Nuclear Engineering

University of California, Berkeley

About the Program

Bachelor of Science (BS)

The program is designed to prepare students for a career in industry, the national laboratories, or in state or federal regulatory agencies. The program, leading to a Bachelor of Science (BS) degree in Nuclear Engineering, emphasizes study in the following areas of nuclear engineering: nuclear reactions and radiation, introduction to medical imaging, nuclear reactor theory and design, fusion power engineering, radioactive waste management, radiological and biophysics, and nuclear materials.

Many students will go on to complete a one-year master's degree program (the department does not have a fifth-year MS program). Students interested in careers in scientific research or in college teaching go on to complete the doctorate.

Accreditation

This program is accredited by the Engineering Accreditation Commission of ABET.

Admission to the Major

Prospective undergraduates to the College of Engineering will apply for admission to a specific program in the College. For further information, please see the College of Engineering's website.

Admission to Engineering via a Change of College application for current UC Berkeley students is highly unlikely and very competitive as there are few, if any, spaces that open in the College each year to students admitted to other colleges at UC Berkeley. For further information regarding a Change of College to Engineering, please see the College's website.

Minor Program

The department offers a minor in Nuclear Engineering (NE) that is open to all students who are not majoring in NE and who have completed the necessary prerequisites for the minor requirements. For information regarding the prerequisites, please see the Minor Requirements tab on this page.

The Nuclear Engineering (NE) minor is open to any undergraduate who satisfies the following requirements:

  • Declared a major (not NE) on the UC Berkeley campus.
  • A cumulative GPA of at least 3.0 at the time of applying.
  • Completion of the minor must not delay graduation.

To apply for the minor, submit the Petition for Admission to the Undergraduate Minor to the undergraduate adviser after completion of the prerequisite courses. Upon completion of the minor requirements. Submit a Petition for Completion of the Undergraduate Minor to the undergraduate adviser.

Joint Majors

The Department of Nuclear Engineering also offers three joint majors with other departments in the College of Engineering and one joint major with a Department in the College of Chemistry. For further information on these programs, please click the links below:
Chemical Engineering/Nuclear Engineering (Department of Chemical and Biomolecular Engineering, College of Chemistry)
Electrical Engineering and Computer Sciences/Nuclear Engineering (Department of Electrical Engineering and Computer Sciences)
Materials Science and Engineering/Nuclear Engineering (Department of Materials Science and Engineering)
Mechanical Engineering/Nuclear Engineering (Department of Mechanical Engineering)

Visit Department Website

Major Requirements

In addition to the University, campus, and college requirements, students must fulfill the below requirements specific to their major program.

General Guidelines

  1. All technical courses (courses in engineering, mathematics, chemistry, physics, statistics, biological sciences, and computer science) must be taken for a letter grade.

  2. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.

  3. A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.

  4. A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

For a detailed plan of study by year and semester, please see the Plan of Study tab.

Lower Division Requirements

MATH 1ACalculus4
MATH 1BCalculus4
MATH 53Multivariable Calculus4
MATH 54Linear Algebra and Differential Equations4
CHEM 1A
1AL
General Chemistry
and General Chemistry Laboratory 1
4
or CHEM 4A General Chemistry and Quantitative Analysis
PHYSICS 7APhysics for Scientists and Engineers4
PHYSICS 7BPhysics for Scientists and Engineers4
PHYSICS 7CPhysics for Scientists and Engineers4
ENGIN 7Introduction to Computer Programming for Scientists and Engineers4
ENGIN 45
45L
Properties of Materials
and Properties of Materials Laboratory
4
EL ENG 16ADesigning Information Devices and Systems I3-4
or PHYSICS 111A Instrumentation Laboratory
NUC ENG 24Freshman Seminars 21
1

CHEM 4A is intended for students majoring in chemistry or a closely-related field.

2

NUC ENG 24 may be taken on a P/NP basis. New transfer admits are exempt from NUC ENG 24.

Upper Division Requirements

ENGIN 115Engineering Thermodynamics4
ENGIN 117Methods of Engineering Analysis3
NUC ENG 100Introduction to Nuclear Engineering 13
NUC ENG 101Nuclear Reactions and Radiation4
NUC ENG 104Radiation Detection and Nuclear Instrumentation Laboratory4
NUC ENG 150Introduction to Nuclear Reactor Theory4
NUC ENG 170ANuclear Design: Design in Nuclear Power Technology and Instrumentation3
Ethics Requirement 23-4
Technical Electives: Minimum 32 units (see list below) 3,432
Must include at least 17 units of upper division NUC ENG courses
The remaining 15 technical elective units must be fulfilled by taking courses in engineering and science of which a minimum of 12 units must be upper division.

Upper Division Technical Electives

The following groups of electives should help undergraduate students focus their choices on specific professional goals. The electives selected need not be from any single group.

Beam and Accelerator Applications
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 180Introduction to Controlled Fusion3
PHYSICS 110AElectromagnetism and Optics4
or EL ENG 117 Electromagnetic Fields and Waves
PHYSICS 110BElectromagnetism and Optics4
or EL ENG 117 Electromagnetic Fields and Waves
PHYSICS 129Particle Physics4
PHYSICS 139Special Relativity and General Relativity3
PHYSICS 142Introduction to Plasma Physics4
Bionuclear Engineering
BIO ENG C165Medical Imaging Signals and Systems4
EL ENG 120Signals and Systems4
EL ENG C145BMedical Imaging Signals and Systems4
NUC ENG 107Introduction to Imaging3
NUC ENG 162Radiation Biophysics and Dosimetry3
Computational Methods
COMPSCI 169Software Engineering4
MATH 104Introduction to Analysis4
MATH 110Linear Algebra4
MATH 128ANumerical Analysis4
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
STAT 134Concepts of Probability3
STAT 150Stochastic Processes3
Fission Power Engineering
MEC ENG 106Fluid Mechanics3-4
or CHM ENG 150A Transport Processes
MEC ENG 109Heat Transfer3-4
or CHM ENG 150A Transport Processes
NUC ENG 120Nuclear Materials4
NUC ENG 124Radioactive Waste Management3
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 161Nuclear Power Engineering4
NUC ENG 167Risk-Informed Design for Advanced Nuclear Systems3
NUC ENG 175Methods of Risk Analysis3
Fusion Power Engineering
NUC ENG 120Nuclear Materials4
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 180Introduction to Controlled Fusion3
PHYSICS 110AElectromagnetism and Optics4
PHYSICS 110BElectromagnetism and Optics4
PHYSICS 142Introduction to Plasma Physics4
Homeland Security and Nonproliferation
CHEM 143Nuclear Chemistry2
NUC ENG 102Nuclear Reactions and Radiation Laboratory3
NUC ENG 107Introduction to Imaging3
NUC ENG 130Analytical Methods for Non-proliferation4
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 175Methods of Risk Analysis3
PHYSICS 110AElectromagnetism and Optics4
PHYSICS 110BElectromagnetism and Optics4
PHYSICS 111AInstrumentation Laboratory3
PHYSICS 111BAdvanced Experimentation Laboratory1-3
Materials in Nuclear Technology
MAT SCI 102Bonding, Crystallography, and Crystal Defects3
MAT SCI 104Materials Characterization4
MAT SCI 112Corrosion (Chemical Properties)3
MAT SCI 113Mechanical Behavior of Engineering Materials3
NUC ENG 120Nuclear Materials4
NUC ENG 124Radioactive Waste Management3
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 161Nuclear Power Engineering4
Nuclear Fuel Cycles and Waste Management
CHM ENG 150ATransport Processes4
CHM ENG 150BTransport and Separation Processes4
ENGIN 120Principles of Engineering Economics3
MAT SCI 112Corrosion (Chemical Properties)3
NUC ENG 120Nuclear Materials4
NUC ENG 124Radioactive Waste Management3
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 161Nuclear Power Engineering4
NUC ENG 175Methods of Risk Analysis3
Radiation and Health Physics
NUC ENG 120Nuclear Materials4
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 162Radiation Biophysics and Dosimetry3
NUC ENG 180Introduction to Controlled Fusion3
Risk, Safety and Systems Analysis
CIV ENG 193Engineering Risk Analysis3
CHM ENG 150ATransport Processes4
ENGIN 120Principles of Engineering Economics3
IND ENG 166Decision Analytics3
NUC ENG 120Nuclear Materials4
NUC ENG 124Radioactive Waste Management3
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 161Nuclear Power Engineering4
NUC ENG 167Risk-Informed Design for Advanced Nuclear Systems3
NUC ENG 175Methods of Risk Analysis3
1

Junior transfer admits are exempt from NUC ENG 100.

2

Students must take one course with ethics content. This may be fulfilled within the Humanities/Social Sciences requirement by taking one of the following courses: ANTHRO 156B, BIO ENG 100, ENGIN 125, ENGIN 157AC, ESPM 161, ESPM 162, GEOG 31, IAS 157AC, ISF 100EL & S 160BMEC ENG 191ACPHILOS 2, PHILOS 104, PHILOS 107, PB HLTH 116, SOCIOL 116.

3

Students must consult with and obtain approval from their faculty adviser no later than the fall semester of their junior year for their choices of technical electives. Students may receive up to 3 units of technical elective credit for graded research in H194 or 196.

4

Technical Electives cannot include:

Minor Requirements

Minor programs are areas of concentration requiring fewer courses than an undergraduate major. These programs are optional but can provide depth and breadth to a UC Berkeley education. The College of Engineering does not offer additional time to complete a minor, but it is usually possible to finish within the allotted time with careful course planning. Students are encouraged to meet with their ESS adviser to discuss the feasibility of completing a minor program.

All the engineering departments offer minors. Students may also consider pursuing a minor in another school or college.

General Guidelines

  1. All courses taken to fulfill the minor requirements must be taken for graded credit.

  2. A minimum overall grade point average (GPA) of 3.0 and a minimum GPA of 3.0 in the prerequisite courses is required for acceptance into the minor program.

  3. A minimum grade point average (GPA) of 2.0 is required for courses used to fulfill the minor requirements.

  4. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.

  5. Completion of the minor program cannot delay a student’s graduation.

Lower Division Prerequisites

MATH 1ACalculus4
MATH 1BCalculus4
MATH 53Multivariable Calculus4
MATH 54Linear Algebra and Differential Equations4
PHYSICS 7APhysics for Scientists and Engineers4
PHYSICS 7BPhysics for Scientists and Engineers4
PHYSICS 7CPhysics for Scientists and Engineers4
ENGIN 45Properties of Materials3

Upper Division Requirements

NUC ENG 101Nuclear Reactions and Radiation4
Select three of the following:9-12
Nuclear Reactions and Radiation Laboratory
Radiation Detection and Nuclear Instrumentation Laboratory
Introduction to Imaging
Nuclear Materials
Radioactive Waste Management
Analytical Methods for Non-proliferation
Introduction to Nuclear Reactor Theory
Introduction to Numerical Simulations in Radiation Transport
Nuclear Power Engineering
Risk-Informed Design for Advanced Nuclear Systems
Nuclear Design: Design in Nuclear Power Technology and Instrumentation
Nuclear Design: Design in Bionuclear, Nuclear Medicine, and Radiation Therapy
Methods of Risk Analysis
Introduction to Controlled Fusion

College Requirements

Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions: 

  1. Completion of the requirements of one engineering major program of study. 
  2. A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major. 
  3. The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus. 
  4. All technical courses (math, science and engineering), required of the major or not, must be taken on a letter graded basis (unless they are only offered P/NP). 
  5. Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed a maximum of four semesters to complete their degree requirements. (Note: junior transfers admitted missing three or more courses from the lower division curriculum are allowed five semesters.) Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters. 
  6. Adhere to all college policies and procedures as they complete degree requirements.
  7. Complete the lower division program before enrolling in upper division engineering courses. 

Humanities and Social Science (H/SS) Requirement

To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement, which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two reading and composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. Follow these guidelines to fulfill this requirement:

  1. Complete a minimum of six courses from the  approved Humanities/Social Sciences (H/SS) lists
  2. Courses must be a minimum of 3 semester units (or 4 quarter units).
  3. Two of the six courses must fulfill the college's Reading and Composition (R&C) requirement. These courses must be taken for a letter grade (C- or better required) and must be completed by no later than the end of the sophomore year (fourth semester of enrollment). The first half of R&C, the “A” course, must be completed by the end of the freshman year; the second half of R&C, the “B" course, must be completed by no later than the end of the sophomore year. View a detailed lists of courses that fulfill Reading and Composition requirements, or use the College of Letters and Sciences search engine to view R&C courses offered in a given semester. 
  4. The four additional courses must be chosen within College of Engineering guidelines from the H/SS lists (see below). These courses may be taken on a Pass/Not Passed basis (P/NP).
  5. Two of the six courses must be upper division (courses numbered 100-196).
  6. One of the six courses must satisfy the campus American Cultures requirement. For detailed lists of courses that fulfill American Cultures requirements, visit the American Cultures site. 
  7. A maximum of two exams (Advanced Placement, International Baccalaureate, or A-Level) may be used toward completion of the H/SS requirement. View the list of exams that can be applied toward H/SS requirements.
  8. Courses may fulfill multiple categories. For example, if you complete CY PLAN 118AC that would satisfy the American Cultures requirement and one upper division H/SS requirement.
  9. No courses offered by any engineering department other than BIO ENG 100, COMPSCI C79, ENGIN 125, ENGIN 157AC, MEC ENG 191K and MEC ENG 191AC may be used to complete H/SS requirements.
  10. Foreign language courses may be used to complete H/SS requirements. View the list of language options.
  11. Courses numbered 97, 98, 99, or above 196 may not be used to complete any H/SS requirement
  12. The College of Engineering uses modified versions of five of the College of Letters and Science (L&S) breadth requirements lists to provide options to our students for completing the H/SS requirement. No courses on the L&S Biological Sciences or Physical Sciences breadth lists may be used to complete H/SS requirements. Within the guidelines above, choose courses from any of the lists below.

Class Schedule Requirements

  • Minimum units per semester: 12.0.
  • Maximum units per semester:  20.5.
  • Minimum technical courses: College of Engineering undergraduates must enroll each semester in no fewer than two technical courses (of a minimum of 3 units each) required of the major program of study in which the student is officially declared.  (Note: for most majors, normal progress will require enrolling in 3-4 technical courses each semester).
  • All technical courses (math, science, engineering), required of the major or not, must be taken on a letter graded basis (unless only offered as P/NP).
  • A student's proposed schedule must be approved by a faculty adviser (or on approval from the dean or a designated staff adviser) each semester prior to enrolling in courses.

Minimum Academic (Grade) Requirements

  • A minimum overall and semester grade point average of 2.00 (C average) is required of engineering undergraduates. A student will be subject to dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00. 
  • Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required of the major curriculum each semester. A student will be subject to dismissal from the University if their upper division technical grade point average falls below 2.00. 
  • A minimum overall grade point average of 2.00, and a minimum 2.00 grade point average in upper division technical course work required of the major is needed to earn a Bachelor of Science in Engineering.

Unit Requirements

To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:

  • Completion of the requirements of one engineering major program of study. 
  • A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed towards the 120 units; a maximum of four is allowed in a given semester.
  • A maximum of 4 units of physical education from any school attended will count towards the 120 units.
  • Students may receive unit credit for courses graded P (including P/NP units taken through EAP) up to a limit of one-third of the total units taken and passed on the Berkeley campus at the time of graduation.

Normal Progress

Students in the College of Engineering must enroll in a full-time program and make normal progress each semester toward the bachelor's degree. The continued enrollment of students who fail to achieve minimum academic progress shall be subject to the approval of the dean. (Note: students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.) 

Plan of Study

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the College Requirements and Major Requirements tabs.

Freshman
FallUnitsSpringUnits
CHEM 4A or 1A and 1AL14MATH 1B4
MATH 1A4PHYSICS 7A4
Reading & Composition course from List A4ENGIN 74
Humanities/Social Sciences course3-4Reading & Composition course from List B4
NUC ENG 2421 
 16-17 16
Sophomore
FallUnitsSpringUnits
MATH 534MATH 544
PHYSICS 7B4PHYSICS 7C4
ENGIN 45
45L
4EL ENG 16A or PHYSICS 111A3-4
Humanities/Social Sciences course3-4NUC ENG 10023
 15-16 14-15
Junior
FallUnitsSpringUnits
ENGIN 1154NUC ENG 1044
ENGIN 1173NUC ENG 1504
NUC ENG 1014Technical Electives4,59
Humanities/Social Sciences course (with Ethics content)33-4 
 14-15 17
Senior
FallUnitsSpringUnits
Technical Electives4,514NUC ENG 170A3
 Technical Electives4,59
 Humanities/Social Sciences course3-4
 14 15-16
Total Units: 121-126
1

CHEM 4A is intended for students majoring in chemistry or a closely-related field.

2

NUC ENG 24 may be taken on a P/NP basis. Junior transfer admits are exempt from NUC ENG 24 and NUC ENG 100.

3

Students must take one course with ethics content. This may be fulfilled within the Humanities/Social Sciences requirement by taking one of the following courses: ANTHRO 156B, BIO ENG 100, ENGIN 125, ENGIN 157AC, ESPM 161, ESPM 162, GEOG 31, IAS 157AC, ISF 100EL & S 160BMEC ENG 191ACPHILOS 2, PHILOS 104, PHILOS 107, PB HLTH 116, SOCIOL 116.

4

32 Technical elective units must include at least 17 units of upper division NUC ENG courses. The remaining 15 technical elective units must be fulfilled by taking courses in engineering and science of which a minimum of 12 units must be upper division. See Major Requirements tab for lists of suggested electives. Students must consult with and obtain approval from their faculty adviser no later than the fall semester of their junior year for their choices of technical elective courses. Students may receive up to three units of technical elective credit for graded research in H194 or 196.

5

Technical electives cannot include:

Student Learning Goals

Mission

The mission of the Department of Nuclear Engineering is to maintain and strengthen the University of California's only center of excellence in nuclear engineering education and research and to serve California and the nation by improving and applying nuclear science and technology. The mission of the undergraduate degree program in Nuclear Engineering is to prepare our students to begin a lifetime of technical achievement and professional leadership in academia, government, the national laboratories, and industry.

Learning Goals for the Major

The foundation of the UC Berkeley Nuclear Engineering (NE) program is a set of five key objectives for educating undergraduate students. The NE program continuously reviews these objectives internally to ensure that they meet the current needs of the students, and each spring the Program Advisory Committee meets to review the program and recommend changes to better serve students. The NE Program Advisory Committee was established in 1988 and is composed of senior leaders from industry, the national laboratories, and academia.

Nuclear engineering at UC Berkeley prepares undergraduate students for employment or advanced studies with four primary constituencies: industry, the national laboratories, state and federal agencies, and academia (graduate research programs). Graduate research programs are the dominant constituency. From 2000 to 2005, sixty-eight percent of graduating NE seniors indicated plans to attend graduate school in their senior exit surveys. To meet the needs of these constituencies, the objectives of the NE undergraduate program are to produce graduates who as practicing engineers and researchers do the following:

  1. Apply solid knowledge of the fundamental mathematics and natural (both physical and biological) sciences that provide the foundation for engineering applications.
  2. Demonstrate an understanding of nuclear processes, and the application of general natural science and engineering principles to the analysis and design of nuclear and related systems of current and/or future importance to society.
  3. Exhibit strong, independent learning, analytical and problem solving skills, with special emphasis on design, communication, and an ability to work in teams.
  4. Demonstrate an understanding of the broad social, ethical, safety, and environmental context within which nuclear engineering is practiced.
  5. Value and practice life-long learning.

Courses

Nuclear Engineering

NUC ENG 24 Freshman Seminars 1 Unit

Terms offered: Fall 2017, Spring 2017, Fall 2016
The Berkeley Seminar Program has been designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Berkeley Seminars are offered in all campus departments, and topics vary from department to department and semester to semester.

Freshman Seminars: Read More [+]

NUC ENG 100 Introduction to Nuclear Engineering 3 Units

Terms offered: Spring 2017, Spring 2016
The class provides students with an overview of the contemporary nuclear energy technology with emphasis on nuclear fission as an energy source. Starting with the basic physics of the nuclear fission process, the class includes discussions on reactor control, thermal hydraulics, fuel production, and spent fuel management for various types of reactors in use around the world as well as analysis of safety and other nuclear-related issues. This class is
intended for sophomore NE students, but is also open to transfer students and students from other majors.
Introduction to Nuclear Engineering: Read More [+]

NUC ENG 101 Nuclear Reactions and Radiation 4 Units

Terms offered: Fall 2017, Fall 2016, Fall 2015
Energetics and kinetics of nuclear reactions and radioactive decay, fission, fusion, and reactions of low-energy neutrons; properties of the fission products and the actinides; nuclear models and transition probabilities; interaction of radiation with matter.

Nuclear Reactions and Radiation: Read More [+]

NUC ENG 102 Nuclear Reactions and Radiation Laboratory 3 Units

Terms offered: Spring 2016, Spring 2015, Spring 2013
Laboratory course in nuclear physics. Experiments will allow students to directly observe phenomena discussed in Nuclear Engineering 101. These experiments will give students exposure to (1) electronics, (2) alpha, beta, gamma radiation detectors, (3) radioactive sources, and (4) experimental methods relevant for all aspects of nuclear science. Experiments include: Rutherford scattering, x-ray fluorescence, muon lifetime, gamma-gamma angular
correlations, Mossbauer effect, and radon measurements.
Nuclear Reactions and Radiation Laboratory: Read More [+]

NUC ENG 104 Radiation Detection and Nuclear Instrumentation Laboratory 4 Units

Terms offered: Spring 2017, Spring 2016, Spring 2015
Basic science of radiation measurement, nuclear instrumentation, neutronics, radiation dosimetry. The lectures emphasize the principles of radiation detection. The weekly laboratory applies a variety of radiation detection systems to the practical measurements of interest for nuclear power, nuclear and non-nuclear science, and environmental applications. Students present goals and approaches of the experiements being performed.

Radiation Detection and Nuclear Instrumentation Laboratory: Read More [+]

NUC ENG 107 Introduction to Imaging 3 Units

Terms offered: Fall 2016, Fall 2014, Fall 2012
Introduction to medical imaging physics and systems, including x-ray computed tomography (CT), nuclear magnetic resonance (NMR), positron emission tomography (PET), and SPECT; basic principles of tomography and an introduction to unfolding methods; resolution effects of counting statistics, inherent system resolution and human factors.

Introduction to Imaging: Read More [+]

NUC ENG 120 Nuclear Materials 4 Units

Terms offered: Fall 2017, Fall 2016, Fall 2015
Effects of irradiation on the atomic and mechanical properties of materials in nuclear reactors. Fission product swelling and release; neutron damage to structural alloys; fabrication and properties of uranium dioxide fuel.

Nuclear Materials: Read More [+]

NUC ENG 124 Radioactive Waste Management 3 Units

Terms offered: Spring 2017, Spring 2016, Spring 2015
Components and material flowsheets for nuclear fuel cycle, waste characteristics, sources of radioactive wastes, compositions, radioactivity and heat generation; waste treatment technologies; waste disposal technologies; safety assessment of waste disposal.

Radioactive Waste Management: Read More [+]

NUC ENG 130 Analytical Methods for Non-proliferation 4 Units

Terms offered: Spring 2017, Spring 2016, Spring 2015
Use of nuclear measurement techniques to detect clandestine movement and/or possession of nuclear materials by third parties. Nuclear detection, forensics, signatures, and active and passive interrogation methodologies will be explored. Techniques currently deployed for arms control and treaty verification will be discussed. Emphasis will be placed on common elements of detection technology from the viewpoint of resolution of threat signatures
from false positives due to naturally occurring radioactive material. Laboratory will involve experiments conducted in the Nucleonics Laboratory featuring passive and active neutron signals, gamma ray detection, fission neutron multiplicity, and U and Pu isotopic identification and age determination. Students should be familiar with alpha, beta, gamma, and neutron radiation and basic concepts of nuclear fission.
Analytical Methods for Non-proliferation: Read More [+]

NUC ENG 150 Introduction to Nuclear Reactor Theory 4 Units

Terms offered: Spring 2017, Spring 2016, Spring 2015
Neutron interactions, nuclear fission, and chain reacting systematics in thermal and fast nuclear reactors. Diffusion and slowing down of neutrons. Criticality calculations. Nuclear reactor dynamics and reactivity feedback. Production of radionuclides in nuclear reactors.

Introduction to Nuclear Reactor Theory: Read More [+]

NUC ENG 155 Introduction to Numerical Simulations in Radiation Transport 3 Units

Terms offered: Spring 2017, Spring 2016, Spring 2015
Computational methods used to analyze radiation transport described by various differential, integral, and integro-differential equations. Numerical methods include finite difference, finite elements, discrete ordinates, and Monte Carlo. Examples from neutron and photon transport; numerical solutions of neutron/photon diffusion and transport equations. Monte Carlo simulations of photon and neutron transport. An overview of optimization techniques
for solving the resulting discrete equations on vector and parallel computer systems.
Introduction to Numerical Simulations in Radiation Transport: Read More [+]

NUC ENG 161 Nuclear Power Engineering 4 Units

Terms offered: Fall 2017, Fall 2016, Fall 2015
Energy conversion in nuclear power systems; design of fission reactors; thermal and structural analysis of reactor core and plant components; thermal-hydraulic analysis of accidents in nuclear power plants; safety evaluation and engineered safety systems.

Nuclear Power Engineering: Read More [+]

NUC ENG 162 Radiation Biophysics and Dosimetry 3 Units

Terms offered: Spring 2017, Spring 2016, Spring 2015
Interaction of radiation with matter; physical, chemical, and biological effects of radiation on human tissues; dosimetry units and measurements; internal and external radiation fields and dosimetry; radiation exposure regulations; sources of radiation and radioactivity; basic shielding concepts; elements of radiation protection and control; theories and models for cell survival, radiation sensitivity, carcinogenesis, and dose calculation.

Radiation Biophysics and Dosimetry: Read More [+]

NUC ENG 167 Risk-Informed Design for Advanced Nuclear Systems 3 Units

Terms offered: Fall 2017, Fall 2015, Fall 2014
Project-based class for design and licensing of nuclear facilities, including advanced reactors. Elements of a project proposal. Regulatory framework and use of deterministic and probabilistic licensing criteria. Siting criteria. External and internal events. Identification and analysis of design basis and beyond design basis events. Communication with regulators and stakeholders. Ability to work in and contribute to a design team.

Risk-Informed Design for Advanced Nuclear Systems: Read More [+]

NUC ENG 170A Nuclear Design: Design in Nuclear Power Technology and Instrumentation 3 Units

Terms offered: Spring 2017, Spring 2016, Spring 2015
Design of various fission and fusion power systems and other physically based applications. Each semester a topic will be chosen by the class as a whole. In addition to technology, the design should address issues relating to economics, the environment, and risk assessment.

Nuclear Design: Design in Nuclear Power Technology and Instrumentation: Read More [+]

NUC ENG 170B Nuclear Design: Design in Bionuclear, Nuclear Medicine, and Radiation Therapy 3 Units

Terms offered: Spring 2010, Spring 2009, Spring 2008
A systems approach to the development of procedures for nuclear medicine and radiation therapy. Each semester a specific procedure will be studied and will entail the development of the biological and physiological basis for a procedure, the chemical and biochemical characteristics of appropriate drugs, dosimetric requirements and limitations, the production and distribution of radionuclides and/or radiation fields to be applied, and the
characteristics of the instrumentation to be used.
Nuclear Design: Design in Bionuclear, Nuclear Medicine, and Radiation Therapy: Read More [+]

NUC ENG 175 Methods of Risk Analysis 3 Units

Terms offered: Fall 2013, Fall 2011, Fall 2009
Methodological approaches for the quantification of technological risk and risk based decision making. Probabilistic safety assessment, human health risks, environmental and ecological risk analysis.

Methods of Risk Analysis: Read More [+]

NUC ENG 180 Introduction to Controlled Fusion 3 Units

Terms offered: Fall 2017, Fall 2016, Fall 2015
Introduction to energy production by controlled thermonuclear reactions. Nuclear fusion reactions, energy balances for fusion systems, survey of plasma physics; neutral beam injection; RF heating methods; vacuum systems; tritium handling.

Introduction to Controlled Fusion: Read More [+]

NUC ENG H194 Honors Undergraduate Research 1 - 4 Units

Terms offered: Fall 2017, Spring 2017, Fall 2016
Supervised research. Students who have completed three or more upper division courses may pursue original research under the direction of one of the members of the staff. A final report or presentation is required. A maximum of three units of H194 may be used to fulfill a technical elective requirement in the Nuclear Engineering general program or joint major programs.

Honors Undergraduate Research: Read More [+]

NUC ENG 198 Group Study for Advanced Undergraduates 1 - 4 Units

Terms offered: Fall 2017, Spring 2017, Fall 2016
Group studies of selected topics.

Group Study for Advanced Undergraduates: Read More [+]

NUC ENG 199 Supervised Independent Study 1 - 4 Units

Terms offered: Fall 2017, Spring 2017, Fall 2016
Supervised independent study. Enrollment restrictions apply; see the Introduction to Courses and Curricula section of this catalog.

Supervised Independent Study: Read More [+]

NUC ENG S199 Supervised Independent Study 1 - 4 Units

Terms offered: Prior to 2007
Supervised independent study. Please see section of the for description and prerequisites.

Supervised Independent Study: Read More [+]

Faculty and Instructors

Faculty

Joonhong Ahn, Professor. Radioactive waste management, mathematical safety assessment of deep geologic repository, transport of radionuclides in geologic formations, environmental impact of severe accidents.
Research Profile

Lee A. Bernstein, Adjunct Professor.

Massimiliano Fratoni, Assistant Professor. Nuclear reactor design, fuel cycle analysis, fusion reactors.
Research Profile

Ehud Greenspan, Professor.

Peter Hosemann, Associate Professor. Microscopy, nanomaterials, Nuclear materials, material science, radiation damage, corrosion in liquid metals, materials development, materials under extremes, nuclear applications, ion beam microscopy, nanoscale mechanical testing.
Research Profile

Daniel M. Kammen, Professor. Public policy, nuclear engineering, energy, resources, risk analysis as applied to global warming, methodological studies of forecasting, hazard assessment, renewable energy technologies, environmental resource management.
Research Profile

Ka-Ngo Leung, Professor. Plasma and Ion Beam technology in microfabrication processes.

Digby D. Macdonald, Professor in Residence.

Edward C. Morse, Professor. Applied plasma physics: fusion technology: microwaves, experimental investigation of RF plasma heating, experimental studies of compact toroids spectral method for magnetohydrodynamic stability.
Research Profile

Eric B. Norman, Professor. Nuclear astrophysics, experimental nuclear physics, homeland security, neutrinos.
Research Profile

Per F. Peterson, Professor. Nuclear engineering, heat and mass transfer, reactor thermal hydraulics, nuclear reactor design, radioactive waste, nuclear materials management.
Research Profile

Rachel Slaybaugh, Assistant Professor. Computational methods, high performance computing, neutron transport.
Research Profile

Karl A. Van Bibber, Professor. Experimental nuclear physics, Particle Astrophysics, Accelerator Technology and Neutron Sources.
Research Profile

Kai Vetter, Professor in Residence.

Jasmina L. Vujic, Professor. Nuclear engineering, numerical methods in reactor physics, neutron and photon transport, reactor core design and analysis, shielding, radiation protection, biomedical application of radiation, optimization techniques for vector, parallel computers.
Research Profile

Lecturers

Ralph E. Berger, Lecturer.

Alan Michael Bolind, Lecturer.

Emeritus Faculty

T. Kenneth Fowler, Professor Emeritus. Plasma physics, nuclear engineering, magnetic fusion, confinement and stability of plasmas for thermonuclear fusion, fusion reactor design, spehromak compact toroid plasma confinement configuration.
Research Profile

Lawrence M. Grossman, Professor Emeritus. Nuclear engineering, reactor physics, numerical approximation methods in neutron diffusion, transport theory, control and optimization theory in nuclear reactor engineering.
Research Profile

Selig N. Kaplan, Professor Emeritus. Radiation reactions, interaction of radiation of matter, detection and measurement of ionizing radiation.
Research Profile

William E. Kastenberg, Professor Emeritus. Risk management, risk assessment, nuclear reactor safety, ethical issues in emerging technologies.
Research Profile

Donald R. Olander, Professor Emeritus. Nuclear engineering, nuclear materials: reactor fuel behavior, hydriding of zirconium and uranium, high-temperature kinetic and thermodynamic behavior of nuclear reactor fuels, performance of degraded nuclear fuels.
Research Profile

Contact Information

Department of Nuclear Engineering

4155 Etcheverry Hall

Phone: 510-642-4077

Fax: 510-643-9685

Visit Department Website

Department Chair

Karl A. Van Bibber, PhD

Phone: 510-542-3477

karl.van.bibber@nuc.berkeley.edu

Faculty Adviser, Minor Program

Joonhing Ahn, PhD. DEng

4165 Etcheverry Hall

Phone: 510-642-5107

ahn@nuc.berkeley.edu

Department Student Services Adviser

Kirsten Wimple Hall

Phone: 510-642-5760

kirstenw@nuc.berkeley.edu

Engineering Student Services Adviser

Chaniqua Butscher

Phone: 510-642-7594

http://engineering.berkeley.edu/ESS

chaniqua@berkeley.edu

Back to Top