Nuclear Engineering

University of California, Berkeley

About the Program

Bachelor of Science (BS)

The program is designed to prepare students for a career in industry, the national laboratories, or in state or federal regulatory agencies. The program, leading to a Bachelor of Science (BS) degree in Nuclear Engineering, emphasizes study in the following areas of nuclear engineering: nuclear reactions and radiation, introduction to medical imaging, nuclear reactor theory and design, fusion power engineering, radioactive waste management, radiological and biophysics, and nuclear materials.

Many students will go on to complete a one-year master's degree program (the department does not have a fifth-year MS program). Students interested in careers in scientific research or in college-level teaching go on to complete the doctorate.

Accreditation

This program is accredited by the Engineering Accreditation Commission of ABET.

Admission to the Major

Prospective undergraduates to the College of Engineering will apply for admission to a specific program in the College. For further information, please see the College of Engineering's website.

Admission to Engineering via a Change of College application for current UC Berkeley students is highly unlikely and very competitive as there are few, if any, spaces that open in the College each year to students admitted to other colleges at UC Berkeley. For further information regarding a Change of College to Engineering, please see the College's website.

Minor Program

The department offers a minor in Nuclear Engineering (NE) that is open to all students who are not majoring in NE and who have completed the necessary prerequisites for the minor requirements. For information regarding the prerequisites, please see the Minor Requirements tab on this page.

The Nuclear Engineering (NE) minor is open to any undergraduate who satisfies the following requirements:

  • Declaration of a major (not NE) on the UC Berkeley campus
  • A cumulative GPA of at least 3.0 at the time of applying
  • Completion of the minor must not delay graduation

To apply for the minor, submit the Petition for Admission to the Undergraduate Minor to the undergraduate adviser after completion of the prerequisite courses. Upon completion of the minor requirements, submit a Petition for Completion of the Undergraduate Minor to the undergraduate adviser.

Joint Majors

The Department of Nuclear Engineering also offers three joint majors with other departments in the College of Engineering and one joint major with a Department in the College of Chemistry. For further information on these programs, please click the links below:
Chemical Engineering/Nuclear Engineering (Department of Chemical and Biomolecular Engineering, College of Chemistry)
Electrical Engineering and Computer Sciences/Nuclear Engineering (Department of Electrical Engineering and Computer Sciences)
Materials Science and Engineering/Nuclear Engineering (Department of Materials Science and Engineering)
Mechanical Engineering/Nuclear Engineering (Department of Mechanical Engineering)

Visit Department Website

Major Requirements

In addition to the University, campus, and college requirements, students must fulfill the below requirements specific to their major program.

General Guidelines

  1. All technical courses taken in satisfaction of major requirements must be taken for a letter grade.

  2. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.

  3. A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.

  4. A minimum GPA of 2.0 is required for all technical courses taken in satisfaction of major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

For a detailed plan of study by year and semester, please see the Plan of Study tab.

Lower Division Requirements

MATH 1ACalculus4
MATH 1BCalculus4
MATH 53Multivariable Calculus4
MATH 54Linear Algebra and Differential Equations4
CHEM 1A
1AL
General Chemistry
and General Chemistry Laboratory 1
5
or CHEM 4A General Chemistry and Quantitative Analysis
PHYSICS 7APhysics for Scientists and Engineers4
PHYSICS 7BPhysics for Scientists and Engineers4
PHYSICS 7CPhysics for Scientists and Engineers4
EECS 16ADesigning Information Devices and Systems I3-4
or ENGIN 11 A Hands-on Introduction to Radiation Detection: Getting to know our Radioactive World
or MEC ENG 100 Electronics for the Internet of Things
or PHYSICS 111A Instrumentation Laboratory
ENGIN 7Introduction to Computer Programming for Scientists and Engineers4
ENGIN 40Engineering Thermodynamics4
MAT SCI 45
45L
Properties of Materials
and Properties of Materials Laboratory
4

Upper Division Requirements

ENGIN 117Methods of Engineering Analysis3
NUC ENG 100Introduction to Nuclear Energy and Technology3
NUC ENG 101Nuclear Reactions and Radiation4
NUC ENG 104Radiation Detection and Nuclear Instrumentation Laboratory4
NUC ENG 150Introduction to Nuclear Reactor Theory4
NUC ENG 170ANuclear Design: Design in Nuclear Power Technology and Instrumentation3
Ethics Requirement 23-4
Technical Electives: Minimum 29 units (see list below) 3,4,529
Must include at least 17 units of upper division NUC ENG courses
The remaining 12 technical elective units must be fulfilled by taking courses in engineering and science of which a minimum of 9 units must be upper division.

Upper Division Technical Electives

The following groups of electives should help undergraduate students focus their choices on specific professional goals. The electives selected need not be from any single group.

Beam and Accelerator Applications
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 180Introduction to Controlled Fusion3
PHYSICS 110AElectromagnetism and Optics4
or EL ENG 117 Electromagnetic Fields and Waves
PHYSICS 110BElectromagnetism and Optics4
or EL ENG 117 Electromagnetic Fields and Waves
PHYSICS 129Particle Physics4
PHYSICS 139Special Relativity and General Relativity3
PHYSICS 142Introduction to Plasma Physics4
Bionuclear Engineering
BIO ENG C165Medical Imaging Signals and Systems4
EL ENG 120Signals and Systems4
EL ENG C145BMedical Imaging Signals and Systems4
NUC ENG 107Introduction to Imaging3
NUC ENG 162Radiation Biophysics and Dosimetry3
Computational Methods
COMPSCI 169Software Engineering4
MATH 104Introduction to Analysis4
MATH 110Linear Algebra4
MATH 128ANumerical Analysis4
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
STAT 134Concepts of Probability4
STAT 150Stochastic Processes3
Fission Power Engineering
MEC ENG 106Fluid Mechanics3-4
or CHM ENG 150A Transport Processes
MEC ENG 109Heat Transfer3-4
or CHM ENG 150A Transport Processes
NUC ENG 120Nuclear Materials4
NUC ENG 124Radioactive Waste Management3
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 161Nuclear Power Engineering4
NUC ENG 167Risk-Informed Design for Advanced Nuclear Systems3
NUC ENG 175Methods of Risk Analysis3
Fusion Power Engineering
NUC ENG 120Nuclear Materials4
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 180Introduction to Controlled Fusion3
PHYSICS 110AElectromagnetism and Optics4
PHYSICS 110BElectromagnetism and Optics4
PHYSICS 142Introduction to Plasma Physics4
Homeland Security and Nonproliferation
CHEM 143Nuclear Chemistry2
NUC ENG 102Nuclear Reactions and Radiation Laboratory3
NUC ENG 107Introduction to Imaging3
NUC ENG 130Analytical Methods for Non-proliferation3
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 175Methods of Risk Analysis3
PHYSICS 110AElectromagnetism and Optics4
PHYSICS 110BElectromagnetism and Optics4
PHYSICS 111AInstrumentation Laboratory3
PHYSICS 111BAdvanced Experimentation Laboratory1-3
Materials in Nuclear Technology
MAT SCI 102Bonding, Crystallography, and Crystal Defects3
MAT SCI 104Materials Characterization3
MAT SCI 112Corrosion (Chemical Properties)3
MAT SCI 113Mechanical Behavior of Engineering Materials3
NUC ENG 120Nuclear Materials4
NUC ENG 124Radioactive Waste Management3
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 161Nuclear Power Engineering4
Nuclear Fuel Cycles and Waste Management
CHM ENG 150ATransport Processes4
CHM ENG 150BTransport and Separation Processes4
ENGIN 120Principles of Engineering Economics3
MAT SCI 112Corrosion (Chemical Properties)3
NUC ENG 120Nuclear Materials4
NUC ENG 124Radioactive Waste Management3
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 161Nuclear Power Engineering4
NUC ENG 175Methods of Risk Analysis3
Radiation and Health Physics
NUC ENG 102Nuclear Reactions and Radiation Laboratory3
NUC ENG 120Nuclear Materials4
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 162Radiation Biophysics and Dosimetry3
NUC ENG 180Introduction to Controlled Fusion3
Risk, Safety and Systems Analysis
CIV ENG 193Engineering Risk Analysis3
CHM ENG 150ATransport Processes4
ENGIN 120Principles of Engineering Economics3
IND ENG 166Decision Analytics3
NUC ENG 120Nuclear Materials4
NUC ENG 124Radioactive Waste Management3
NUC ENG 155Introduction to Numerical Simulations in Radiation Transport3
NUC ENG 161Nuclear Power Engineering4
NUC ENG 167Risk-Informed Design for Advanced Nuclear Systems3
NUC ENG 175Methods of Risk Analysis3

Minor Requirements

Minor programs are areas of concentration requiring fewer courses than an undergraduate major. These programs are optional but can provide depth and breadth to a UC Berkeley education. The College of Engineering does not offer additional time to complete a minor, but it is usually possible to finish within the allotted time with careful course planning. Students are encouraged to meet with their ESS adviser to discuss the feasibility of completing a minor program.

All the engineering departments offer minors. Students may also consider pursuing a minor in another school or college.

General Guidelines

  1. All minors must be declared no later than one semester before a student's Expected Graduation Term (EGT). If the semester before EGT is fall or spring, the deadline is the last day of RRR week. If the semester before EGT is summer, the deadline is the final Friday of Summer Sessions. To declare a minor, contact the department advisor for information on requirements, and the declaration process.

  2. All courses taken to fulfill the minor requirements must be taken for graded credit.

  3. A minimum overall grade point average (GPA) of 3.0 and a minimum GPA of 3.0 in the prerequisite courses is required for acceptance into the minor program.

  4. A minimum grade point average (GPA) of 2.0 is required for courses used to fulfill the minor requirements.

  5. No more than one upper division course may be used to simultaneously fulfill requirements for a student’s major and minor programs.

  6. Completion of the minor program cannot delay a student’s graduation.

Lower Division Prerequisites

MATH 1ACalculus4
MATH 1BCalculus4
MATH 53Multivariable Calculus4
MATH 54Linear Algebra and Differential Equations4
PHYSICS 7APhysics for Scientists and Engineers4
PHYSICS 7BPhysics for Scientists and Engineers4
PHYSICS 7CPhysics for Scientists and Engineers4
ENGIN 45Course Not Available3

Upper Division Requirements

NUC ENG 100Introduction to Nuclear Energy and Technology3
Select three of the following:9-12
Nuclear Reactions and Radiation [4]
Nuclear Reactions and Radiation Laboratory [3]
Radiation Detection and Nuclear Instrumentation Laboratory [4]
Introduction to Imaging [3]
Nuclear Materials [4]
Radioactive Waste Management [3]
Analytical Methods for Non-proliferation [4]
Introduction to Nuclear Reactor Theory [4]
Introduction to Numerical Simulations in Radiation Transport [3]
Nuclear Power Engineering [4]
Risk-Informed Design for Advanced Nuclear Systems [3]
Nuclear Design: Design in Nuclear Power Technology and Instrumentation [3]
Nuclear Design: Design in Bionuclear, Nuclear Medicine, and Radiation Therapy [3]
Methods of Risk Analysis [3]
Introduction to Controlled Fusion [3]

College Requirements

Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions: 

  1. Completion of the requirements of one engineering major program of study. 
  2. A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
  3. The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
  4. All technical courses (math, science, and engineering) that can fulfill requirements for the student's major must be taken on a letter graded basis (unless they are only offered P/NP). 
  5. Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed five semesters to complete their degree requirements. Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters. 
  6. Adhere to all college policies and procedures as they complete degree requirements.
  7. Complete the lower division program before enrolling in upper division engineering courses. 

Humanities and Social Sciences (H/SS) Requirement

To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement, which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two Reading and Composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. Follow these guidelines to fulfill this requirement:

  1. Complete a minimum of six courses from the  approved Humanities/Social Sciences (H/SS) lists
  2. Courses must be a minimum of 3 semester units (or 4 quarter units).
  3. Two of the six courses must fulfill the College's Reading and Composition (R&C) requirement. These courses must be taken for a letter grade (C- or better required). The first half (R&C Part A) must be completed by the end of the freshman year; the second half (R&C Part B) must be completed by no later than the end of the sophomore year. Please see the Reading and Composition Requirement page for a complete list of R&C courses available and a list of exams that can be applied toward the R&C Part A requirement. Students can also use the Class Schedule to view R&C courses offered in a given semester.  Note: Only R&C Part A can be fulfilled with an AP, IB, or A-Level exam score. Test scores do not fulfill R&C Part B for College of Engineering students.
  4. The four additional courses must be chosen from the five areas listed in #13 below. These four courses may be taken on a pass/no pass basis.
  5. Special topics courses of 3 semester units or more will be reviewed on a case-by-case basis.
  6. Two of the six courses must be upper division (courses numbered 100-196).
  7. One of the six courses must satisfy the campus American Cultures (AC) requirement. Note that any American Cultures course of 3 units or more may be used to meet H/SS.
  8. A maximum of two exams (Advanced Placement, International Baccalaureate, or A-Level) may be used toward completion of the H/SS requirement. View the list of exams that can be applied toward H/SS requirements.
  9. No courses offered by any engineering department other than BIO ENG 100, COMPSCI C79, ENGIN 125, ENGIN 157AC, ENGIN 185, and MEC ENG 191K may be used to complete H/SS requirements.
  10. Language courses may be used to complete H/SS requirements. View the list of language options.
  11. Courses may fulfill multiple categories. For example, CY PLAN 118AC satisfies both the American Cultures requirement and one upper division H/SS requirement.
  12. Courses numbered 97, 98, 99, or above 196 may not be used to complete any H/SS requirement.
  13. The College of Engineering uses modified versions of five of the College of Letters and Science (L&S) breadth requirements lists to provide options to our students for completing the H/SS requirement. The five areas are:
  • Arts and Literature
  • Historical Studies
  • International Studies
  • Philosophy and Values
  • Social and Behavioral Sciences

Within the guidelines above, choose courses from any of the Breadth areas listed above. (Please note that you cannot use courses on the Biological Science or Physical Science Breadth list to complete the H/SS requirement.) To find course options, go to the Class Schedule, select the term of interest, and use the Breadth Requirements filter.

Class Schedule Requirements

  • Minimum units per semester: 12.0
  • Maximum units per semester:  20.5
  • Minimum technical courses: College of Engineering undergraduates must include at least two letter graded technical courses (of at least 3 units each) in their semester program. Every semester students are expected to make satisfactory progress in their declared major. Satisfactory progress is determined by the student's Engineering Student Services Advisor. (Note: For most majors, normal progress will require enrolling in 3-4 technical courses each semester). Students who are not in compliance with this policy by the end of the fifth week of the semester are subject to a registration block that will delay enrollment for the following semester. 
  • All technical courses (math, science, engineering) that satisfy requirements for the major must be taken on a letter-graded basis (unless only offered as P/NP).

Minimum Academic (Grade) Requirements

  • Minimum overall and semester grade point averages of 2.00 (C average) are required of engineering undergraduates. Students will be subject to dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00. 
  • Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester.
  • A minimum overall grade point average of 2.00 and a minimum 2.00 grade point average in upper division technical course work required for the major are required to earn a Bachelor of Science in the College of Engineering.

Unit Requirements

To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:

  • Completion of the requirements of one engineering major program of study. 
  • A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed to count towards the B.S. degree, and no more than 4 units in any single term can be counted.
  • A maximum of 4 units of physical education from any school attended will count towards the 120 units.
  • Passed (P) grades may account for no more than one third of the total units completed at UC Berkeley, Fall Program for Freshmen (FPF), UC Education Abroad Program (UCEAP), or UC Berkeley Washington Program (UCDC) toward the 120 overall minimum unit requirement. Transfer credit is not factored into the limit. This includes transfer units from outside of the UC system, other UC campuses, credit-bearing exams, as well as UC Berkeley Extension XB units.

Normal Progress

Students in the College of Engineering must enroll in a full-time program and make normal progress each semester toward the bachelor's degree. The continued enrollment of students who fail to achieve minimum academic progress shall be subject to the approval of the dean. (Note: Students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.) 

UC and Campus Requirements

University of California Requirements

Entry Level Writing

All students who will enter the University of California as freshmen must demonstrate their command of the English language by fulfilling the Entry Level Writing Requirement. Satisfaction of this requirement is also a prerequisite to enrollment in all Reading and Composition courses at UC Berkeley.

American History and American Institutions

The American History and Institutions requirements are based on the principle that a U.S. resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.

Campus Requirement

American Cultures

The American Cultures requirement is a Berkeley campus requirement, one that all undergraduate students at Berkeley need to pass in order to graduate. You satisfy the requirement by passing, with a grade not lower than C- or P, an American Cultures course. You may take an American Cultures course any time during your undergraduate career at Berkeley. The requirement was instituted in 1991 to introduce students to the diverse cultures of the United States through a comparative framework. Courses are offered in more than fifty departments in many different disciplines at both the lower and upper division level.

The American Cultures requirement and courses constitute an approach that responds directly to the problem encountered in numerous disciplines of how better to present the diversity of American experience to the diversity of American students whom we now educate.

Faculty members from many departments teach American Cultures courses, but all courses have a common framework. The courses focus on themes or issues in United States history, society, or culture; address theoretical or analytical issues relevant to understanding race, culture, and ethnicity in American society; take substantial account of groups drawn from at least three of the following: African Americans, indigenous peoples of the United States, Asian Americans, Chicano/Latino Americans, and European Americans; and are integrative and comparative in that students study each group in the larger context of American society, history, or culture.

This is not an ethnic studies requirement, nor a Third World cultures requirement, nor an adjusted Western civilization requirement. These courses focus upon how the diversity of America's constituent cultural traditions have shaped and continue to shape American identity and experience.

Visit the Class Schedule or the American Cultures website for the specific American Cultures courses offered each semester. For a complete list of approved American Cultures courses at UC Berkeley and California Community Colleges, please see the American Cultures Subcommittee’s website. See your academic adviser if you have questions about your responsibility to satisfy the American Cultures breadth requirement.

Plan of Study

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the College Requirements and Major Requirements tabs.

Freshman
FallUnitsSpringUnits
CHEM 4A or 1A and 1AL15MATH 1B4
MATH 1A4PHYSICS 7A4
Reading & Composition Part A Course74ENGIN 74
Humanities/Social Sciences course73-4Reading & Composition Part B Course74
Any Freshman seminar1 
 17-18 16
Sophomore
FallUnitsSpringUnits
MATH 534MATH 544
PHYSICS 7B4PHYSICS 7C4
MAT SCI 45
45L
4Electronic Circuits Elective23-4
Humanities/Social Sciences course73-4Humanities/Social Sciences course73-4
 15-16 14-16
Junior
FallUnitsSpringUnits
ENGIN 1173NUC ENG 1014
ENGIN 404NUC ENG 1504
NUC ENG 1003Technical Elective4,5,64
Humanities/Social Sciences course (with Ethics content)4,73-4Free Elective1
 13-14 13
Senior
FallUnitsSpringUnits
NUC ENG 1044NUC ENG 170A3
Technical Electives4,5,612Technical Electives4,5,613
 16 16
Total Units: 120-125

Student Learning Goals

Mission

The mission of the Department of Nuclear Engineering is to maintain and strengthen the University of California's only center of excellence in nuclear engineering education and research and to serve California and the nation by improving and applying nuclear science and technology. The mission of the undergraduate degree program in Nuclear Engineering is to prepare our students to begin a lifetime of technical achievement and professional leadership in academia, government, the national laboratories, and industry.

Learning Goals for the Major

The foundation of the UC Berkeley Nuclear Engineering (NE) program is a set of five key objectives for educating undergraduate students. The NE program continuously reviews these objectives internally to ensure that they meet the current needs of the students, and each spring the Program Advisory Committee meets to review the program and recommend changes to better serve students. The NE Program Advisory Committee was established in 1988 and is composed of senior leaders from industry, the national laboratories, and academia.

Nuclear engineering at UC Berkeley prepares undergraduate students for employment or advanced studies with four primary constituencies: industry, the national laboratories, state and federal agencies, and academia (graduate research programs). Graduate research programs are the dominant constituency. From 2000 to 2005, sixty-eight percent of graduating NE seniors indicated plans to attend graduate school in their senior exit surveys. To meet the needs of these constituencies, the objectives of the NE undergraduate program are to produce graduates who as practicing engineers and researchers do the following:

  1. Apply solid knowledge of the fundamental mathematics and natural (both physical and biological) sciences that provide the foundation for engineering applications.
  2. Demonstrate an understanding of nuclear processes, and the application of general natural science and engineering principles to the analysis and design of nuclear and related systems of current and/or future importance to society.
  3. Exhibit strong, independent learning, analytical and problem solving skills, with special emphasis on design, communication, and an ability to work in teams.
  4. Demonstrate an understanding of the broad social, ethical, safety, and environmental context within which nuclear engineering is practiced.
  5. Value and practice life-long learning.

Courses

Nuclear Engineering

Faculty and Instructors

Faculty

Rebecca Abergel, Assistant Professor. Effects of heavy element exposure and contamination on different biological systems.
Research Profile

Lee A. Bernstein, Adjunct Professor.

Massimiliano Fratoni, Assistant Professor. Nuclear reactor design, fuel cycle analysis, fusion reactors.
Research Profile

Peter Hosemann, Professor. Microscopy, nanomaterials, Nuclear materials, material science, radiation damage, corrosion in liquid metals, materials development, materials under extremes, nuclear applications, ion beam microscopy, nanoscale mechanical testing.
Research Profile

Daniel M. Kammen, Professor. Public policy, nuclear engineering, energy, resources, risk analysis as applied to global warming, methodological studies of forecasting, hazard assessment, renewable energy technologies, environmental resource management.
Research Profile

Edward C. Morse, Professor. Applied plasma physics: fusion technology: microwaves, experimental investigation of RF plasma heating, experimental studies of compact toroids spectral method for magnetohydrodynamic stability.
Research Profile

Eric B. Norman, Professor in Residence. Professor of the Graduate School, nuclear astrophysics, experimental nuclear physics, homeland security, neutrinos.
Research Profile

Per F. Peterson, Professor. Nuclear engineering, heat and mass transfer, reactor thermal hydraulics, nuclear reactor design, radioactive waste, nuclear materials management.
Research Profile

Raluca O. Scarlat, Assistant Professor. Chemical and termophysical characterization of high-temperature molten salts and other inorganic fluids, and heat and mass transport pertaining to energy systems Electrochemistry, corrosion, thermodynamics Nuclear reactor safety analysis, licensing and design, and engineering ethics .
Research Profile

Rachel Slaybaugh, Assistant Professor. Computational methods, high performance computing, neutron transport.
Research Profile

Karl A. Van Bibber, Professor. Experimental nuclear physics, Particle Astrophysics, Accelerator Technology and Neutron Sources.
Research Profile

Kai Vetter, Professor. Nuclear physics, radiation detection, nuclear instrumentation, nuclear measurements, multi-sensor systems and data fusion, radiological resilience.
Research Profile

Jasmina L. Vujic, Professor. Nuclear engineering, numerical methods in reactor physics, neutron and photon transport, reactor core design and analysis, shielding, radiation protection, biomedical application of radiation, optimization techniques for vector, parallel computers.
Research Profile

Lecturers

Ralph E. Berger, Lecturer.

Ali Hanks, Lecturer.

Emeritus Faculty

T. Kenneth Fowler, Professor Emeritus. Plasma physics, nuclear engineering, magnetic fusion, confinement and stability of plasmas for thermonuclear fusion, fusion reactor design, spehromak compact toroid plasma confinement configuration.
Research Profile

Ehud Greenspan, Professor Emeritus. Professor of the Graduate School.

Lawrence M. Grossman, Professor Emeritus. Nuclear engineering, reactor physics, numerical approximation methods in neutron diffusion, transport theory, control and optimization theory in nuclear reactor engineering.
Research Profile

Selig N. Kaplan, Professor Emeritus. Radiation reactions, interaction of radiation of matter, detection and measurement of ionizing radiation.
Research Profile

William E. Kastenberg, Professor Emeritus. Risk management, risk assessment, nuclear reactor safety, ethical issues in emerging technologies.
Research Profile

Ka-Ngo Leung, Professor Emeritus. Professor of the Graduate School, Plasma and Ion Beam technology in microfabrication processes.

Donald R. Olander, Professor Emeritus. Nuclear engineering, nuclear materials: reactor fuel behavior, hydriding of zirconium and uranium, high-temperature kinetic and thermodynamic behavior of nuclear reactor fuels, performance of degraded nuclear fuels.
Research Profile

Contact Information

Department of Nuclear Engineering

4155 Etcheverry Hall

Phone: 510-642-4077

Fax: 510-643-9685

Visit Department Website

Department Chair

Peter Hosemann, PhD

4153 Etcheverry Hall

Phone: 510-642-3477

peterh@berkeley.edu

Department Student Services Adviser

Kirsten Wimple Hall

Phone: 510-642-5760

kirstenw@berkeley.edu

Undergraduate Faculty Advisor

Massimiliano Fratoni

4111 Etcheverry Hall

Phone: 510-664-9079

maxfratoni@berkeley.edu

Engineering Student Services Advisor

Chaniqua Butscher

Phone: 510-642-7594

http://engineering.berkeley.edu/ESS

chaniqua@berkeley.edu

Back to Top