least two upper division engineering courses providing relevant skills. Choose from the following: CHM ENG 150A, CHM ENG 180, CIV ENG 111, CIV ENG 120, CIV ENG 152, CIV ENG 166, CIV ENG 175, ENGIN 120, IND ENG 166, IND ENG 172, MEC ENG 106, MEC ENG 109, MEC ENG C134 / EL ENG C128, MEC ENG 146, NUC ENG 120, NUC ENG 124, NUC ENG 150, and NUC ENG 161
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Alternative to final exam.
Instructor: Peterson
Risk-Informed Design for Advanced Nuclear Systems: Read Less [-]
Terms offered: Spring 2025, Spring 2024, Spring 2023
Design of various fission and fusion power systems and other physically based applications. Each semester a topic will be chosen by the class as a whole. In addition to technology, the design should address issues relating to economics, the environment, and risk assessment.
Nuclear Design: Design in Nuclear Power Technology and Instrumentation: Read More [+]
Rules & Requirements
Prerequisites: Senior standing or consent of instructor
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: 170
Nuclear Design: Design in Nuclear Power Technology and Instrumentation: Read Less [-]
Terms offered: Spring 2010, Spring 2009, Spring 2008
A systems approach to the development of procedures for nuclear medicine and radiation therapy. Each semester a specific procedure will be studied and will entail the development of the biological and physiological basis for a procedure, the chemical and biochemical characteristics of appropriate drugs, dosimetric requirements and limitations, the production and distribution of radionuclides and/or radiation fields to be applied, and the characteristics of the instrumentation to be used.
Nuclear Design: Design in Bionuclear, Nuclear Medicine, and Radiation Therapy: Read More [+]
Rules & Requirements
Prerequisites: Senior standing
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Formerly known as: 167
Nuclear Design: Design in Bionuclear, Nuclear Medicine, and Radiation Therapy: Read Less [-]
Terms offered: Fall 2024, Fall 2022, Fall 2020
Methodological approaches for the quantification of technological risk and risk based decision making. Probabilistic safety assessment, human health risks, environmental and ecological risk analysis.
Methods of Risk Analysis: Read More [+]
Rules & Requirements
Prerequisites: Upper division standing
Hours & Format
Fall and/or spring: 15 weeks - 4 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Kastenberg
Terms offered: Spring 2025, Fall 2023, Fall 2022
Introduction to energy production by controlled thermonuclear reactions. Nuclear fusion reactions, energy balances for fusion systems, survey of plasma physics; neutral beam injection; RF heating methods; vacuum systems; tritium handling.
Introduction to Controlled Fusion: Read More [+]
Rules & Requirements
Prerequisites: PHYSICS 7C
Hours & Format
Fall and/or spring: 15 weeks - 3 hours of lecture per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam required.
Instructor: Morse
Terms offered: Fall 2024, Fall 2023, Spring 2023
Supervised research. Students who have completed three or more upper division courses may pursue original research under the direction of one of the members of the staff. A final report or presentation is required. A maximum of three units of H194 may be used to fulfill a technical elective requirement in the Nuclear Engineering general program or joint major programs.
Honors Undergraduate Research: Read More [+]
Rules & Requirements
Prerequisites: Upper division technical GPA of 3.3, consent of instructor and faculty advisor
Repeat rules: Course may be repeated for credit up to a total of 8 units.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of independent study per week
Summer: 10 weeks - 1.5-6 hours of independent study per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Letter grade. Final exam not required.
Terms offered: Spring 2025, Fall 2024, Spring 2024
Group studies of selected topics.
Group Study for Advanced Undergraduates: Read More [+]
Rules & Requirements
Prerequisites: Upper division standing
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 1-4 hours of directed group study per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Terms offered: Spring 2025, Fall 2024, Spring 2024
Supervised independent study. Enrollment restrictions apply; see the Introduction to Courses and Curricula section of this catalog.
Supervised Independent Study: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor and major adviser
Credit Restrictions: Course may be repeated for credit for a maximum of 4 units per semester.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Fall and/or spring: 15 weeks - 0 hours of independent study per week
Summer:
6 weeks - 1-5 hours of independent study per week
8 weeks - 1-4 hours of independent study per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Terms offered: Prior to 2007
Supervised independent study. Please see section of the for description and prerequisites.
Supervised Independent Study: Read More [+]
Rules & Requirements
Prerequisites: Consent of instructor and major adviser
Credit Restrictions: Course may be repeated for credit for a maximum of 4 units per semester.
Repeat rules: Course may be repeated for credit without restriction.
Hours & Format
Summer: 8 weeks - 0 hours of independent study per week
Additional Details
Subject/Course Level: Nuclear Engineering/Undergraduate
Grading/Final exam status: Offered for pass/not pass grade only. Final exam not required.
Contact Information
Mechanical Engineering Program
6141 Etcheverry Hall
Phone: 510-642-1338
Fax: 510-642-6163
Department Chair, NE
Associate Professor Massimiliano Fratoni
4151 Etcheverry Hall
Vice Chair of Undergraduate Matters, NE
Associate Professor Raluca Scarlat
4169 Etcheverry Hall