Bioengineering/Materials Science and Engineering Joint Major

University of California, Berkeley

About the Program

Bachelor of Science (BS)

The joint major programs are designed for students who wish to undertake study in two areas of engineering in order to qualify for employment in either field or for positions in which competence in two fields is required. These curricula include the core courses in each of the major fields. While they require slightly increased course loads, they can be completed in four years. Both majors are shown on the student's transcript of record.

The Bioengineering/Materials Science and Engineering Joint Major is for students who have a keen interest in the field of biomaterials. Students will study the design and synthesis of novel materials that will define new paradigms in biomaterials from the molecular through macroscopic levels, and will also receive a broad–based learning experience that will include exposure to fundamental courses in engineering and life sciences. This joint major aims to allow the student to understand the interface between the two major fields. Students taking this double major will successfully compete for jobs in the field of biomaterials in academe, industry, and government.

Admission to the Joint Major

Admission directly to a joint major is closed to freshmen and junior transfer applicants. Students interested in a joint program may apply to change majors during specific times in their academic progress. Please see the College of Engineering joint majors website for complete details.

Visit Department Website

Major Requirements

In addition to the University, campus, and college requirements, students must fulfill the below requirements specific to their major program.

General Guidelines

  1. All courses taken in satisfaction of major requirements must be taken for a letter grade.

  2. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.

  3. A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.

  4. A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

For a detailed plan of study by year and semester, please see the Plan of Study tab.

Lower Division Requirements

MATH 1ACalculus4
MATH 1BCalculus4
MATH 53Multivariable Calculus4
MATH 54Linear Algebra and Differential Equations4
CHEM 1A
1AL
General Chemistry
and General Chemistry Laboratory 1
4
or CHEM 4A General Chemistry and Quantitative Analysis
CHEM 3A
3AL
Chemical Structure and Reactivity
and Organic Chemistry Laboratory 1
5
or CHEM 12A Organic Chemistry
PHYSICS 7APhysics for Scientists and Engineers4
PHYSICS 7BPhysics for Scientists and Engineers4
BIO ENG 10Introduction to Biomedicine for Engineers4
BIO ENG 11Engineering Molecules 13
BIO ENG 26Introduction to Bioengineering1
ENGIN 7Introduction to Computer Programming for Scientists and Engineers4
or COMPSCI 61A The Structure and Interpretation of Computer Programs
MAT SCI 45Properties of Materials3
MAT SCI 45LProperties of Materials Laboratory1
1

CHEM 4A and CHEM 12A are intended for students majoring in chemistry or a closely-related field.

Upper Division Requirements

Please note that technical courses listed below fulfill only one requirement.

BIO ENG 102Biomechanics: Analysis and Design4
BIO ENG 103Engineering Molecules 24
BIO ENG 104Biological Transport Phenomena4
BIO ENG 116Cell and Tissue Engineering4
or BIO ENG C117 Structural Aspects of Biomaterials
or BIO ENG 111 Functional Biomaterials Development and Characterization
BIO ENG C118Biological Performance of Materials4
MAT SCI 102Bonding, Crystallography, and Crystal Defects3
MAT SCI 103Phase Transformations and Kinetics3
MAT SCI 104Materials Characterization4
MAT SCI 130Experimental Materials Science and Design3
or BIO ENG 115 Tissue Engineering Lab
MAT SCI 151Polymeric Materials3
BIO ENG 110Biomedical Physiology for Engineers4
or BIO ENG 114 Cell Engineering
ENGIN 40Engineering Thermodynamics3-4
or CHEM 120B Physical Chemistry
MAT SCI Electives: Select two courses from the following:6-7
Properties of Electronic Materials [4]
Corrosion (Chemical Properties) [3]
Mechanical Behavior of Engineering Materials [3]
Experimental Materials Science and Design [3]
BIO ENG Elective: Select one of the following: 13-4
Biomedical Physiology for Engineers [4]
Functional Biomaterials Development and Characterization [4]
Cell Engineering [4]
Tissue Engineering Lab [4]
Structural Aspects of Biomaterials [4]
BioMEMS and Medical Devices [4]
Basic Principles of Drug Delivery [3]
Introduction of Bionanoscience and Bionanotechnology [4]
Bioengineering Design Project or Research: Select one of the following:3-4
BioMems and BioNanotechnology Laboratory [4]
Synthetic Biology Laboratory [4]
Practical Light Microscopy [3]
Senior Design Projects [4]
Honors Undergraduate Research [3,4]
Undergraduate Design Research [4]
Ethics requirement, select one of the following: 23-4
Ethics in Science and Engineering [3]
Ethics, Engineering, and Society [3]
Engineering, The Environment, and Society [4]
Environmental Philosophy and Ethics [4]
Health, Medicine, Society and Environment [4] 3
Engineering, The Environment, and Society [4]
Effective Personal Ethics for the Twenty-First Century [3]
Ethical Theories [4]
Moral Psychology [4]
1

Cannot be a course you have taken to fulfill another requirement.

2

The Ethics requirement will also fulfill one Humanities/Social Sciences requirement. See College Requirements tab.

3

ESPM 162 fulfills the ethics requirement if taken Spring 2018 or earlier.

College Requirements

Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions: 

  1. Completion of the requirements of one engineering major program study. 
  2. A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
  3. The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
  4. All technical courses (math, science and engineering) that can fulfill requirements for the student's major must be taken on a letter graded basis (unless they are only offered P/NP). 
  5. Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed a maximum of four semesters to complete their degree requirements. (Note: junior transfers admitted missing three or more courses from the lower division curriculum are allowed five semesters.) Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters. 
  6. Adhere to all college policies and procedures as they complete degree requirements.
  7. Complete the lower division program before enrolling in upper division engineering courses. 

Humanities and Social Sciences (H/SS) Requirement

To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement, which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two reading and composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. Follow these guidelines to fulfill this requirement:

  1. Complete a minimum of six courses from the  approved Humanities/Social Sciences (H/SS) lists
  2. Courses must be a minimum of 3 semester units (or 4 quarter units).
  3. Two of the six courses must fulfill the college's Reading and Composition (R&C) requirement. These courses must be taken for a letter grade (C- or better required) and must be completed by no later than the end of the sophomore year (fourth semester of enrollment). The first half of R&C, the “A” course, must be completed by the end of the freshman year; the second half of R&C, the “B" course, must be completed by no later than the end of the sophomore year. Use the Class Schedule to view R&C courses offered in a given semester. View the list of exams that can be applied toward the first half of the R&C requirement. Note: Only the first half of R&C can be fulfilled with an AP or IB exam score. Test scores do not fulfill the second half of the R&C requirement for College of Engineering students.
  4. The four additional courses must be chosen within College of Engineering guidelines from the H/SS lists (see below). These courses may be taken on a Pass/Not Passed basis (P/NP).
  5. Two of the six courses must be upper division (courses numbered 100-196).
  6. One of the six courses must satisfy the campus American Cultures requirement. For detailed lists of courses that fulfill American Cultures requirements, visit the American Cultures site. 
  7. A maximum of two exams (Advanced Placement, International Baccalaureate, or A-Level) may be used toward completion of the H/SS requirement. View the list of exams that can be applied toward H/SS requirements.
  8. Courses may fulfill multiple categories. For example, CY PLAN 118AC satisfies both the American Cultures requirement and one upper division H/SS requirement.
  9. No courses offered by any engineering department other than BIO ENG 100, COMPSCI C79, ENGIN 125, ENGIN 157AC, and MEC ENG 191K may be used to complete H/SS requirements.
  10. Foreign language courses may be used to complete H/SS requirements. View the list of language options.
  11. Courses numbered 97, 98, 99, or above 196 may not be used to complete any H/SS requirement.
  12. The College of Engineering uses modified versions of five of the College of Letters and Science (L&S) breadth requirements lists to provide options to our students for completing the H/SS requirement. The five areas are:
  • Arts and Literature
  • Historical Studies
  • International Studies
  • Philosophy and Values
  • Social and Behavioral Sciences

Within the guidelines above, choose courses from any of the Breadth areas listed above. (Please note that you cannot use courses on the Biological Science or Physical Science Breadth list to complete the H/SS requirement.) To find course options, go to the Class Schedule, select the term of interest, and use the Breadth Requirements filter.

Class Schedule Requirements

  • Minimum units per semester: 12.0
  • Maximum units per semester:  20.5
  • Minimum technical courses: College of Engineering undergraduates must enroll each semester in no fewer than two technical courses (of a minimum of 3 units each) required of the major program of study in which the student is officially declared. (Note: For most majors, normal progress will require enrolling in 3-4 technical courses each semester).
  • All technical courses (math, science, engineering) that satisfy requirements for the major must be taken on a letter-graded basis (unless only offered as P/NP).

Minimum Academic (Grade) Requirements

  • A minimum overall and semester grade point average of 2.00 (C average) is required of engineering undergraduates. Students will be subject to dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00. 
  • Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester.
  • A minimum overall grade point average of 2.00, and a minimum 2.00 grade point average in upper division technical course work required for the major is needed to earn a Bachelor of Science in Engineering.

Unit Requirements

To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:

  • Completion of the requirements of one engineering major program of study. 
  • A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed towards the 120 units.
  • A maximum of 4 units of physical education from any school attended will count towards the 120 units.
  • Students may receive unit credit for courses graded P (including P/NP units taken through EAP) up to a limit of one-third of the total units taken and passed on the Berkeley campus at the time of graduation.

Normal Progress

Students in the College of Engineering must enroll in a full-time program and make normal progress each semester toward the bachelor's degree. The continued enrollment of students who fail to achieve minimum academic progress shall be subject to the approval of the dean. (Note: Students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.) 

UC and Campus Requirements

University of California Requirements

Entry Level Writing

All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing Requirement. Satisfaction of this requirement is also a prerequisite to enrollment in all reading and composition courses at UC Berkeley.

American History and American Institutions

The American History and Institutions requirements are based on the principle that a U.S. resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.

Campus Requirement

American Cultures

American Cultures (AC) is the one requirement that all undergraduate students at UC Berkeley need to take and pass in order to graduate. The requirement offers an exciting intellectual environment centered on the study of race, ethnicity, and culture in the United States. AC courses offer students opportunities to be part of research-led, highly accomplished teaching environments, grappling with the complexity of American Culture.

Plan of Study

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the College Requirements and Major Requirements tabs.

Freshman
FallUnitsSpringUnits
CHEM 1A & CHEM 1AL, or CHEM 4A14CHEM 3A & CHEM 3AL, or CHEM 12A15
MATH 1A4MATH 1B4
BIO ENG 104PHYSICS 7A4
BIO ENG 261Reading and Composition course from List B4
Reading and Composition course from List A4 
 17 17
Sophomore
FallUnitsSpringUnits
MATH 534MATH 544
PHYSICS 7B4BIO ENG 113
ENGIN 7 or COMPSCI 61A4MAT SCI 453
Humanities/Social Sciences course3-4MAT SCI 45L1
 Humanities/Social Sciences course3-4
 15-16 14-15
Junior
FallUnitsSpringUnits
BIO ENG 1024BIO ENG 1044
BIO ENG 1034MAT SCI 1033
MAT SCI 1023ENGIN 40 or CHEM 120B3-4
BIO ENG 100 or Humanities/Social Sciences course with ethics content23-4BIO ENG 110 or 1144
 14-15 14-15
Senior
FallUnitsSpringUnits
BIO ENG 115 or MAT SCI 1303-4Bioengineering Design Project or Research43-4
BIO ENG C1184MAT SCI Elective33-4
MAT SCI Elective33-4BIO ENG Elective53-4
Humanities/Social Sciences course3-4MAT SCI 1044
 MAT SCI 1513
 13-16 16-19
Total Units: 120-130
1

CHEM 4A and CHEM 12A are intended for students majoring in chemistry or a closely-related field.

2

Students must take one course with ethics content. This may be fulfilled within the Humanities/Social Sciences requirement by taking one of the following courses: BIO ENG 100ENGIN 125ENGIN 157ACESPM 161ESPM 162A (ESPM 162 if taken Spring 2018 or earlier), IAS 157AC, L & S 160B, PHILOS 104, PHILOS 107.

3

Students must choose two of the following MAT SCI Electives: MAT SCI 111, MAT SCI 112, MAT SCI 113, MAT SCI 130.

4

Bioengineering Design Project or Research: Choose one of the following: BIO ENG 121LBIO ENG 140LBIO ENG 168LBIO ENG 192BIO ENG H194BIO ENG 196.

5

Students must choose one of the following BIO ENG Electives: BIO ENG 110BIO ENG 111, BIO ENG 114, BIO ENG 115, BIO ENG C117, BIO ENG 121, BIO ENG 124, BIO ENG 150, , MAT SCI 112. The BIO ENG Elective cannot be a course you have taken to fulfill another requirement.

Student Learning Goals

Bioengineering

Mission

Since our founding in 1998, the BioE faculty have been working to create an integrated, comprehensive program. Much thought has been put into the question, “What does every bioengineer need to know?” The faculty have been engaged in considerable dialogue over the years about what needs to be included, in what order, and how to do so in a reasonable time frame. Balancing depth with breadth has been the key challenge, and we have reached a point where the pieces have come together to form a coherent bioengineering discipline.

Learning Goals
  1. Describe the fundamental principles and methods of engineering.
  2. Understand the physical, chemical, and mathematical basis of biology.
  3. Appreciate the different scales of biological systems.
  4. Apply the physical sciences and mathematics in an engineering approach to biological systems.
  5. Effectively communicate scientific and engineering data and ideas, both orally and in writing.
  6. Demonstrate the values of cooperation, teamwork, social responsibility, and lifelong learning necessary for success in the field.
  7. Design a bioengineering solution to a problem of technical, scientific. or societal importance.
  8. Demonstrate advanced knowledge in a specialized field of bioengineering.

Materials Science

Measured Curricular Outcomes
  1. Be able to apply general math, science and engineering skills to the solution of engineering problems.
  2. Be aware of the social, safety and environmental consequences of their work, and be able to engage in public debate regarding these issues.
  3. Be able to apply core concepts in materials science to solve engineering problems.
  4. Be knowledgeable of contemporary issues relevant to materials science and engineering.
  5. Be able to select materials for design and construction.
  6. Understand the importance of life-long learning.
  7. Be able to design and conduct experiments, and to analyze data.
  8. Understand the professional and ethical responsibilities of a materials scientist and engineer.
  9. Be able to work both independently and as part of a team.
  10. Be able to communicate effectively while speaking, employing graphics, and writing.
  11. Possess the skills and techniques necessary for modern materials engineering practice.
Educational Objectives for Graduates

Stated succinctly, graduates from the program will have the following skills: 

  1. Know the fundamental science and engineering principles relevant to materials.
  2. Understand the relationship between nano/microstructure, characterization, properties and processing, and design of materials.
  3. Have the experimental and computational skills for a professional career or graduate study in materials.
  4. Possess a knowledge of the significance of research, the value of continued learning, and environmental/social issues surrounding materials.
  5. Be able to communicate effectively, to work in teams and to assume positions as leaders.

Courses

Bioengineering/Materials Science and Engineering

Faculty and Instructors

+ Indicates this faculty member is the recipient of the Distinguished Teaching Award.

Faculty

John Anderson, Assistant Professor.

Martin S. Banks, Professor. Stereopsis, virtual reality, optometry, multisensory interactions, self-motion perception, vision, depth perception, displays, picture perception, visual ergonomics.
Research Profile

Steven Brenner, Professor. Molecular biology, computational biology, evolutionary biology, bioengineering, structural genomics, computational genomics, cellular activity, cellular functions, personal genomics.
Research Profile

John Canny, Professor. Computer science, activity-based computing, livenotes, mechatronic devices, flexonics.
Research Profile

Jose M. Carmena, Professor. Brain-machine interfaces, neural ensemble computation, neuroprosthetics, sensorimotor learning and control.
Research Profile

Michelle Chang, Associate Professor.

Irina M. Conboy, Associate Professor. Stem cell niche engineering, tissue repair, stem cell aging and rejuvenation.
Research Profile

Yang Dan, Professor. Neuronal circuits, mammalian visual system, electrophysiological, psychophysical and computational techniques, visual cortical circuits, visual neurons.
Research Profile

John Eugene Dueber, Assistant Professor. Synthetic biology, Metabolic Engineering.
Research Profile

+ Robert J. Full, Professor. Energetics, comparative biomechanics, arthropod, adhesion, comparative physiology, locomotion, neuromechanics, biomimicry, biological inspiration, reptile, gecko, amphibian, robots, artificial muscles.
Research Profile

Jack L. Gallant, Professor. Vision science, form vision, attention, fMRI, computational neuroscience, natural scene perception, brain encoding, brain decoding.
Research Profile

Xiaohua Gong, Professor. Optometry, vision science, eye development and diseases, lens development.
Research Profile

Amy Herr, Associate Professor. Microfluidics, bioanalytical separations, diagnostics, electrokinetic transport, engineering design.
Research Profile

Tony M. Keaveny, Professor. Biomechanics of bone, orthopaedic biomechanics, design of artificial joints, osteoporosis, finite element modeling, clinical biomechanics.
Research Profile

Stanley A. Klein, Professor. Optometry, vision science, spatial vision modeling, psychophysical methods and vision test design, corneal topography and contact lens design, source localization of evoked potentials, fMRI, amblyopia.
Research Profile

Luke Lee, Professor. Biophotonics, biophysics, bionanoscience, molecular imaging, single cell analysis, bio-nano interfaces, integrated microfluidic devices (iMD) for diagnostics and preventive personalized medicine.
Research Profile

Seung-Wuk Lee, Associate Professor. Nanotechnology, bio-inspired nanomaterials, synthetic viruses, regenerative tissue engineering materials, drug delivery vehicles.
Research Profile

Song Li, Professor. Bioengineering, vascular tissue engineering, stem cell engineering, mechano-chemical signal transduction, biomimetic matrix, molecules, bioinformatic applications in tissue engineering, molecular dynamics.
Research Profile

Michel Maharbiz, Associate Professor. Neural interfaces, bioMEMS, microsystems, MEMS, microsystems for the life sciences.
Research Profile

Gerard Marriott, Professor.

Richard Mathies, Professor. Genomics, biophysical, bioanalytical, physical chemistry; laser spectroscopy, resonance Raman, excited-state reaction dynamics photoactive proteins, rhodopsins, microfabricated chemical biochemical analysis devices, forensics, infectious disease detection.
Research Profile

Mohammad Mofrad, Professor. Nuclear pore complex and nucleocytoplasmic transport, mechanobiology of disease, cellular mechanotransduction, integrin-mediated focal adhesions.
Research Profile

Niren Murthy, Professor.

+ Alexander Pines, Professor. Theory and experiment in magnetic resonance spectroscopy and imaging, quantum coherence and decoherence, novel concepts and methods including molecular and biomolecular sensors and microfluidics, laser hyperpolarization and detection, laser and zero-field NMR, in areas from material science to biomedicine.
Research Profile

Austin John Roorda, Professor. Adaptive optics, eye, vision, ophthalmoscopy, scanning laser ophthalmoscope, ophthalmology.
Research Profile

Kimmen Sjolander, Professor. Computational biology, algorithms, phylogenetic tree reconstruction, protein structure prediction, multiple sequence alignment, evolution, bioinformatics, hidden Markov models, metagenomics, statistical modeling, phylogenomics, emerging and neglected diseases, machine-learning, genome annotation, metagenome annotation, systems biology, functional site prediction, ortholog identification.
Research Profile

Lydia Sohn, Associate Professor. Micro-nano engineering.
Research Profile

Danielle Tullman-Ercek, Assistant Professor. Bioenergy, synthetic biology, protein engineering, bionanotechnology.
Research Profile

Emeritus Faculty

Thomas F. Budinger, Professor Emeritus. Image processing, biomedical electronics, quantitative aging, cardiovascular physiology, bioastronautics, image reconstruction, nuclear magnetic resonance, positron emission, tomography, reconstruction tomography, inverse problem mathematics.
Research Profile

+ Indicates this faculty member is the recipient of the Distinguished Teaching Award.

Faculty

Joel W. Ager, Adjunct Professor.

Paul Alivisatos, Professor. Physical chemistry, semiconductor nanocrystals, nanoscience, nanotechnology, artificial photosynthesis, solar energy, renewable energy, sustainable energy.
Research Profile

Elke Arenholz, Associate Adjunct Professor.

Mark D. Asta, Professor.

Jillian Banfield, Professor. Nanoscience, Bioremediation, genomics, biogeochemistry, carbon cycling, geomicrobiology, MARS, minerology.
Research Profile

Robert Birgeneau, Professor. Physics, phase transition behavior of novel states of matter.
Research Profile

Gerbrand Ceder, Professor.

Daryl Chrzan, Professor. Materials science and engineering, computational materials science, metals and metallic compounds, defects in solids, growth of nanostructures.
Research Profile

Thomas M. Devine, Professor. Synthesis of nanomaterials, nuclear power, oil production, secondary batteries for electric vehicles, computer disk drives, and synthesis and characterization of metal oxide nanowires, corrosion resistance of materials.
Research Profile

Fiona Doyle, Professor. Electrochemistry, mineral processing, solution processing of materials, interfacial chemistry, extractive metallurgy, remediation of abandoned mines.
Research Profile

Oscar D. Dubon, Professor. Magnetic, optical materials, processing, properties in electronic.
Research Profile

Kevin Healy, Professor. Bioengineering, biomaterials engineering, tissue engineering, bioinspired materials, tissue and organ regeneration, stem cell engineering, microphysiological systems, organs on a chip, drug screening and discovery, multivalent bioconjugate therapeutics.
Research Profile

Frances Hellman, Professor. Condensed matter physics and materials science.
Research Profile

Digby D. Macdonald, Professor in Residence.

Lane W. Martin, Associate Professor. Complex Oxides, novel electronic materials, thin films, materials processing, materials characterization, memory, logic, information technologies, energy conversion, thermal properties, dielectrics, ferroelectrics, pyroelectrics, piezoelectrics, magnetics, multiferroics, transducers, devices.
Research Profile

Phillip B. Messersmith, Professor.

Andrew M. Minor, Professor. Metallurgy, nanomechanics, in situ TEM, electron microscopy of soft materials.
Research Profile

Kristin A. Persson, Assistant Professor. Lithium-ion Batteries.
Research Profile

R. Ramesh, Professor. Processing of complex oxide heterostructures, nanoscale characterization/device structures, thin film growth and materials physics of complex oxides, materials processing for devices, information technologies.
Research Profile

Robert O. Ritchie, Professor. Structural materials, mechanical behavior in biomaterials, creep, fatigue and fracture of advanced metals, intermetallics, ceramics.
Research Profile

Miquel B. Salmeron, Adjunct Professor. Molecules, lasers, atoms, materials science and engineering, matter, scanning, tunneling, atomic force microscopies, x-ray photoelectron spectroscopy.
Research Profile

Junqiao Wu, Associate Professor. Semiconductors, nanotechnology, energy materials.
Research Profile

Ting Xu, Associate Professor. Polymer, nanocomposite, biomaterial, membrane, directed self-assembly, drug delivery, protein therapeutics, block copolymers, nanoparticles.
Research Profile

Peidong Yang, Professor. Materials chemistry, sensors, nanostructures, energy conversion, nanowires, miniaturizing optoelectronic devices, photovoltaics, thermoelectrics, solid state lighting.
Research Profile

Jie Yao, Assistant Professor. Optical materials, Nanophotonics, optoelectronics.
Research Profile

Haimei Zheng, Assistant Adjunct Professor.

Lecturers

Matthew Sherburne, Lecturer.

Emeritus Faculty

Robert H. Bragg, Professor Emeritus.

Didier De Fontaine, Professor Emeritus. Phase transformations in alloys, crystallography, thermodynamics of phase changes, particularly ordering reactions, phase separation, calculations of phase equilibria by combined quantum, statistical mechanical methods.
Research Profile

Lutgard De Jonghe, Professor Emeritus. Ceramic properties, advanced ceramics, silicon carbide, densification studies, microstructure development.
Research Profile

James W. Evans, Professor Emeritus. Production of materials, particularly fluid flow, reaction kinetics, mass transport, electrochemical, electromagnetic phenomena governing processes for producing materials, metals, storing energy.
Research Profile

+ Douglas W. Fuerstenau, Professor Emeritus. Mineral processing, extractive metallurgy; application of surface, colloid chemistry to mineral/water systems; fine particle science, technology; principles of comminution, flotation, pelletizing; hydrometallurg, extraction of metals.
Research Profile

Andreas M. Glaeser, Professor Emeritus. Ceramic joining, TLP bonding, brazing, reduced-temperature joining, ceramic-metal joining, ceramic processing, surface and interface properties of ceramics, thermal barrier coatings.
Research Profile

+ Ronald Gronsky, Professor Emeritus. Internal structure of materials, engineering applications.
Research Profile

Eugene E. Haller, Professor Emeritus. Semiconductor crystal growth, characterization of impurities and defects in semiconductors: infrared and microwave detectors, isotopically controlled semiconductors.
Research Profile

Marshal F. Merriam, Professor Emeritus.

+ J. W. Morris, Professor Emeritus. Structural materials, computational materials, the limits of strength, deformation mechanisms, non-destructive testing with SQUID microscopy, mechanisms of grain refinement in high strength steels, lead-free solders for microelectronics.
Research Profile

Eicke R. Weber, Professor Emeritus. Optical materials, magnetic materials, semiconductor thin film growth, device processing in electronic materials.
Research Profile

Contact Information

Department Office, Bioengineering and Materials Science & Engineering

306 Stanley Hall

Phone: 510-642-5833

Fax: 510-642-5835

Visit Department Website

Department of Materials Science and Engineering

210 Hearst Memorial Mining Building

Phone: 510-642-3801

Fax: 510-643-5792

http://www.mse.berkeley.edu/

Department of Bioengineering

306 Stanley Hall

Phone: 510-642-5833

Fax: 510-642-5835

http://bioeng.berkeley.edu/

Department Chair, Materials Science and Engineering

Daryl Chrzan, PhD

216 Hearst Memorial Mining Building

Phone: 510-642-3803

dcchrzan@berkeley.edu

Engineering Student Services Adviser

Monica Bernal

230 Bechtel Engineering Ctr.

Phone: 510-642-7594

http://engineering.berkeley.edu/ESS

ess@berkeley.edu

Department Chair, Bioengineering

Daniel Fletcher, PhD

306 Stanley Hall

Phone: 510-642-5833

bioe-chair@berkeley.edu

Back to Top