Mechanical Engineering/ Nuclear Engineering

University of California, Berkeley

About the Program

Bachelor of Science (BS)

The joint major programs are designed for students who wish to undertake study in two areas of engineering in order to qualify for employment in either field or for positions in which competence in two fields is required. These curricula include the core courses from each of the major fields. While they require slightly increased course loads, they can be completed in four years. Both majors are shown on the student's transcript of record.

This program was established to address the interface between the two major fields. It is intended for nuclear engineering students interested in mechanical design and heat transfer as well as for mechanical engineering students who wish to further their knowledge of nuclear radiological systems and processes. Its objective is to provide students with a strong and competitive background in both majors, leading to professional careers in nuclear and radiation-based industries or to graduate study in nuclear engineering and other engineering disciplines or related fields such as medicine and physics.

Admission to the Joint Major

Admission directly to a joint major is closed to freshmen and junior transfer applicants. Students interested in a joint program may apply to change majors during specific times in their academic progress. Please see the College of Engineering joint majors website for complete details.

undefined

Major Requirements

In addition to the University, campus, and college requirements, students must fulfill the below requirements specific to their major program.

General Guidelines

  1. All technical courses taken in satisfaction of major requirements must be taken for a letter grade.

  2. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.

  3. A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.

  4. A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

For a detailed plan of study by year and semester, please see the plan of study tab.

Lower Division Requirements

MATH 1ACalculus4
MATH 1BCalculus4
MATH 53Multivariable Calculus4
MATH 54Linear Algebra and Differential Equations4
CHEM 1A
1AL
General Chemistry
and General Chemistry Laboratory 1
4
or CHEM 4A General Chemistry and Quantitative Analysis
PHYSICS 7APhysics for Scientists and Engineers4
PHYSICS 7BPhysics for Scientists and Engineers4
PHYSICS 7CPhysics for Scientists and Engineers4
ENGIN 7Introduction to Computer Programming for Scientists and Engineers4
ENGIN 25Visualization for Design2
ENGIN 26Three-Dimensional Modeling for Design2
ENGIN 27Introduction to Manufacturing and Tolerancing2
MEC ENG 40Thermodynamics3
MEC ENG C85/CIV ENG C30Introduction to Solid Mechanics3

Upper Division Requirements

MEC ENG 100Electronics for the Internet of Things4
MEC ENG 102BMechatronics Design4
MEC ENG 103Experimentation and Measurements4
MEC ENG 104Engineering Mechanics II3
MEC ENG 106Fluid Mechanics3
MEC ENG 108Mechanical Behavior of Engineering Materials4
MEC ENG 109Heat Transfer3
MEC ENG 132Dynamic Systems and Feedback3
NUC ENG 100Introduction to Nuclear Energy and Technology3
NUC ENG 101Nuclear Reactions and Radiation4
NUC ENG 104Radiation Detection and Nuclear Instrumentation Laboratory4
NUC ENG 150Introduction to Nuclear Reactor Theory4
NUC ENG 170ANuclear Design: Design in Nuclear Power Technology and Instrumentation3
Ethics requirement 13-4
Upper division technical electives: minimum 12 units 2,312
Select 6 units of upper division NUC ENG courses, in consultation with faculty adviser
Select 6 units of upper division MEC ENG courses, in consultation with faculty adviser

College Requirements

Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions: 

  1. Completion of the requirements of one engineering major program study. 
  2. A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
  3. The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
  4. All technical courses (math, science and engineering) that can fulfill requirements for the student's major must be taken on a letter graded basis (unless they are only offered P/NP). 
  5. Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed a maximum of four semesters to complete their degree requirements. (Note: junior transfers admitted missing three or more courses from the lower division curriculum are allowed five semesters.) Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters. 
  6. Adhere to all college policies and procedures as they complete degree requirements.
  7. Complete the lower division program before enrolling in upper division engineering courses. 

Humanities and Social Sciences (H/SS) Requirement

To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement, which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two reading and composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. Follow these guidelines to fulfill this requirement:

  1. Complete a minimum of six courses from the  approved Humanities/Social Sciences (H/SS) lists
  2. Courses must be a minimum of 3 semester units (or 4 quarter units).
  3. Two of the six courses must fulfill the College's Reading and Composition (R&C) requirement. These courses must be taken for a letter grade (C- or better required). The first half (R&C Part A) must be completed by the end of the freshman year; the second half (R&C Part B) must be completed by no later than the end of the sophomore year. Please see the Reading and Composition Requirement page for a complete list of R&Cs available and a list of exams that can be applied toward the R&C Part A requirement. Students can also use the Class Schedule to view R&C courses offered in a given semester.  Note: Only R&C Part A can be fulfilled with an AP, IB, or A-Level exam score. Test scores do not fulfill R&C Part B for College of Engineering students.
  4. The four additional courses must be chosen from the five areas listed in #13 below. These four courses may be taken on a pass/no pass basis.
  5. Special topics courses of 3 semester units or more will be reviewed on a case-by-case basis.
  6. Two of the six courses must be upper division (courses numbered 100-196).
  7. One of the six courses must satisfy the campus American Cultures (AC) requirement. Note that any American Cultures course of 3 units or more may be used to meet H/SS 
  8. A maximum of two exams (Advanced Placement, International Baccalaureate, or A-Level) may be used toward completion of the H/SS requirement. View the list of exams that can be applied toward H/SS requirements.
  9. No courses offered by any engineering department other than BIO ENG 100, COMPSCI C79, ENGIN 125, ENGIN 157AC, ENGIN 185, and MEC ENG 191K may be used to complete H/SS requirements.
  10. Language courses may be used to complete H/SS requirements. View the list of language options.
  11. Courses may fulfill multiple categories. For example, CY PLAN 118AC satisfies both the American Cultures requirement and one upper division H/SS requirement.
  12. Courses numbered 97, 98, 99, or above 196 may not be used to complete any H/SS requirement.
  13. The College of Engineering uses modified versions of five of the College of Letters and Science (L&S) breadth requirements lists to provide options to our students for completing the H/SS requirement. The five areas are:
  • Arts and Literature
  • Historical Studies
  • International Studies
  • Philosophy and Values
  • Social and Behavioral Sciences

Within the guidelines above, choose courses from any of the Breadth areas listed above. (Please note that you cannot use courses on the Biological Science or Physical Science Breadth list to complete the H/SS requirement.) To find course options, go to the Class Schedule, select the term of interest, and use the Breadth Requirements filter.

Class Schedule Requirements

  • Minimum units per semester: 12.0
  • Maximum units per semester:  20.5
  • Minimum technical courses: College of Engineering undergraduates must enroll each semester in no fewer than two technical courses (of a minimum of 3 units each, with the exception of Engineering 25, 26 and 27) required of the major program of study in which the student is officially declared. (Note: For most majors, normal progress will require enrolling in 3-4 technical courses each semester). Students who are not in compliance with this policy by the end of the fifth week of the semester are subject to a registration block that will delay enrollment for the following semester. 
  • All technical courses (math, science, engineering) that satisfy requirements for the major must be taken on a letter-graded basis (unless only offered as P/NP).

Minimum Academic (Grade) Requirements

  • A minimum overall and semester grade point average of 2.00 (C average) is required of engineering undergraduates. Students will be subject to dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00. 
  • Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester.
  • A minimum overall grade point average of 2.00, and a minimum 2.00 grade point average in upper division technical course work required for the major is needed to earn a Bachelor of Science in Engineering.

Unit Requirements

To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:

  • Completion of the requirements of one engineering major program of study. 
  • A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed towards B.S. degree, and no more than 4 units in any single term can be counteds.
  • A maximum of 4 units of physical education from any school attended will count towards the 120 units.
  • Passed (P) grades may account for no more than one third of the total units completed at UC Berkeley, Fall Program for Freshmen (FPF), UC Education Abroad Program (UCEAP), or UC Berkeley Washington Program (UCDC) toward the 120 overall minimum unit requirement. Transfer credit is not factored into the limit. This includes transfer units from outside of the UC system, other UC campuses, credit-bearing exams, as well as UC Berkeley Extension XB units.

Normal Progress

Students in the College of Engineering must enroll in a full-time program and make normal progress each semester toward the bachelor's degree. The continued enrollment of students who fail to achieve minimum academic progress shall be subject to the approval of the dean. (Note: Students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.) 

UC and Campus Requirements

University of California Requirements

Entry Level Writing

All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing Requirement. Satisfaction of this requirement is also a prerequisite to enrollment in all Reading and Composition courses at UC Berkeley.

American History and American Institutions

The American History and Institutions requirements are based on the principle that a U.S. resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.

Campus Requirement

American Cultures

The American Cultures requirement is a Berkeley campus requirement, one that all undergraduate students at Berkeley need to pass in order to graduate. You satisfy the requirement by passing, with a grade not lower than C- or P, an American Cultures course. You may take an American Cultures course any time during your undergraduate career at Berkeley. The requirement was instituted in 1991 to introduce students to the diverse cultures of the United States through a comparative framework. Courses are offered in more than fifty departments in many different disciplines at both the lower and upper division level.

The American Cultures requirement and courses constitute an approach that responds directly to the problem encountered in numerous disciplines of how better to present the diversity of American experience to the diversity of American students whom we now educate.

Faculty members from many departments teach American Cultures courses, but all courses have a common framework. The courses focus on themes or issues in United States history, society, or culture; address theoretical or analytical issues relevant to understanding race, culture, and ethnicity in American society; take substantial account of groups drawn from at least three of the following: African Americans, indigenous peoples of the United States, Asian Americans, Chicano/Latino Americans, and European Americans; and are integrative and comparative in that students study each group in the larger context of American society, history, or culture.

This is not an ethnic studies requirement, nor a Third World cultures requirement, nor an adjusted Western civilization requirement. These courses focus upon how the diversity of America's constituent cultural traditions have shaped and continue to shape American identity and experience.

Visit the Class Schedule or the American Cultures website for the specific American Cultures courses offered each semester. For a complete list of approved American Cultures courses at UC Berkeley and California Community Colleges, please see the American Cultures Subcommittee’s website. See your academic adviser if you have questions about your responsibility to satisfy the American Cultures breadth requirement.

Plan of Study

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the Major Requirements tab.

Freshman
FallUnitsSpringUnits
CHEM 4A or 1A and 1AL14MATH 1B4
MATH 1A4PHYSICS 7A4
ENGIN 252ENGIN 74
Reading & Composition Part A Course44Reading & Composition Part B Course44
Humanities/Social Sciences course43-4 
 17-18 16
Sophomore
FallUnitsSpringUnits
MATH 534MATH 544
PHYSICS 7B4PHYSICS 7C4
MEC ENG 1004MEC ENG 403
ENGIN 262MEC ENG C853
ENGIN 272Humanities/Social Sciences course43-4
 16 17-18
Junior
FallUnitsSpringUnits
MEC ENG 1043MEC ENG 1063
MEC ENG 1084MEC ENG 1323
MEC ENG 1093NUC ENG 1014
NUC ENG 1003NUC ENG 1504
Humanities/Social Sciences course with Ethics Content2,43-4 
 16-17 14
Senior
FallUnitsSpringUnits
MEC ENG 1034MEC ENG 102B4
NUC ENG 1044NUC ENG 170A3
Technical Electives36Technical Electives36
Humanities/Social Sciences course43-4 
 17-18 13
Total Units: 126-130

Student Learning Goals

Mechanical Engineering

LEARNING GOALS

The objectives of the Mechanical Engineering undergraduate program are to produce graduates who do the following:

  1. Vigorously engage in post-baccalaureate endeavors, whether in engineering graduate study, in engineering practice, or in the pursuit of other fields such as science, law, medicine, business or public policy.
  2. Apply their mechanical engineering education to address the full range of technical and societal problems with creativity, imagination, confidence and responsibility.
  3. Actively seek out positions of leadership within their profession and their community.
  4. Serve as ambassadors for engineering by exhibiting the highest ethical and professional standards, and by communicating the importance and excitement of this dynamic field.
  5. Retain the intellectual curiosity that motivates lifelong learning and allows for a flexible response to the rapidly evolving challenges of the 21st century.
SKILLS

Mechanical Engineering graduates have the following:

  1. An ability to apply knowledge of mathematics, science, and engineering.
  2. An ability to design and conduct experiments as well as to analyze and interpret data.
  3. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
  4. An ability to function on multi-disciplinary teams.
  5. An ability to identify, formulate, and solve engineering problems.
  6. An understanding of professional and ethical responsibility.
  7. An ability to communicate effectively.
  8. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
  9. A recognition of the need for and an ability to engage in life-long learning.
  10. A knowledge of contemporary issues.
  11. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Nuclear Engineering

MISSION

The mission of the Department of Nuclear Engineering is to maintain and strengthen the University of California's only center of excellence in nuclear engineering education and research and to serve California and the nation by improving and applying nuclear science and technology. The mission of the undergraduate degree program in Nuclear Engineering is to prepare our students to begin a lifetime of technical achievement and professional leadership in academia, government, the national laboratories, and industry.

LEARNING GOALS

The foundation of the UC Berkeley Nuclear Engineering (NE) program is a set of five key objectives for educating undergraduate students. The NE program continuously reviews these objectives internally to ensure that they meet the current needs of the students, and each spring the Program Advisory Committee meets to review the program and recommend changes to better serve students. The NE Program Advisory Committee was established in 1988 and is composed of senior leaders from industry, the national laboratories, and academia.

Nuclear engineering at UC Berkeley prepares undergraduate students for employment or advanced studies with four primary constituencies: industry, the national laboratories, state and federal agencies, and academia (graduate research programs). Graduate research programs are the dominant constituency. From 2000 to 2005, sixty-eight percent of graduating NE seniors indicated plans to attend graduate school in their senior exit surveys. To meet the needs of these constituencies, the objectives of the NE undergraduate program are to produce graduates who as practicing engineers and researchers do the following:

  1. Apply solid knowledge of the fundamental mathematics and natural (both physical and biological) sciences that provide the foundation for engineering applications.
  2. Demonstrate an understanding of nuclear processes, and the application of general natural science and engineering principles to the analysis and design of nuclear and related systems of current and/or future importance to society.
  3. Exhibit strong, independent learning, analytical and problem-solving skills, with special emphasis on design, communication, and an ability to work in teams.
  4. Demonstrate an understanding of the broad social, ethical, safety, and environmental context within which nuclear engineering is practiced.
  5. Value and practice life-long learning.

Courses

Courses

Mechanical Engineering 

Nuclear Engineering

Faculty and Instructors

+ Indicates this faculty member is the recipient of the Distinguished Teaching Award.

Faculty

Alice M. Agogino, Professor. New product development, computer-aided design and databases, theory and methods, intelligent learning systems, information retrieval and data mining, digital libraries, multiobjective and strategic product, nonlinear optimization, probabilistic modeling, supervisory.
Research Profile

M. Reza Alam, Assistant Professor. Theoretical Fluid Dynamics, Nonlinear Wave Mechanics, Ocean and Coastal Waves Phenomena, Ocean Renewable Energy (Wave, Tide and Offshore Wind Energy), Nonlinear Dynamical Systems, Fluid Flow Control, ocean renewable energy.
Research Profile

Francesco Borrelli, Associate Professor. Automotive control systems, distributed and robust constrained control, manufacturing control systems, energy efficient buildings, model predictive control .
Research Profile

Van P. Carey, Professor. Mechanical engineering, non-equilibirum thermodynamics, statistical thermodynamics, microscale thermophysics, biothermodynamics, computer aided thermal design, thermodynamic analysis of green manufacturing.
Research Profile

James Casey, Professor. Continuum mechanics, finite elasticity, continuum thermodynamics, plasticity, theories of elastic-plastic materials, history of mechanics, dynamics.
Research Profile

Jyh-Yuan Chen, Professor. Computational modeling of reactive systems, turbulent flows, combustion chemical kinetics.
Research Profile

Chris Dames, Associate Professor.
Research Profile

Carlos Fernandez-Pello, Professor. Biofuels, heat transfer, fire, combustion, ignition and fire spread, wildland fire spotting, smoldering and flaming, small scale energy generation.
Research Profile

Michael Frenklach, Professor. Silicon carbide, chemical kinetics, computer modeling, combustion chemistry, pollutant formation (NOx, soot), shock tube, chemical vapor deposition of diamond films, homogeneous nucleation of silicon, diamond powders, interstellar dust formation.
Research Profile

Kosa Goucher-Lambert, Assistant Professor. Design theory, methodology, and automation: decision-making applied to engineering teams and individuals, ideation and creativity, analogical reasoning in design, preference modeling and design attribute optimization, design cognition, neuroimaging methods applied to design, sustainable design, new product development, crowdsourcing and collaboration.

Costas P. Grigoropoulos, Professor. Heat transfer, laser materials processing, nano-manufacturing, energy systems and technology.
Research Profile

Grace Gu, Assistant professor. Composites, additive manufacturing, fracture mechanics, topology optimization, machine learning, finite element analysis, and bioinspired materials.
Research Profile

Roberto Horowitz, Professor. Adaptive control, learning and nonlinear control, control of robot manipulators, computer mechatronics systems, micro-electromechanical systems (MEMS), intelligent vehicle, highways systems.
Research Profile

George C. Johnson, Professor. X-rays, plasticity, elasticity, instrumentation, sensors, acoustoelasticity, materials behavior, materials characterization, texture analysis, thin shells deformation, ultrasonic stress analysis.
Research Profile

Homayoon Kazerooni, Professor. Robotics, bioengineering, design, control systems, mechatronics, automated manufacturing, human-machine systems.
Research Profile

Tony M. Keaveny, Professor. Biomechanics of bone, orthopaedic biomechanics, design of artificial joints, osteoporosis, finite element modeling, clinical biomechanics.
Research Profile

Kyriakos Komvopoulos, Professor. Contact mechanics, fracture and fatigue of engineering materials, finite element modeling of surface contact and machining, thin-film processing and characterization, adhesion and fatigue of MEMS devices, plasma-assisted surface functionalization of biomaterials, surface patterning for cell adhesion and growth control, mechanics and tribology of magnetic recording devices, mechanotransduction effects in natural cartilage, microfibrous scaffolds for tissue engineering, surface nanoengineering techniques, tribology and mechanics of artificial joints.
Research Profile

Dorian Liepmann, Professor. Bioengineering, mechanical engineering, bioMEMS, biosensors, microfluid dynamics, experimental biofluid dynamics, hemodynamics, valvular heart disease, cardiac flows, arterial flows.
Research Profile

+ Dennis K. Lieu, Professor. Actuators, magnetics, acoustics, electromechanical devices, rolling elements, spindle motors, structural mechanics.
Research Profile

Liwei Lin, Professor. Nanotechnology, MEMS (microelectromechanical systems), NEMS (nanoelectromechanical systems), design and manufacturing of microsensors, microactuators, development of micromachining processes, silicon surface/bulk micromachining, micromolding process.
Research Profile

Fai Ma, Professor. Dynamical systems with inherent uncertainties, vibration, stochastic simulation.
Research Profile

Simo Aleksi Makiharju, Assistant Professor.

Samuel Mao, Associate Adjunct Professor. Mechanical engineering, processing, materials, energy transport, conversion and storage, nano, micro and meso scale, phenomena and devices, laser-material interactions, nonlinear science.
Research Profile

Sara Mcmains, Associate Professor. Geometric and solid modeling, general purpose computation on the GPU (GPGPU), CAD/CAM, computational geometry, layered manufacturing, computer graphics and visualization, virtual prototyping, virtual reality.
Research Profile

Mohammad Mofrad, Professor. Nuclear pore complex and nucleocytoplasmic transport, mechanobiology of disease, cellular mechanotransduction, integrin-mediated focal adhesions.
Research Profile

Stephen Morris, Professor. Continuum mechanics, micro mechanics of solid-solid phase changes, interfacial phenomena (evaporating thin films), electroporation .
Research Profile

Grace O'Connell, Assistant Professor. Tissue engineering, biomechanics, intervertebral disc, cartilage.
Research Profile

+ Oliver O'Reilly, Professor. Continuum mechanics, vibrations, dynamics.
Research Profile

+ Andrew Packard, Professor. Design, robustness issues in control analysis, linear algebra, numerical algorithms in control problems, applications of system theory to aerospace problems, flight control, control of fluid.
Research Profile

Panayiotis Papadopoulos, Professor. Continuum mechanics, computational mechanics, contact mechanics, computational plasticity, materials modeling, solid mechanics, applied mathematics, dynamics of pseudo-rigid bodies.
Research Profile

+ Kameshwar Poolla, Professor. Cybersecurity, modeling, control, renewable energy, estimation, integrated circuit design and manufacturing, smart grids.
Research Profile

+ Lisa Pruitt, Professor. Tissue biomechanics, biomaterial science, fatigue and fracture micromechanisms, orthopedic polymers for total joint replacement, cardiovascular biomaterials, synthetic cartilage, acrylic bone cements, tribology of diamond and DLCs.
Research Profile

Robert O. Ritchie, Professor. Structural materials, mechanical behavior in biomaterials, creep, fatigue and fracture of advanced metals, intermetallics, ceramics.
Research Profile

S. Shankar Sastry, Professor. Computer science, robotics, arial robots, cybersecurity, cyber defense, homeland defense, nonholonomic systems, control of hybrid systems, sensor networks, interactive visualization, robotic telesurgery, rapid prototyping.
Research Profile

Omer Savas, Professor. Fluid mechanics.
Research Profile

Shawn Shadden, Associate Professor.

Lydia Sohn, Professor. Micro-nano engineering.
Research Profile

David Steigmann, Professor. Finite elasticity, mechanics, continuum, shell theory, variational methods, stability, surface stress, capillary phenomena, mechanics of thin films.
Research Profile

Hannah Stuart, Assistant Professor. Dexterous manipulation, bioinspired design, soft and multi-material mechanisms, skin contact conditions, tactile sensing and haptics.
Research Profile

Andrew Szeri, Professor. Biomedical engineering, fluid dynamics, dynamical systems.
Research Profile

Hayden Taylor, Assistant Professor. Manufacturing, microfabrication, nanofabrication, semiconductor manufacturing, computational mechanics, nanoimprint lithography.
Research Profile

Masayoshi Tomizuka, Professor. Mechatronics, control systems theory, digital control, dynamic systems, mechanical vibrations, adaptive and optimal control, motion control.
Research Profile

Paul K. Wright, Professor. Mechanical and electrical engineering design, 3D-printing, manufacturing, energy systems, wireless sensor networks, sensors/MEMS/NEMS, IT systems, automated manufacturing and inspection.
Research Profile

Kazuo Yamazaki, Professor. Etc , micro custom diamond tool design and fabrication system, CNC machine tool control software and hardware system, ultrasonic milling, intelligent manufacturing systems, mechatronics control hardware and software for manufacturing processes and equipment, computer aided manufacturing system for five axis, milling - turning integrated machining process, nano/micro mechanical machining processes and equipment, precision metrology for nano/micro mechanical machining, Non-traditional manufacturing processes such as electric discharge machining, laser machining and electron beam finishing.
Research Profile

Ronald W. Yeung, Professor. Mathematical modeling, hydromechanics, naval architecture, numerical fluid mechanics, offshore mechanics, ocean processes, separated flows, wave-vorticity interaction, vortex-induced vibrations, stratified fluid flow, ocean energy, green ships, tidal energy, multi-hull flow physics, Helmholtz resonance, ship motion instabilities, tank resonance.
Research Profile

Xiang Zhang, Professor. Mechanical engineering, rapid prototyping, semiconductor manufacturing, photonics, micro-nano scale engineering, 3D fabrication technologies, microelectronics, micro and nano-devices, nano-lithography, nano-instrumentation, bio-MEMS.
Research Profile

+ Tarek Zohdi, Professor. Finite element methods, computational methods for advanced manufacturing, micro-structural/macro-property inverse problems involving optimization and design of new materials, modeling and simulation of high-strength fabric, modeling and simulation of particulate/granular flows, modeling and simulation of multiphase/composite electromagnetic media, modeling and simulation of the dynamics of swarms.
Research Profile

Lecturers

George Anwar, Lecturer.

+ Sara Beckman, Senior Lecturer SOE. Business, innovation, management, product development, operations strategy, environmental supply chain management.
Research Profile

Robert Hennigar, Lecturer.

Marcel Kristel, Lecturer.

Christopher Layne Myers, Lecturer.

David B. Rich, Lecturer.

Michael Shiloh, Lecturer.

Julie Sinistore, Lecturer.

Kourosh (Ken) Youssefi, Lecturer.

Faculty

Rebecca Abergel, Assistant Professor. Effects of heavy element exposure and contamination on different biological systems.
Research Profile

Lee A. Bernstein, Adjunct Professor.

Massimiliano Fratoni, Assistant Professor. Nuclear reactor design, fuel cycle analysis, fusion reactors.
Research Profile

Ehud Greenspan, Professor. Professor of the Graduate School.

Peter Hosemann, Associate Professor. Microscopy, nanomaterials, Nuclear materials, material science, radiation damage, corrosion in liquid metals, materials development, materials under extremes, nuclear applications, ion beam microscopy, nanoscale mechanical testing.
Research Profile

Daniel M. Kammen, Professor. Public policy, nuclear engineering, energy, resources, risk analysis as applied to global warming, methodological studies of forecasting, hazard assessment, renewable energy technologies, environmental resource management.
Research Profile

Ka-Ngo Leung, Professor. Professor of the Graduate School, Plasma and Ion Beam technology in microfabrication processes.

Edward C. Morse, Professor. Applied plasma physics: fusion technology: microwaves, experimental investigation of RF plasma heating, experimental studies of compact toroids spectral method for magnetohydrodynamic stability.
Research Profile

Eric B. Norman, Professor. Professor of the Graduate School, nuclear astrophysics, experimental nuclear physics, homeland security, neutrinos.
Research Profile

Per F. Peterson, Professor. Nuclear engineering, heat and mass transfer, reactor thermal hydraulics, nuclear reactor design, radioactive waste, nuclear materials management.
Research Profile

Raluca O. Scarlat, Assistant Professor. Chemical and termophysical characterization of high-temperature molten salts and other inorganic fluids, and heat and mass transport pertaining to energy systems Electrochemistry, corrosion, thermodynamics Nuclear reactor safety analysis, licensing and design, and engineering ethics .
Research Profile

Rachel Slaybaugh, Assistant Professor. Computational methods, high performance computing, neutron transport.
Research Profile

Karl A. Van Bibber, Professor. Experimental nuclear physics, Particle Astrophysics, Accelerator Technology and Neutron Sources.
Research Profile

Kai Vetter, Professor.

Jasmina L. Vujic, Professor. Nuclear engineering, numerical methods in reactor physics, neutron and photon transport, reactor core design and analysis, shielding, radiation protection, biomedical application of radiation, optimization techniques for vector, parallel computers.
Research Profile

Lecturers

Ralph E. Berger, Lecturer.

Alan Michael Bolind, Lecturer.

Emeritus Faculty

T. Kenneth Fowler, Professor Emeritus. Plasma physics, nuclear engineering, magnetic fusion, confinement and stability of plasmas for thermonuclear fusion, fusion reactor design, spehromak compact toroid plasma confinement configuration.
Research Profile

Lawrence M. Grossman, Professor Emeritus. Nuclear engineering, reactor physics, numerical approximation methods in neutron diffusion, transport theory, control and optimization theory in nuclear reactor engineering.
Research Profile

Selig N. Kaplan, Professor Emeritus. Radiation reactions, interaction of radiation of matter, detection and measurement of ionizing radiation.
Research Profile

William E. Kastenberg, Professor Emeritus. Risk management, risk assessment, nuclear reactor safety, ethical issues in emerging technologies.
Research Profile

Donald R. Olander, Professor Emeritus. Nuclear engineering, nuclear materials: reactor fuel behavior, hydriding of zirconium and uranium, high-temperature kinetic and thermodynamic behavior of nuclear reactor fuels, performance of degraded nuclear fuels.
Research Profile

Contact Information

Mechanical Engineering Program

6141 Etcheverry Hall

Phone: 510-642-1338

Fax: 510-642-6163

Visit the Program website

Department Chair, Mechanical Engineering

Professor Roberto Horowitz

6143 Etcheverry Hall

horowitz@berkeley.edu

Department Chair, Nuclear Engineering

Professor Peter Hosemann

4153 Etcheverry Hall

Phone: 510-642-3477

peterh@berkeley.edu

Departmental Adviser, ME

Ricky Vides

6193 Etcheverry Hall

Phone: 510-642-4094

rickyv72@berkeley.edu

Departmental Adviser, NE

Kirsten Wimple Hall

4149 Etcheverry Hall

Phone: 510-642-5760

kirstenw@berkeley.edu

ESS Adviser/Joint Majors

Kathy Barrett

kbarrett@berkeley.edu

Engineering Student Services

(ESS)

230 Bechtel Engineering Center

Phone: 510-642-7594

ess@berkeley.edu

Faculty Adviser

Massimiliano Fratoni, PhD (Department of Nuclear Engineering)

4111 Etcheverry Hall

Phone: 510-664-9079

maxfratoni@berkeley.edu

Back to Top