Electrical Engineering and Computer Sciences/Materials Science and Engineering Joint Major

University of California, Berkeley

About the Program

Bachelor of Science (BS)

The joint major programs are designed for students who wish to undertake study in two areas of engineering in order to qualify for employment in either field or for positions in which competence in two fields is required. These curricula include the core courses in each of the major fields. While they require slightly increased course loads, they can be completed in four years. Both majors are shown on the student's transcript of record.

For students interested in materials and devices, a joint major in electrical engineering and computer sciences (EECS)/materials science and engineering (MSE) can be valuable. The program combines the study of materials from a broad perspective, as taught in MSE, with the study of their applications in electronic devices and circuits, as taught in EECS.

Admission to the Joint Major

Admission directly to a joint major is closed to freshmen and junior transfer applicants. Students interested in a joint program may apply to change majors during specific times in their academic progress. Please see the College of Engineering joint majors website for complete details.

Visit Program Website

Major Requirements

In addition to the University, campus, and college requirements, students must fulfill the below requirements specific to their major program.

General Guidelines

  1. All courses taken in satisfaction of major requirements must be taken for a letter grade.

  2. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.

  3. A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.

  4. A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

For a detailed plan of study by year and semester, please see the Plan of Study tab.

Lower Division Requirements

MATH 1ACalculus4
MATH 1BCalculus4
MATH 53Multivariable Calculus4
MATH 54Linear Algebra and Differential Equations4
General Chemistry
and General Chemistry Laboratory 1
or CHEM 4A General Chemistry and Quantitative Analysis
Physics for Scientists and Engineers
and Physics for Scientists and Engineers
and Physics for Scientists and Engineers
Introductory Mechanics and Relativity
and Introductory Electromagnetism, Waves, and Optics
and Introduction to Experimental Physics I
and Introductory Thermodynamics and Quantum Mechanics
and Introduction to Experimental Physics II
ENGIN 7Introduction to Computer Programming for Scientists and Engineers4
or COMPSCI 61A The Structure and Interpretation of Computer Programs
ENGIN 40Engineering Thermodynamics4
or PHYSICS 112 Introduction to Statistical and Thermal Physics
MAT SCI 45Properties of Materials3
MAT SCI 45LProperties of Materials Laboratory1
EECS 16ADesigning Information Devices and Systems I4
COMPSCI 61BData Structures4
or COMPSCI 61BL Data Structures and Programming Methodology
COMPSCI 61CGreat Ideas of Computer Architecture (Machine Structures)4
or COMPSCI 61CL Machine Structures (Lab-Centric)
or EECS 16B Designing Information Devices and Systems II

Upper Division Requirements

EL ENG 105Microelectronic Devices and Circuits4
EL ENG 117Electromagnetic Fields and Waves4
EL ENG 130Integrated-Circuit Devices4
or MAT SCI 111 Properties of Electronic Materials
EECS 151Introduction to Digital Design and Integrated Circuits (must also take EECS 151LA or EECS 151LB) 14-5
or EL ENG 140 Linear Integrated Circuits
MAT SCI 102Bonding, Crystallography, and Crystal Defects3
MAT SCI 103Phase Transformations and Kinetics3
Materials Characterization
and Materials Characterization Laboratory
MAT SCI 130Experimental Materials Science and Design3
PHYSICS 137AQuantum Mechanics4
PHYSICS 141ASolid State Physics4
STAT 134Concepts of Probability4
or EL ENG 126 Probability and Random Processes
Upper division technical electives: two courses6-8
Select at least 3 units from the MAT SCI 120 series

Five-Year BS/MS

This program is geared toward students who would like to pursue an education beyond the BS/BA, allowing them to achieve greater breadth and depth of knowledge and do some research. It is not intended for students who have definitely decided to pursue a PhD immediately following graduation. Those students are advised to apply for a PhD program at Berkeley or elsewhere during their senior year. Students who have been accepted into the five-year BA/MS or BS/MS are free to change their minds later and apply to enter the PhD program or apply to a PhD program at another university. Their subsequent admission to the PhD program is competitive with our other PhD applicants.

The program is focused on interdisciplinary training at a graduate level; with at least 8 units of course work outside EECS required. Students will emerge as leaders in their technical and professional fields.

  • Program is focused on interdisciplinary study and more experience in aligned technical fields such as physics, materials science, statistics, biology, etc., and/or professional disciplines such as management of technology, business law, and public policy.
  • Participants, if admitted to the program,  must begin the graduate portion in the semester immediately following the conferral of their bachelor's degree.
  • Participation in the program is permitted for only one additional year (two semesters) beyond the bachelor's degree.
  • Participation is only available to Berkeley EECS and L&S CS undergraduates.
  • Participants in program are self-funded.
  • Participants in program may serve as Graduate Student Instructors with the approval of their faculty research advisor and the 5th Year MS Committee.

For further information regarding this program, please see the Department's website

Materials Science and Engineering Five-Year BS/MS

The five-year combined Bachelor of Science/Master of Science program augments the existing four-year undergraduate program with a fifth year of graduate study that provides a professionally-oriented component, preparing students for careers in engineering or engineering management within the business, government, and/or industrial sectors. In this program, students earn a bachelor's degree and subsequently, a Master of Science degree under Plan II (without thesis) of the Academic Senate. This five-year program emphasizes interdisciplinary study through an independent project coupled to coursework. The program is open to undergraduate Materials Science and Engineering majors (both single or joint majors) only. 

Unit Requirements (minimum 24 units)

  • At least 12 units must be graduate units in major subject (200+ level)
  • Individual study or research
    • At least 1 unit/semester (2 units total)
    • No more than 2 units/semester (4 units total)
  • Remaining 12 units may be letter graded upper-division or graduate courses approve by major field advisor.
  • A grade of B or better in three of five core course categories (thermodynamics, structure or phase transformations, characterization, processing and properties) at the 200+ level
  • Minimum 3.0 GPA must be maintained
  • Each course may only satisfy one category
  • An independent project will be performed as part of a required two course sequence, MSE 296A&B, under the supervision of a faculty member. Students are encouraged to identify faculty supervisors as soon as possible, but by no later than the beginning of the ninth semester. Students will be required to complete both a project report and an oral presentation.

For further information regarding this program, please see the department's website.

College Requirements

Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions: 

  1. Completion of the requirements of one engineering major program of study. 
  2. A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
  3. The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
  4. All technical courses (math, science, and engineering) that can fulfill requirements for the student's major must be taken on a letter graded basis (unless they are only offered P/NP). 
  5. Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed five semesters to complete their degree requirements. Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters. 
  6. Adhere to all college policies and procedures as they complete degree requirements.
  7. Complete the lower division program before enrolling in upper division engineering courses. 

Humanities and Social Sciences (H/SS) Requirement

To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement, which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two Reading and Composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. See the humanities and social sciences section of our website for details.

Class Schedule Requirements

  • Minimum units per semester: 12.0
  • Maximum units per semester:  20.5
  • Minimum technical courses: College of Engineering undergraduates must include at least two letter graded technical courses (of at least 3 units each) in their semester program. Every semester students are expected to make satisfactory progress in their declared major. Satisfactory progress is determined by the student's Engineering Student Services Advisor. (Note: For most majors, normal progress will require enrolling in 3-4 technical courses each semester). Students who are not in compliance with this policy by the end of the fifth week of the semester are subject to a registration block that will delay enrollment for the following semester. 
  • All technical courses (math, science, engineering) that satisfy requirements for the major must be taken on a letter-graded basis (unless only offered as P/NP).

Minimum Academic (Grade) Requirements

  • Minimum overall and semester grade point averages of 2.00 (C average) are required of engineering undergraduates. Students will be subject to dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00. 
  • Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester.
  • A minimum overall grade point average of 2.00 and a minimum 2.00 grade point average in upper division technical course work required for the major are required to earn a Bachelor of Science in the College of Engineering.

Unit Requirements

To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:

  • Completion of the requirements of one engineering major program of study. 
  • A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed to count towards the B.S. degree, and no more than 4 units in any single term can be counted.
  • A maximum of 4 units of physical education from any school attended will count towards the 120 units.
  • Passed (P) grades may account for no more than one third of the total units completed at UC Berkeley, Fall Program for Freshmen (FPF), UC Education Abroad Program (UCEAP), or UC Berkeley Washington Program (UCDC) toward the 120 overall minimum unit requirement. Transfer credit is not factored into the limit. This includes transfer units from outside of the UC system, other UC campuses, credit-bearing exams, as well as UC Berkeley Extension XB units.

Normal Progress

Students in the College of Engineering must enroll in a full-time program and make normal progress each semester toward the bachelor's degree. The continued enrollment of students who fail to achieve minimum academic progress shall be subject to the approval of the dean. (Note: Students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.) 

UC and Campus Requirements

University of California Requirements

Entry Level Writing

All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing Requirement. Satisfaction of this requirement is also a prerequisite to enrollment in all Reading and Composition courses at UC Berkeley.

American History and American Institutions

The American History and Institutions requirements are based on the principle that a U.S. resident who has graduated from an American university should have an understanding of the history and governmental institutions of the United States.

Campus Requirement

American Cultures

The American Cultures requirement is a Berkeley campus requirement, one that all undergraduate students at Berkeley need to pass in order to graduate. You satisfy the requirement by passing, with a grade not lower than C- or P, an American Cultures course. You may take an American Cultures course any time during your undergraduate career at Berkeley. The requirement was instituted in 1991 to introduce students to the diverse cultures of the United States through a comparative framework. Courses are offered in more than fifty departments in many different disciplines at both the lower and upper division level.

The American Cultures requirement and courses constitute an approach that responds directly to the problem encountered in numerous disciplines of how better to present the diversity of American experience to the diversity of American students whom we now educate.

Faculty members from many departments teach American Cultures courses, but all courses have a common framework. The courses focus on themes or issues in United States history, society, or culture; address theoretical or analytical issues relevant to understanding race, culture, and ethnicity in American society; take substantial account of groups drawn from at least three of the following: African Americans, indigenous peoples of the United States, Asian Americans, Chicano/Latino Americans, and European Americans; and are integrative and comparative in that students study each group in the larger context of American society, history, or culture.

This is not an ethnic studies requirement, nor a Third World cultures requirement, nor an adjusted Western civilization requirement. These courses focus upon how the diversity of America's constituent cultural traditions have shaped and continue to shape American identity and experience.

Visit the Class Schedule or the American Cultures website for the specific American Cultures courses offered each semester. For a complete list of approved American Cultures courses at UC Berkeley and California Community Colleges, please see the American Cultures Subcommittee’s website. See your academic adviser if you have questions about your responsibility to satisfy the American Cultures breadth requirement.

Plan of Study

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.,), please see the College Requirements and Major Requirements tabs.

MATH 1A4PHYSICS 7A or 5A13-4
Humanities/Social Sciences course43-4ENGIN 7 or COMPSCI 61A4
Reading & Composition Part A Course44Reading & Composition Part B Course44
 16-17 15-16
MAT SCI 4553PHYSICS 7C or 5C and 5CL14-5
MATH 534Humanities/Social Sciences course43-4
PHYSICS 7B or 5B and 5BL14-5 
 16-17 15-17
COMPSCI 61C, 61CL, or EECS 16B4EL ENG 1054
MAT SCI 1023EL ENG 126 or STAT 1344
 15 15
EL ENG 1174MAT SCI 111 or EL ENG 1304
EL ENG 140 or EECS 151 (must also take 151LA or 151LB)24-5Technical Electives2,36-8
MAT SCI 1303Humanities/Social Sciences course43-4
Humanities/Social Sciences course43-4 
 18-20 13-16
Total Units: 123-133

Student Learning Goals

Electrical Engineering and Computer Sciences

  1. Preparing graduates to pursue postgraduate education in electrical engineering, computer science, or related fields.
  2. Preparing graduates for success in technical careers related to electrical and computer engineering, or computer science and engineering.
  3. Preparing graduates to become leaders in fields related to electrical and computer engineering or computer science and engineering.
  1. An ability to apply knowledge of mathematics, science, and engineering.
  2. An ability to configure, apply test conditions, and evaluate outcomes of experimental systems.
  3. An ability to design systems, components, or processes that conform to given specifications and cost constraints.
  4. An ability to work cooperatively, respectfully, creatively, and responsibly as a member of a team.
  5. An ability to identify, formulate, and solve engineering problems.
  6. An understanding of the norms of expected behavior in engineering practice and their underlying ethical foundations.
  7. An ability to communicate effectively by oral, written, and graphical means.
  8. An awareness of global and societal concerns and their importance in developing engineering solutions.
  9. An ability to independently acquire and apply required information, and an appreciation of the associated process of life-long learning.
  10. A knowledge of contemporary issues.
  11. An in-depth ability to use a combination of software, instrumentation, and experimental techniques practiced in circuits, physical electronics, communication, networks and systems, hardware, programming, and computer science theory.
  1. An ability to apply knowledge of computing and mathematics appropriate to the program’s student outcomes and to the discipline.
  2. An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution.
  3. An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.
  4. An ability to function effectively on teams to accomplish a common goal.
  5. An understanding of professional, ethical, legal, security and social issues and responsibilities.
  6. An ability to communicate effectively with a range of audiences.
  7. An ability to analyze the local and global impact of computing on individuals, organizations, and society.
  8. Recognition of the need for and an ability to engage in continuing professional development.
  9.  An ability to use current techniques, skills, and tools necessary for computing practice.

Materials Science

Measured Curricular Outcomes

The program is designed around a set of curricular outcomes. 

  1. Be able to apply general math, science and engineering skills to the solution of engineering problems.
  2. Be aware of the social, safety and environmental consequences of their work, and be able to engage in public debate regarding these issues.
  3. Be able to apply core concepts in materials science to solve engineering problems.
  4. Be knowledgeable of contemporary issues relevant to materials science and engineering.
  5. Be able to select materials for design and construction.
  6. Understand the importance of life-long learning.
  7. Be able to design and conduct experiments, and to analyze data.
  8. Understand the professional and ethical responsibilities of a materials scientist and engineer.
  9. Be able to work both independently and as part of a team.
  10. Be able to communicate effectively while speaking, employing graphics, and writing.
  11. Possess the skills and techniques necessary for modern materials engineering practice.
Educational Objectives for Graduates

Stated succinctly, graduates from the program will have the following skills: 

  1. Know the fundamental science and engineering principles relevant to materials.
  2. Understand the relationship between nano/microstructure, characterization, properties and processing, and design of materials.
  3. Have the experimental and computational skills for a professional career or graduate study in materials.
  4. Possess a knowledge of the significance of research, the value of continued learning, and environmental/social issues surrounding materials.
  5. Be able to communicate effectively, to work in teams and to assume positions as leaders.


• Electrical Engineering and Computer Sciences

• Materials Science and Engineering

Electrical Engineering Courses

Materials Science and Engineering Courses

Contact Information

Electrical Engineering and Computer Sciences and Materials Science Engineering Program

Visit Program Website

Department Office

Electrical Engineering and Computer Sciences

253 Cory Hall

Phone: 510-642-3214


Department Office

Materials Science and Engineering

210 Hearst Memorial Mining Building

Phone: 510-642-3801


Department Chair, EECS

Jeff Bokor, PhD

231 Cory Hall

Phone: 510-642-0253


Department Chair, Materials Science and Engineering

Lane Martin, PhD

216 Hearst Memorial Mining Building


Faculty Advisor

Junqiao Wu, PhD (MSE)

210 Hearst Memorial Mining Bldg


Faculty Advisor

Ali Javey, PhD (EECS)

550B Cory Hall


Engineering Student Services Advisor

Shareena Samson

230 Bechtel Engineering Center



Undergraduate Student Services Advisor (MSE)

Medina Kohzad

210 Hearst Memorial Mining Building


Undergraduate Student Service Advisors (EECS)

EECS Undergrad Advising

205 Cory Hall


Back to Top