Materials Science and Engineering/Nuclear Engineering Joint Major

University of California, Berkeley

About the Program

Bachelor of Science (BS)

The joint major programs are designed for students who wish to undertake study in two areas of engineering in order to qualify for employment in either field or for positions in which competence in two fields is required. These curricula include the core courses in each of the major fields. While they require slightly increased course loads, they can be completed in four years. Both majors are shown on the student's transcript of record.

The interface between materials science and engineering and nuclear engineering is an especially challenging and rewarding one giving students in this joint major an exciting range of career options. With a sound curriculum steeped in the fundamentals, the joint major program prepares students to fully understand the behavior of materials in a reactor or related extreme environments, including their design and optimization. Students completing this joint major will successfully compete for positions in the energy sector.

Admission to the Joint Major

Admission directly to a joint major is closed to freshmen and junior transfer applicants. Students interested in a joint program may apply to change majors during specific times in their academic progress. Please see the College of Engineering joint majors website for complete details.

Visit Department Website

Major Requirements

In addition to the University, campus, and college requirements, students must fulfill the below requirements specific to their major program.

General Guidelines

  1. All technical courses taken in satisfaction of major requirements must be taken for a letter grade.

  2. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.

  3. A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.

  4. A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

For a detailed plan of study by year and semester, please see the Plan of Study tab.

Lower division Requirements

MATH 1ACalculus4
MATH 1BCalculus4
MATH 53Multivariable Calculus4
MATH 54Linear Algebra and Differential Equations4
CHEM 1A
1AL
General Chemistry
and General Chemistry Laboratory 1
5
or CHEM 4A General Chemistry and Quantitative Analysis
PHYSICS 7APhysics for Scientists and Engineers4
PHYSICS 7BPhysics for Scientists and Engineers4
PHYSICS 7CPhysics for Scientists and Engineers4
ENGIN 7Introduction to Computer Programming for Scientists and Engineers4
ENGIN 40Engineering Thermodynamics4
MAT SCI 45Properties of Materials3
MAT SCI 45LProperties of Materials Laboratory1
MEC ENG C85Introduction to Solid Mechanics3

Upper division Requirements

MAT SCI 102Bonding, Crystallography, and Crystal Defects3
MAT SCI 103Phase Transformations and Kinetics3
MAT SCI 104
104L
Materials Characterization
and Materials Characterization Laboratory
4
MAT SCI 111Properties of Electronic Materials4
MAT SCI 112Corrosion (Chemical Properties)3
MAT SCI 113Mechanical Behavior of Engineering Materials3
MAT SCI 130Experimental Materials Science and Design3
NUC ENG 100Introduction to Nuclear Energy and Technology3
NUC ENG 101Nuclear Reactions and Radiation4
NUC ENG 104Radiation Detection and Nuclear Instrumentation Laboratory4
NUC ENG 120Nuclear Materials4
NUC ENG 150Introduction to Nuclear Reactor Theory4
NUC ENG 170ANuclear Design: Design in Nuclear Power Technology and Instrumentation3
Ethics Requirement 13-4
Upper division Technical Electives: Minimum 16 units 2,316
Must include at least 9 units of upper division NUC ENG courses, in consultation with faculty advisor
Must include at least 3 units of MAT SCI 12x (120 series course)
The additional 4 units of technical electives must be chosen in consultation with faculty advisor

College Requirements

Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions: 

  1. Completion of the requirements of one engineering major program of study. 
  2. A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
  3. The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
  4. All technical courses (math, science, and engineering) that can fulfill requirements for the student's major must be taken on a letter graded basis (unless they are only offered P/NP). 
  5. Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed five semesters to complete their degree requirements. Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters. 
  6. Adhere to all college policies and procedures as they complete degree requirements.
  7. Complete the lower division program before enrolling in upper division engineering courses. 

Humanities and Social Sciences (H/SS) Requirement

To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement, which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two Reading and Composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. Follow these guidelines to fulfill this requirement:

  1. Complete a minimum of six courses from the  approved Humanities/Social Sciences (H/SS) lists
  2. Courses must be a minimum of 3 semester units (or 4 quarter units).
  3. Two of the six courses must fulfill the College's Reading and Composition (R&C) requirement. These courses must be taken for a letter grade (C- or better required). The first half (R&C Part A) must be completed by the end of the freshman year; the second half (R&C Part B) must be completed by no later than the end of the sophomore year. Please see the Reading and Composition Requirement page for a complete list of R&C courses available and a list of exams that can be applied toward the R&C Part A requirement. Students can also use the Class Schedule to view R&C courses offered in a given semester.  Note: Only R&C Part A can be fulfilled with an AP, IB, or A-Level exam score. Test scores do not fulfill R&C Part B for College of Engineering students.
  4. The four additional courses must be chosen from the five areas listed in #13 below. These four courses may be taken on a pass/no pass basis.
  5. Special topics courses of 3 semester units or more will be reviewed on a case-by-case basis.
  6. Two of the six courses must be upper division (courses numbered 100-196).
  7. One of the six courses must satisfy the campus American Cultures (AC) requirement. Note that any American Cultures course of 3 units or more may be used to meet H/SS.
  8. A maximum of two exams (Advanced Placement, International Baccalaureate, or A-Level) may be used toward completion of the H/SS requirement. View the list of exams that can be applied toward H/SS requirements.
  9. No courses offered by any engineering department other than BIO ENG 100, COMPSCI C79, ENGIN 125, ENGIN 157AC, ENGIN 185, and MEC ENG 191K may be used to complete H/SS requirements.
  10. Language courses may be used to complete H/SS requirements. View the list of language options.
  11. Courses may fulfill multiple categories. For example, CY PLAN 118AC satisfies both the American Cultures requirement and one upper division H/SS requirement.
  12. Courses numbered 97, 98, 99, or above 196 may not be used to complete any H/SS requirement.
  13. The College of Engineering uses modified versions of five of the College of Letters and Science (L&S) breadth requirements lists to provide options to our students for completing the H/SS requirement. The five areas are:
  • Arts and Literature
  • Historical Studies
  • International Studies
  • Philosophy and Values
  • Social and Behavioral Sciences

Within the guidelines above, choose courses from any of the Breadth areas listed above. (Please note that you cannot use courses on the Biological Science or Physical Science Breadth list to complete the H/SS requirement.) To find course options, go to the Class Schedule, select the term of interest, and use the Breadth Requirements filter.

Class Schedule Requirements

  • Minimum units per semester: 12.0
  • Maximum units per semester:  20.5
  • Minimum technical courses: College of Engineering undergraduates must include at least two letter graded technical courses (of at least 3 units each) in their semester program. Every semester students are expected to make satisfactory progress in their declared major. Satisfactory progress is determined by the student's Engineering Student Services Advisor. (Note: For most majors, normal progress will require enrolling in 3-4 technical courses each semester). Students who are not in compliance with this policy by the end of the fifth week of the semester are subject to a registration block that will delay enrollment for the following semester. 
  • All technical courses (math, science, engineering) that satisfy requirements for the major must be taken on a letter-graded basis (unless only offered as P/NP).

Minimum Academic (Grade) Requirements

  • Minimum overall and semester grade point averages of 2.00 (C average) are required of engineering undergraduates. Students will be subject to dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00. 
  • Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester.
  • A minimum overall grade point average of 2.00 and a minimum 2.00 grade point average in upper division technical course work required for the major are required to earn a Bachelor of Science in the College of Engineering.

Unit Requirements

To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:

  • Completion of the requirements of one engineering major program of study. 
  • A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed to count towards the B.S. degree, and no more than 4 units in any single term can be counted.
  • A maximum of 4 units of physical education from any school attended will count towards the 120 units.
  • Passed (P) grades may account for no more than one third of the total units completed at UC Berkeley, Fall Program for Freshmen (FPF), UC Education Abroad Program (UCEAP), or UC Berkeley Washington Program (UCDC) toward the 120 overall minimum unit requirement. Transfer credit is not factored into the limit. This includes transfer units from outside of the UC system, other UC campuses, credit-bearing exams, as well as UC Berkeley Extension XB units.

Normal Progress

Students in the College of Engineering must enroll in a full-time program and make normal progress each semester toward the bachelor's degree. The continued enrollment of students who fail to achieve minimum academic progress shall be subject to the approval of the dean. (Note: Students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.) 

UC and Campus Requirements

University of California Requirements

Entry Level Writing

All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing Requirement. Satisfaction of this requirement is also a prerequisite to enrollment in all Reading and Composition courses at UC Berkeley.

American History and American Institutions

The American History and Institutions requirements are based on the principle that a U.S. resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.

Campus Requirement

American Cultures

The American Cultures requirement is a Berkeley campus requirement, one that all undergraduate students at Berkeley need to pass in order to graduate. You satisfy the requirement by passing, with a grade not lower than C- or P, an American Cultures course. You may take an American Cultures course any time during your undergraduate career at Berkeley. The requirement was instituted in 1991 to introduce students to the diverse cultures of the United States through a comparative framework. Courses are offered in more than fifty departments in many different disciplines at both the lower and upper division level.

The American Cultures requirement and courses constitute an approach that responds directly to the problem encountered in numerous disciplines of how better to present the diversity of American experience to the diversity of American students whom we now educate.

Faculty members from many departments teach American Cultures courses, but all courses have a common framework. The courses focus on themes or issues in United States history, society, or culture; address theoretical or analytical issues relevant to understanding race, culture, and ethnicity in American society; take substantial account of groups drawn from at least three of the following: African Americans, indigenous peoples of the United States, Asian Americans, Chicano/Latino Americans, and European Americans; and are integrative and comparative in that students study each group in the larger context of American society, history, or culture.

This is not an ethnic studies requirement, nor a Third World cultures requirement, nor an adjusted Western civilization requirement. These courses focus upon how the diversity of America's constituent cultural traditions have shaped and continue to shape American identity and experience.

Visit the Class Schedule or the American Cultures website for the specific American Cultures courses offered each semester. For a complete list of approved American Cultures courses at UC Berkeley and California Community Colleges, please see the American Cultures Subcommittee’s website. See your academic adviser if you have questions about your responsibility to satisfy the American Cultures breadth requirement.

Plan of Study

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the College Requirements and Major Requirements tab.

Freshman
FallUnitsSpringUnits
CHEM 1A & 1AL, or CHEM 4A15MATH 1B4
MATH 1A4PHYSICS 7A4
Reading & Composition Part A Course54ENGIN 74
Humanities/Social Sciences course53-4Reading & Composition Part B Course54
 16-17 16
Sophomore
FallUnitsSpringUnits
MATH 534MATH 544
PHYSICS 7B4PHYSICS 7C4
MAT SCI 453MEC ENG C853
MAT SCI 45L1Humanities/Social Sciences course 53-4
Humanities/Social Sciences Course53-4 
 15-16 14-15
Junior
FallUnitsSpringUnits
ENGIN 404MAT SCI 1033
MAT SCI 1023MAT SCI 104
104L
4
NUC ENG 1003NUC ENG 1014
Technical Electives2,37NUC ENG 1504
 Humanities/Social Sciences course with Ethics content4,53-4
 17 18-19
Senior
FallUnitsSpringUnits
MAT SCI 1303MAT SCI 1114
NUC ENG 1044MAT SCI 1123
NUC ENG 1204MAT SCI 1133
Technical Electives2,36NUC ENG 170A3
 Technical Elective3
 17 16
Total Units: 129-133

Courses

Courses

Materials Science and Engineering Courses

Nuclear Engineering Courses

Faculty and Instructors

+ Indicates this faculty member is the recipient of the Distinguished Teaching Award.

Faculty

Joel W. Ager, Adjunct Professor. Sustainable energy conversion, electronic materials, catalytic and photoelectrocatalytic materials.

Zakaria Y. Al Balushi, Assistant Professor. Electronic, Magnetic and Optical Materials, Quantum Materials Synthesis and Optoelectronics.
Research Profile

Paul Alivisatos, Professor. Physical chemistry, semiconductor nanocrystals, nanoscience, nanotechnology, artificial photosynthesis, solar energy, renewable energy, sustainable energy.
Research Profile

Mark D. Asta, Professor. Computational materials science.
Research Profile

Jillian Banfield, Professor. Nanoscience, Bioremediation, genomics, biogeochemistry, carbon cycling, geomicrobiology, MARS, minerology.
Research Profile

Robert Birgeneau, Professor. Physics, phase transition behavior of novel states of matter.
Research Profile

Gerbrand Ceder, Professor. Energy storage, computational modeling, machine learning.
Research Profile

Daryl Chrzan, Professor. Materials science and engineering, computational materials science, metals and metallic compounds, defects in solids, growth of nanostructures.
Research Profile

Thomas M. Devine, Professor. Synthesis of nanomaterials, nuclear power, oil production, secondary batteries for electric vehicles, computer disk drives, and synthesis and characterization of metal oxide nanowires, corrosion resistance of materials.
Research Profile

Fiona Doyle, Professor Emeritus. Electrochemistry, mineral processing, solution processing of materials, interfacial chemistry, extractive metallurgy, remediation of abandoned mines.
Research Profile

Oscar D. Dubon, Professor. Magnetic, optical materials, processing, properties in electronic.
Research Profile

Kevin Healy, Professor. Bioengineering, biomaterials engineering, tissue engineering, bioinspired materials, tissue and organ regeneration, stem cell engineering, microphysiological systems, organs on a chip, drug screening and discovery, multivalent bioconjugate therapeutics.
Research Profile

Frances Hellman, Professor. Condensed matter physics and materials science.
Research Profile

Lane W. Martin, Professor. Complex Oxides, novel electronic materials, thin films, materials processing, materials characterization, memory, logic, information technologies, energy conversion, thermal properties, dielectrics, ferroelectrics, pyroelectrics, piezoelectrics, magnetics, multiferroics, transducers, devices.
Research Profile

Phillip B. Messersmith, Professor. Biologically inspired materials, regenerative medicine, biointerfacial phenomena, biological materials, medical adhesion, polymers.
Research Profile

Andrew M. Minor, Professor. Metallurgy, nanomechanics, in situ TEM, electron microscopy of soft materials.
Research Profile

Kristin A. Persson, Professor. Lithium-ion Batteries.
Research Profile

R. Ramesh, Professor. Processing of complex oxide heterostructures, nanoscale characterization/device structures, thin film growth and materials physics of complex oxides, materials processing for devices, information technologies.
Research Profile

Robert O. Ritchie, Professor. Structural materials, mechanical behavior in biomaterials, creep, fatigue and fracture of advanced metals, intermetallics, ceramics.
Research Profile

Miquel B. Salmeron, Adjunct Professor. Molecules, lasers, atoms, materials science and engineering, matter, scanning, tunneling, atomic force microscopies, x-ray photoelectron spectroscopy.
Research Profile

Mary Scott, Assistant Professor. Structural materials, Electronic, Magnetic and Optical Materials, and Chemical and Electrochemical Materials.
Research Profile

Junqiao Wu, Professor. Semiconductors, nanotechnology, energy materials.
Research Profile

Ting Xu, Professor. Polymer, nanocomposite, biomaterial, membrane, directed self-assembly, drug delivery, protein therapeutics, block copolymers, nanoparticles.
Research Profile

Peidong Yang, Professor. Materials chemistry, sensors, nanostructures, energy conversion, nanowires, miniaturizing optoelectronic devices, photovoltaics, thermoelectrics, solid state lighting.
Research Profile

Jie Yao, Associate Professor. Optical materials, Nanophotonics, optoelectronics.
Research Profile

Haimei Zheng, Associate Adjunct Professor.

Lecturers

Matthew Sherburne, Lecturer. Computational (DFT, Machine Learning, High Throughput) Materials Science and Engineering applied to the Discovery, Design and Development of materials for sustainability. The main areas are Perovskite for solar energy, Catalytic materials for CO2 reduction (catalytic work also includes biofuels and pharmaceuticals), and 2D materials for clean water.

Emeritus Faculty

Didier De Fontaine, Professor Emeritus. Phase transformations in alloys, crystallography, thermodynamics of phase changes, particularly ordering reactions, phase separation, calculations of phase equilibria by combined quantum, statistical mechanical methods.
Research Profile

Lutgard De Jonghe, Professor Emeritus. Ceramic properties, advanced ceramics, silicon carbide, densification studies, microstructure development.
Research Profile

James W. Evans, Professor Emeritus. Production of materials, particularly fluid flow, reaction kinetics, mass transport, electrochemical, electromagnetic phenomena governing processes for producing materials, metals, storing energy.
Research Profile

+ Douglas W. Fuerstenau, Professor Emeritus. Mineral processing, extractive metallurgy, application of surface, colloid chemistry to mineral/water systems, fine particle science, technology, principles of comminution, flotation, pelletizing, hydrometallurg, extraction of metals.
Research Profile

Andreas M. Glaeser, Professor Emeritus. Ceramic joining, TLP bonding, brazing, reduced-temperature joining, ceramic-metal joining, ceramic processing, surface and interface properties of ceramics, thermal barrier coatings.
Research Profile

+ Ronald Gronsky, Professor Emeritus. Internal structure of materials, engineering applications.
Research Profile

Marshal F. Merriam, Professor Emeritus.

+ J. W. Morris, Professor Emeritus. Structural materials, computational materials, the limits of strength, deformation mechanisms, non-destructive testing with SQUID microscopy, mechanisms of grain refinement in high strength steels, lead-free solders for microelectronics.
Research Profile

Matthew Tirrell, Professor Emeritus.

Eicke R. Weber, Professor Emeritus. Optical materials, magnetic materials, semiconductor thin film growth, device processing in electronic materials.
Research Profile

Faculty

Rebecca Abergel, Assistant Professor. Effects of heavy element exposure and contamination on different biological systems.
Research Profile

Lee A. Bernstein, Adjunct Professor.

Massimiliano Fratoni, Assistant Professor. Nuclear reactor design, fuel cycle analysis, fusion reactors.
Research Profile

Peter Hosemann, Professor. Microscopy, nanomaterials, Nuclear materials, material science, radiation damage, corrosion in liquid metals, materials development, materials under extremes, nuclear applications, ion beam microscopy, nanoscale mechanical testing.
Research Profile

Daniel M. Kammen, Professor. Public policy, nuclear engineering, energy, resources, risk analysis as applied to global warming, methodological studies of forecasting, hazard assessment, renewable energy technologies, environmental resource management.
Research Profile

Edward C. Morse, Professor. Applied plasma physics: fusion technology: microwaves, experimental investigation of RF plasma heating, experimental studies of compact toroids spectral method for magnetohydrodynamic stability.
Research Profile

Eric B. Norman, Professor in Residence. Professor of the Graduate School, nuclear astrophysics, experimental nuclear physics, homeland security, neutrinos.
Research Profile

Per F. Peterson, Professor. Nuclear engineering, heat and mass transfer, reactor thermal hydraulics, nuclear reactor design, radioactive waste, nuclear materials management.
Research Profile

Raluca O. Scarlat, Assistant Professor. Chemical and termophysical characterization of high-temperature molten salts and other inorganic fluids, and heat and mass transport pertaining to energy systems Electrochemistry, corrosion, thermodynamics Nuclear reactor safety analysis, licensing and design, and engineering ethics .
Research Profile

Rachel Slaybaugh, Assistant Professor. Computational methods, high performance computing, neutron transport.
Research Profile

Karl A. Van Bibber, Professor. Experimental nuclear physics, Particle Astrophysics, Accelerator Technology and Neutron Sources.
Research Profile

Kai Vetter, Professor. Nuclear physics, radiation detection, nuclear instrumentation, nuclear measurements, multi-sensor systems and data fusion, radiological resilience.
Research Profile

Jasmina L. Vujic, Professor. Nuclear engineering, numerical methods in reactor physics, neutron and photon transport, reactor core design and analysis, shielding, radiation protection, biomedical application of radiation, optimization techniques for vector, parallel computers.
Research Profile

Lecturers

Ralph E. Berger, Lecturer.

Ali Hanks, Lecturer.

Emeritus Faculty

T. Kenneth Fowler, Professor Emeritus. Plasma physics, nuclear engineering, magnetic fusion, confinement and stability of plasmas for thermonuclear fusion, fusion reactor design, spehromak compact toroid plasma confinement configuration.
Research Profile

Ehud Greenspan, Professor Emeritus. Professor of the Graduate School.

Lawrence M. Grossman, Professor Emeritus. Nuclear engineering, reactor physics, numerical approximation methods in neutron diffusion, transport theory, control and optimization theory in nuclear reactor engineering.
Research Profile

Selig N. Kaplan, Professor Emeritus. Radiation reactions, interaction of radiation of matter, detection and measurement of ionizing radiation.
Research Profile

William E. Kastenberg, Professor Emeritus. Risk management, risk assessment, nuclear reactor safety, ethical issues in emerging technologies.
Research Profile

Ka-Ngo Leung, Professor Emeritus. Professor of the Graduate School, Plasma and Ion Beam technology in microfabrication processes.

Donald R. Olander, Professor Emeritus. Nuclear engineering, nuclear materials: reactor fuel behavior, hydriding of zirconium and uranium, high-temperature kinetic and thermodynamic behavior of nuclear reactor fuels, performance of degraded nuclear fuels.
Research Profile

Contact Information

Department of Materials Science and Engineering

210 Hearst Memorial Mining Building

Phone: 510-642-3801

Fax: 510-643-5792

Visit Department Website

Department of Nuclear Engineering

Student Services

4149 Etcheverry Hall

Phone: 510-642-5760

Fax: 510-643-9685

http://www.nuc.berkeley.edu/

Engineering Student Services Advisor

Kathy Barrett

Phone: 510-642-7594

http://engineering.berkeley.edu/ESS

ess@berkeley.edu

Department Chair, Materials Science and Engineering

Daryl Chrzan, PhD

216 Hearst Memorial Mining Building

dcchrzan@berkeley.edu

Department Chair, Nuclear Engineering

Peter Hosemann, PhD

4151 Etcheverry Hall

Phone: 510-642-3477

peterh@berkeley.edu

Faculty Advisor

Massimiliano Fratoni, PhD (Department of Nuclear Engineering)

4111 Etcheverry Hall

Phone: 510-664-9079

maxfratoni@berkeley.edu

Undergraduate Student Services Advisor

Medina Kohzad

210 Hearst Memorial Mining Building

Phone: 510-642-3802

medinakohzad@berkeley.edu

Back to Top